/Title (Grundlagen und diskrete Strukturen - Prüfungsvorbereitung)
/Creator (TeX)
/Producer (pdfTeX 1.40.0)
/Author (Robert Jeutter)
/Subject ()
}
\title{Grundlagen und diskrete Strukturen - Prüfungsvorbereitung}
\author{}
\date{}
% Don't print section numbers
\setcounter{secnumdepth}{0}
\newtcolorbox{myboxii}[1][]{
breakable,
freelance,
title=#1,
colback=white,
colbacktitle=white,
coltitle=black,
fonttitle=\bfseries,
bottomrule=0pt,
boxrule=0pt,
colframe=white,
overlay unbroken and first={
\draw[red!75!black,line width=3pt]
([xshift=5pt]frame.north west) --
(frame.north west) --
(frame.south west);
\draw[red!75!black,line width=3pt]
([xshift=-5pt]frame.north east) --
(frame.north east) --
(frame.south east);
},
overlay unbroken app={
\draw[red!75!black,line width=3pt,line cap=rect]
(frame.south west) --
([xshift=5pt]frame.south west);
\draw[red!75!black,line width=3pt,line cap=rect]
(frame.south east) --
([xshift=-5pt]frame.south east);
},
overlay middle and last={
\draw[red!75!black,line width=3pt]
(frame.north west) --
(frame.south west);
\draw[red!75!black,line width=3pt]
(frame.north east) --
(frame.south east);
},
overlay last app={
\draw[red!75!black,line width=3pt,line cap=rect]
(frame.south west) --
([xshift=5pt]frame.south west);
\draw[red!75!black,line width=3pt,line cap=rect]
(frame.south east) --
([xshift=-5pt]frame.south east);
},
}
\begin{document}
\begin{myboxii}[Disclaimer]
Aufgaben aus dieser Vorlage stammen aus der Vorlesung \textit{Grundlagen und diskrete Strukturen} und wurden zu Übungszwecken verändert oder anders formuliert! Für die Korrektheit der Lösungen wird keine Gewähr gegeben.
\question Es seien $f,g:\mathbb{N}\rightarrow\mathbb{N}$ zwei Funktionen. Auf der Menge $\mathbb{N}$ der natürlichen Zahlen wird wie folgt eine Relation definiert: $a \sim b \leftrightarrow f(a)-f(b)=g(a)-g(b)$. Weise nach, dass $\sim$ eine Äquivalenzrelation ist. Für den konkreten Fall $f(x)=x^2+1$ und $g(x)=2x$ bestimme man die Äquivalenzklasse $[2]_{\backslash\sim}$
\begin{solution}
\end{solution}
\question
\begin{parts}
\part Bestimme mit Hilfe des euklidischen Algorithmus ganze Zahlen $a,b$, für die gilt $1=a*100+b*23$
\part Untersuche, ob es ein multiplikativ inverses Element zu $\overline{23}$ in $\mathbb{Z}_{100}$ gibt und bestimme dieses gegebenfalls. Gebe außerdem ein nicht invertierbares Element außer $\overline{0}$ in $\mathbb{Z}_{100}$ an.
\begin{solution}
\end{solution}
\end{parts}
\question Gegeben sei die Menge $G=\{\begin{pmatrix}1&a&b\\0&1&c\\0&0&1\end{pmatrix}\in\mathbb{R}^{(3,3)}\mid a,b,c\in\mathbb{R}\}$. Zeige, dass $G$ eine Gruppe bezüglich der Matrizenmultiplikation ist. Rechengesetze der Matrizenmultiplikation dürfen vorausgesetzt werden. Ist die Gruppe kommutativ? (ohne Beweis)
\begin{solution}
\end{solution}
\question Markus ist politikinteressiert und möchte gerne Bundeskanzler werden. Er überlegt aber noch welcher Partei er beitritt. Er hat zwei Parteien $A$ und $B$, die ihm gefallen, könnte aber auch eine eigene Partei $C$ gründen. Die Chancen bei den nächsten Wahlen als Spitzenkandidat aufgestellt zu werden schätzt er auf $10\%$ bei Partei $A$, auf $20\%$ bei Partei $B$ und $100\%$ bei Partei $C$. Die Chance, dass die jeweilige Partei mit ihm an der Spitze die Wahl gewinnt liegt bei $60\%$, $45\%$ bzw. $2\%$.
\part Markus lässt die Würfel entscheiden. Bei $1$ tritt er Partei $A$ bei, bei $2$ oder $3$ Partei $B$ und bei $4,5$ oder $6$ gründet er Partei $C$. Markus wird tatsächlich Bundeskanzler. Mit welcher Wahrscheinlichkeit hat er dann Partei $C$ gegründet.