491 lines
24 KiB
Markdown
491 lines
24 KiB
Markdown
---
|
||
title: Datenbanksysteme
|
||
date: Wintersemester 20/21
|
||
author: Robert Jeutter
|
||
---
|
||
|
||
# Was sind Datenbanken - Grundlegende Konzepte
|
||
## Überblick
|
||
- Daten = logisch gruppierte Informationseinheiten
|
||
- Bank = Sicherheit vor Verlust, Dienstleistung für mehrere Kunden, (langfristige) Aufbewahrung
|
||
|
||
Ohne Datenbanken:
|
||
- jedes Anwendungssystem verwaltet seine eigenen Daten
|
||
- Daten sind (redundant) mehrfach gespeichert
|
||
- Probleme
|
||
- Verschwenden von Speicherplatz
|
||
- "vergessen" von Änderungen
|
||
- keine zentrale "genormte" Datenerhaltung
|
||
- größere Mengen von Daten nicht effizient verarbeitet
|
||
- mehrere Benutzer können nicht parallel auf den gleichen Daten arbeiten, ohne sich zu stören
|
||
- Anwendungsprogrammierer/Benutzer können Anwendungen nicht programmieren/benutzen ohne ... zu kennen (keine Datenunabhängigkeit)
|
||
- interne Dartstellung der Daten
|
||
- Speichermedien oder Rechner
|
||
- Datenschutz und Datensicherheit
|
||
|
||
### Datenintegration durch Datenbanksystem
|
||
Anwendungen greifen über Datenbankmanagementsystem auf Datenbank zu.
|
||
|
||
Datenbankmanagementsystem (DBMS): Software zur Verwaltung von Datenbanken
|
||
|
||
Datenbank (DB): strukturierter, von DBMS verwalteter Datenbestand
|
||
|
||
Datenbanksystem (DBS) = DBMS + DB
|
||
|
||
|
||
|
||
## Architekturen
|
||
die neun Codd'schen Regeln
|
||
1. Integration: einheitliche, nichtredundante Datenverwaltung
|
||
2. Operationen: Speichern, Suchen, Ändern
|
||
3. Katalog: Zugriffe auf Datenbankbeschreibungen im Data Dictionary
|
||
4. Benutzersichten
|
||
5. Integritätssicherung: Korrektheit des Datenbankinhalts
|
||
6. Datenschutz: Ausschluss unauthorisierter Zugriffe
|
||
7. Transaktionen: mehrere DB-Operationen als Funktionseinheit
|
||
8. Synchronisation: parallele Transaktionen koordinieren
|
||
9. Datensicherung: Wiederherstellung von Daten nach Systemfehlern
|
||
|
||
Ziele:
|
||
- Trennung von Modellierungssicht und interner Speicherung
|
||
- Portierbarkeit
|
||
- Tuning vereinfachen
|
||
- standardisierte Schnittstellen
|
||
|
||
Schemata:
|
||
- Konzeptuelles Schema (Ergebnis der Dateidefinition)
|
||
- Internes Schema (Festlegung der Dateiorganisation und Zugriffspfade = Index)
|
||
- Externes Schema (Ergebnis der Sichtdefinition)
|
||
- Anwendungsprogramm (Ergebnis der Anwendungsprogrammierung)
|
||
|
||
- Trennung Schema-Instanz
|
||
- Schema: Metadaten, Datenbeschreibung
|
||
- Instanz: Anwenderdaten, Datenbankzustand
|
||
|
||
Datenunabhängigkeit:
|
||
- Stabilität der Benutzerschnittstelle gegen Änderungen
|
||
- physisch: Änderung der Dateiorganisation und Zugriffspfade haben keinen Einfluss auf das konzeptuelle Schema
|
||
- logisch: Änderung am konzeptuellen und gewissen externen Schemata haben keine Auswirkungen auf andere externe Schemata und Anwendungsprogramme
|
||
|
||
Aufteilung der Funktionalitäten einer Anwendung
|
||
- Präsentation und Benutzerinteraktion
|
||
- Anwendungslogik („Business“-Logik)
|
||
- Datenmanagementfunktionen (Speichern, Anfragen, ...).
|
||
|
||
Architektur von Datenbankanwendungen typischerweise auf Basis des Client-Server-Modells (Server=Datenbanksystem).
|
||
|
||
### 3 Schichten Architektur (ANSI-SPARC-Architektur)
|
||
Klassifizierung der Komponenten
|
||
- Definitionskomponenten: Datendefinition, Dateiorganisation, Sichtdefinition
|
||
- Programmierkomponenten: DB-Programmierung mit eingebetteten DB-Operationen
|
||
- Benutzerkomponenten: Anwendungsprogramme, Anfrage und Update interaktiv
|
||
- Transformationskomponenten: Optimierer, Auswertung, Plattenzugriffssteuerung
|
||
- Data Dictionary (Datenwörterbuch): Aufnahme der Daten aus Definitionskomponenten, Versorgung der anderen Komponenten
|
||
|
||
### 5 Schichten Architektur
|
||
Verfeinerung der Transformation
|
||
- Datensystem: Übersetzung, Zugriffspfadwahl
|
||
- Zugriffssystem: Logische Zugriffspfade, Schemakatalog, Sortierung, Transaktionsverwaltung
|
||
- Speichersystem Speicherungsstrukturen, Zugriffspfadverwaltung, Sperrverwaltung, Logging, Recovery
|
||
- Pufferverwaltung: Systempufferverwaltung, Seitenersetzung, Seitenzuordnung
|
||
- Betriebssystem: Externspeicherverwaltung, Speicherzuordnung
|
||
|
||
## Einsatzgebiete
|
||
- Klassische Einsatzgebiete:
|
||
- viele Objekte (15000 Bücher, 300 Benutzer, 100 Ausleihvorgänge pro Woche, ...)
|
||
- wenige Objekttypen (BUCH, BENUTZER, AUSLEIHUNG)
|
||
- etwa Buchhaltungssysteme, Auftragserfassungssysteme, Bibliothekssysteme, ...
|
||
- Aktuelle Anwendungen: E-Commerce, entscheidungsunterstützende Systeme (Data Warehouses, OLAP), NASA’s Earth Observation System (Petabyte-Datenbanken), Data Mining
|
||
|
||
Datenbankgrößen:
|
||
- eBay Data Warehouse: 10PB
|
||
- Teradata DBMS, 72 Knoten, 10.000 Nutzer,
|
||
- mehrere Millionen Anfragen/Tag
|
||
- WalMart Data Warehouse: 2,5PB
|
||
- Teradata DBMS, NCR MPP-Hardware;
|
||
- Produktinfos (Verkäufe etc.) von 2.900 Märkten;
|
||
- 50.000 Anfragen/Woche
|
||
- Facebook: 400TB
|
||
- x.000 MySQL-Server
|
||
- Hadoop/Hive, 610 Knoten, 15 TB/Tag
|
||
- US Library of Congress 10-20TB
|
||
- nicht digitalisiert
|
||
|
||
## Historisches
|
||
- Wissensbanksysteme
|
||
- Daten in Tabellenstrukturen
|
||
- Stark deklarative DML, integrierte Datenbankprogrammiersprache
|
||
- Objektorientierte Datenbanksysteme
|
||
- Daten in komplexeren Objektstrukturen (Trennung Objekt und seine Daten)
|
||
- Deklarative oder navigierende DML
|
||
- Oft integrierte Datenbankprogrammiersprache
|
||
- Oft keine vollständige Ebenentrennung
|
||
|
||
- Neue Hardwarearchitekturen
|
||
- Multicore-Prozessoren, Hauptspeicher im TB-Bereich: In-Memory-Datenbanksysteme (z.B. SAP HANA)
|
||
- Unterstützung für spezielle Anwendungen
|
||
- Cloud-Datenbanken: Hosting von Datenbanken, Skalierbare Datenmanagementlösungen (Amazon RDS, Microsoft Azure)
|
||
• Datenstromverarbeitung: Online-Verarbeitung von Live-Daten, z.B. Börseninfos, Sensordaten, RFID-Daten, ...(StreamBase, MS StreamInsight, IBM Infosphere Streams)
|
||
- Big Data: Umgang mit Datenmengen im PB-Bereich durch hochskalierbare, parallele Verarbeitung, Datenanalyse (Hadoop, Hive, Google Spanner & F1, ...)
|
||
- NoSQL-Datenbanken („Not only SQL“):
|
||
- nicht-relationale Datenbanken, flexibles Schema (dokumentenzentriert)
|
||
- „leichtgewichtig“ durch Weglassen von SQL-Funktionalitäten wie Transaktionen, mächtige deklarative Anfragesprachen mit Verbunden etc.
|
||
- Beispiele: CouchDB, MongoDB, Cassandra, ...
|
||
|
||
|
||
# Relationale Datenbanken - Daten als Tabellen
|
||
## Relationen für tabellarische Daten
|
||
Konzeptuell: Datenbank = Menge von Tabellen (= Relationen)
|
||
|
||
- „Tabellenkopf“: Relationenschema
|
||
- Eine Zeile der Tabelle: Tupel; Menge aller Einträge: Relation
|
||
- Eine Spaltenüberschrift: Attribut
|
||
- Ein Eintrag: Attributwert
|
||
|
||
Integritätsbedingungen: Schlüssel
|
||
- Attribute einer Spalte identifizieren eindeutig gespeicherte Tupel: Schlüsseleigenschaft
|
||
- auch Attributkombinationen können Schlüssel sein!
|
||
- Schlüssel können durch Unterstreichen gekennzeichnet werden
|
||
- Schlüssel einer Tabelle können in einer anderen (oder derselben!) Tabelle als eindeutige Verweise genutzt werden:
|
||
- Fremdschlüssel, referenzielle Integrität
|
||
- ein Fremdschlüssel ist ein Schlüssel in einer „fremden“ Tabelle
|
||
|
||
## SQL-Datendefinition
|
||
### CREATE table
|
||
Wirkung dieses Kommandos ist sowohl
|
||
- die Ablage des Relationenschemas im Data Dictionary, als auch
|
||
- die Vorbereitung einer „leeren Basisrelation“ in der Datenbank
|
||
|
||
### DROP table
|
||
komplettes Löschen einer Tabelle (Inhalt und Eintrag im Data
|
||
Dictionary)
|
||
|
||
### Mögliche Wertebereiche in SQL
|
||
- integer (oder auch integer4, int),
|
||
- smallint (oder auch integer2),
|
||
- float(p) (oder auch kurz float),
|
||
- decimal(p,q) und numeric(p,q) mit jeweils q Nachkommastellen,
|
||
- character(n) (oder kurz char(n), bei n = 1 auch char) für Zeichenketten (Strings) fester Länge n,
|
||
- character varying(n) (oder kurz varchar(n) für Strings variabler Länge bis zur Maximallänge n,
|
||
- bit(n) oder bit varying(n) analog für Bitfolgen, und
|
||
- date, time bzw. datetime für Datums-, Zeit- und kombinierte Datums-Zeit-Angaben
|
||
|
||
Beispiel:
|
||
```sql
|
||
create table WEINE (
|
||
WeinID int,
|
||
Name varchar(20) not null,
|
||
Farbe varchar(10),
|
||
Jahrgang int,
|
||
Weingut varchar(20),
|
||
primary key(WeinID),
|
||
foreign key(Weingut) references ERZEUGER(Weingut))
|
||
```
|
||
- primary key kennzeichnet Spalte als Schlüsselattribut
|
||
- foreign key kennzeichnet Spalte als Fremdschlüssel
|
||
- not null schließt in bestimmten Spalten Nullwerte als Attributwerte aus
|
||
- null repräsentiert die Bedeutung „Wert unbekannt“, „Wert nicht anwendbar“ oder „Wert existiert nicht“, gehört aber zu keinem Wertebereich
|
||
- null kann in allen Spalten auftauchen, außer in Schlüsselattributen und den mit not null gekennzeichneten
|
||
|
||
|
||
## Grundoperationen: Die Relationenalgebra
|
||
- Anfrageoperationen auf Tabellen
|
||
- Basisoperationen auf Tabellen, die die Berechnung von neuen Ergebnistabellen aus gespeicherten Datenbanktabellen erlauben
|
||
- Operationen werden zur sogenannten Relationenalgebra zusammengefasst
|
||
- Mathematik: Algebra ist definiert durch Wertebereich sowie darauf definierten Operationen
|
||
- für Datenbankanfragen entsprechen die Inhalte der Datenbank den Werten, Operationen sind dagegen Funktionen zum Berechnen der Anfrageergebnisse
|
||
- Anfrageoperationen sind beliebig kombinierbar und bilden eine Algebra zum „Rechnen mit Tabellen“ – die Relationenalgebra
|
||
|
||
- Selektion $\sigma$: Auswahl von Zeilen einer Tabelle anhand eines Selektionsprädikats
|
||
- Projektion $\pi$: Auswahl von Spalten durch Angabe einer Attributliste
|
||
- Die Projektion entfernt doppelte Tupel
|
||
- Verbund $\bowtie$ (engl. join): verknüpft Tabellen über gleichbenannte Spalten, indem er jeweils zwei Tupel verschmilzt, falls sie dort gleiche Werte aufweisen
|
||
- Tupel, die keinen Partner finden (dangling tuples), werden eliminiert
|
||
- Umbenennung $\beta$: Anpassung von Attributnamen mittels Umbenennung
|
||
- Vereinigung $r_1 \cup r_2$ von zwei Relationen $r_1$ und $r_2$:
|
||
- Gesamtheit der beiden Tupelmengen
|
||
- Attributmengen beider Relationen müssen identisch sein
|
||
- Differenz $r_1 − r_2$ eliminiert die Tupel aus der ersten Relation, die auch in der zweiten Relation vorkommen
|
||
- Durchschnitt $r_1 \cap r_2$: ergibt die Tupel, die in beiden Relationen gemeinsam vorkommen
|
||
|
||
|
||
## SQL als Anfragesprache
|
||
```sql
|
||
SELECT farbe FROM weine WHERE Jahrgang = 2002
|
||
```
|
||
- SQL hat Multimengensemantik — Duplikate in Tabellen werden in SQL nicht automatisch unterdrückt!
|
||
- Mengensemantik durch distinct
|
||
- Verknüpfung von Tabellen
|
||
- Kreuzprodukt: `` select * from Weine, Erzeuger``
|
||
- Verbund: `` select * from Weine natural join Erzeuger``
|
||
- Verbund mit Bedingung: `` select * from Weine, Erzeuger where Weine.Weingut = Erzeuger.Weingut``
|
||
- Kombination von Bedingungen
|
||
- Vereinigung in SQL explizit mit union
|
||
|
||
## Änderungsoperationen in SQL
|
||
- insert: Einfügen eines oder mehrerer Tupel in eine Basisrelation oder Sicht
|
||
- `` INSERT INTO table (attribut) VALUE (ausdruck) ``
|
||
- optionale Attributliste ermöglicht das Einfügen von unvollständigen Tupeln
|
||
- nicht alle Attribute angegeben ⇝ Wert des fehlenden Attribut Land wird null
|
||
- update: Ändern von einem oder mehreren Tupel in einer Basisrelation oder Sicht
|
||
- `` UPDATE relation SET attribut=ausdruck ``
|
||
- delete: Löschen eines oder mehrerer Tupel aus einer Basisrelation oder Sicht
|
||
- `` DELETE FROM table WHERE id=123 ``
|
||
- Löschoperationen können zur Verletzung von Integritätsbedingungen führen!
|
||
|
||
Lokale und globale Integritätsbedingungen müssen bei Änderungsoperationen automatisch vom System überprüft werden
|
||
|
||
|
||
# Datenbankentwurf im ER-Modell
|
||
## Datenbankmodelle
|
||
> **Datenbankmodell**: Ein Datenbankmodell ist ein System von Konzepten zur Beschreibung von Datenbanken. Es legt Syntax und Semantik von Datenbankbeschreibungen für ein Datenbanksystem fest.
|
||
|
||
Datenbankbeschreibungen = Datenbankschemata
|
||
|
||
1. statische Eigenschaften
|
||
1. Objekte
|
||
2. Beziehungen
|
||
- inklusive der Standard-Datentypen, die Daten über die Beziehungen und Objekte darstellen können,
|
||
2. dynamische Eigenschaften wie
|
||
1. Operationen
|
||
2. Beziehungen zwischen Operationen,
|
||
1. Integritätsbedingungen an
|
||
1. Objekte
|
||
2. Operationen
|
||
|
||
Datenbankmodelle im Überblick
|
||
- HM: hierarchisches Modell, NWM: Netzwerkmodell, RM: Relationenmodell
|
||
- NF 2 : Modell der geschachtelten (Non-First-Normal-Form = NF 2 ) Relationen, eNF 2 : erweitertes NF 2 -Modell
|
||
- ER: Entity-Relationship-Modell, SDM: semantische Datenmodelle
|
||
- OODM / C++: objektorientierte Datenmodelle auf Basis objektorientierter Programmiersprachen wie C++,
|
||
- OEM: objektorientierte Entwurfsmodelle (etwa UML),
|
||
- ORDM: objektrelationale Datenmodelle
|
||
|
||
## ER Modell
|
||
- **Entity**: Objekt der realen oder der Vorstellungswelt, über das Informationen zu speichern sind, z.B. Produkte (Wein, Katalog), Winzer oder Kritiker; aber auch Informationen über Ereignisse, wie z.B. Bestellungen
|
||
- **Relationship**: beschreibt eine Beziehung zwischen Entities, z.B. ein Kunde bestellt einen Wein oder ein Wein wird von einem Winzer angeboten
|
||
- **Attribut**: repräsentiert eine Eigenschaft von Entities oder Beziehungen, z.B. Name eines Kunden, Farbe eines Weines oder Datum einer Bestellung
|
||
- Attribute modellieren Eigenschaften von Entities oder auch Beziehungen
|
||
- alle Entities eines Entity-Typs haben dieselben Arten von Eigenschaften; Attribute werden somit für Entity-Typen deklariert
|
||
- **Werte**: primitive Datenelemente, die direkt darstellbar sind
|
||
- Wertemengen sind beschrieben durch Datentypen, die neben einer Wertemenge auch die Grundoperationen auf diesen Werten charakterisieren
|
||
- ER-Modell: vorgegebene Standard-Datentypen, etwa die ganzen Zahlen int, die Zeichenketten string, Datumswerte date etc.
|
||
- jeder Datentyp stellt Wertebereich mit Operationen und Prädikaten dar
|
||
- **Entities** sind die in einer Datenbank zu repräsentierenden Informationseinheiten
|
||
- im Gegensatz zu Werten nicht direkt darstellbar, sondern nur über ihre Eigenschaften beobachtbar
|
||
- Entities sind eingeteilt in Entity-Typen, etwa $E_1 , E_2,...$
|
||
- **Schlüsselattribute**: Teilmenge der gesamten Attribute eines Entity-Typs $E(A_1,... , A_m)$
|
||
- in jedem Datenbankzustand identifizieren die aktuellen Werte der Schlüsselattribute eindeutig Instanzen des Entity-Typs E
|
||
- bei mehreren möglichen Schlüsselkandidaten: Auswahl eines Primärschlüssels
|
||
- **Beziehungstypen**: Beziehungen zwischen Entities werden zu Beziehungstypen zusammengefasst
|
||
- Beziehungen können ebenfalls Attribute besitzen
|
||
|
||
|
||
Merkmale von Beziehungen
|
||
- Stelligkeit oder Grad:
|
||
- Anzahl der beteiligten Entity-Typen
|
||
- häufig: binär
|
||
- Beispiel: Lieferant liefert Produkt
|
||
- Kardinalität oder Funktionalität:
|
||
- Anzahl der eingehenden Instanzen eines Entity-Typs
|
||
- Formen: 1:1, 1:n, m:n
|
||
- stellt Integritätsbedingung dar
|
||
- Beispiel: maximal 5 Produkte pro Bestellung
|
||
|
||
- 1:1 Beziehung
|
||
- jedem Entity $e_1$ vom Entity-Typ $E_1$ ist maximal ein Entity $e_2$ aus $E_2$ zugeordnet und umgekehrt
|
||
- Bsp: Prospekt *beschreibt* Produkt
|
||
- 1:N Beziehung
|
||
- jedem Entity $e_1$ aus $E_1$ sind beliebig viele Entities $E_2$ zugeordnet, aber zu jedem Entity $e_2$ gibt es maximal ein $e_1$ aus $E_1$
|
||
- Bsp: Lieferant *liefert* Produkte, Mutter *hat* Kinder
|
||
- N:1 Beziehung
|
||
- invers zu 1:N, auf funktionale Beziehung
|
||
- M:N Bezeihung
|
||
- keine Restriktionen
|
||
- Bsp: Bestellung *umfasst* Produkte
|
||
|
||
[min,max]-Notation
|
||
- schränkt die möglichen Teilnahmen von Instanzen der beteiligten Entity-Typen an der Beziehung ein, indem ein minimaler und ein maximaler Wert vorgegeben wird
|
||
- Spezielle Wertangabe für $max_i$ ist ∗
|
||
|
||
Kardinalitätsangaben
|
||
- [0, ∗] legt keine Einschränkung fest (default)
|
||
- $R(E_1 [0, 1], E_2 )$ entspricht einer (partiellen) funktionalen Beziehung $R : E_1 \rightarrow E_2$ , da jede Instanz aus $E_1$ maximal einer Instanz aus $E_2$ zugeordnet ist
|
||
- totale funktionale Beziehung wird durch $R(E_1 [1, 1], E_2 )$ modelliert
|
||
- Beispiele:
|
||
- partielle funktionale Beziehung: $lagert_in(Produkt[0,1],Fach[0,3])$
|
||
- totale funktionale Beziehung: $liefert(Lieferant[0,*],Produkt[1,1])$
|
||
|
||
## Weitere Konzepte im ER Modell
|
||
- abhängiger Entity-Typ: Identifikation über funktionale Beziehungen (Bsp x "gehört zu" y)
|
||
- Spezialisierungs-/Generalisierungsbeziehung oder auch *IST*-Beziehung
|
||
- E1 *IST* E2
|
||
- entspricht semantisch einer injektiven funktionalen Beziehung
|
||
- Attribute des Entity-Typs E2 treffen auch auf E1 zu: "vererbte" Attribute
|
||
- nicht nur Atrributsdeklarationen vererben sich, sondern auch jeweils die aktuellen Werte für eine Instanz
|
||
- Kardinalitätsangabe immer: $IST(E_1[1,1], E_2[0,1])$
|
||
- Jede Instanz von E1 nimmt genau einmal an der Ist-Beziehung teil, während Instanzen des Obertyps E2 nicht teilnehmen müssen
|
||
|
||
Die Konzepte im Überblick:
|
||
| **Begriff** | **Informale Bedeutung** |
|
||
| -- | -- |
|
||
| Entity | zu repräsentierende Informationseinheit |
|
||
| Entity Typ | Gruppierung von Entitys mit gleichen Eigenschaften |
|
||
| Beziehungstyp | Gruppierung von Beziehungen zwischen Entitys |
|
||
| Attribut | datenwertige Eigenschaft eines Entitys oder einer Beziehung |
|
||
| Schlüssel | identifizierende Eigenschaft von Entitys |
|
||
| Kardinalitäten | Einschränkung von Beziehungstypen bezüglich der mehrfachen Teilnahme von Entitys an der Beziehung |
|
||
| Stelligkeit | Anzahl der an einem Beziehungstyp beteiligten Entity Typen |
|
||
| funktionale Beziehungen | Beziehungstyp mit Funktionseigenschaften |
|
||
| abhängige Entitys | Entitys, die nur abhängig von anderen Entitys existieren können |
|
||
| IST Beziehung | Spezialisierung von Entity Typen |
|
||
| Optionalität | Attribute oder Funktionale Beziehungen als partielle Funktionen |
|
||
|
||
|
||
# Relationaler DB-Entwurf
|
||
## Phasen des Datenbankentwurfs
|
||
- Datenerhaltung für mehrere Anwendungssysteme und mehrere Jahre
|
||
- Anforderungen an Entwurf:
|
||
- Anwendungsdaten jeder Anwendung sollen aus Daten der Datenbank ableitbar sein (mögl effizient)
|
||
- nur "vernünftige" Daten sollen gespeichert werden
|
||
- nicht-redundante Speicherung
|
||
|
||
### Phasenmodell
|
||
Anforderungsanalyse $\leftrightarrow$ Konzeptioneller Entwurf $\leftrightarrow$ Verteilungsentwurf $\leftrightarrow$ Logischer Entwurf $\leftrightarrow$ Datendefinition $\leftrightarrow$ Physischer Entwurf $\leftrightarrow$ Implementierung & Wartung
|
||
|
||
### Anforderungsanalyse
|
||
- Vorgehensweise: Sammeln des Informationsbedarfs in den Fachabteilungen
|
||
- Ergebnis:
|
||
- informale Beschreibung des Fachproblems (Texte, Tabellen, Formblätter,...)
|
||
- Trennen der Informationen über Daten (Datenanalyse) von den Informationen über Funktionen (Funktionsanalyse)
|
||
- "Klassischer" Entwurf: nur Datenanalyse und Folgeschritte
|
||
- Funktionsentwurf: siehe Methoden des Software Engineering
|
||
|
||
### Konzeptioneller Entwurf
|
||
- erste Formale Beschreibung des Fachproblems
|
||
- Sprachmittel: semantisches Datenmodell
|
||
- Vorgehensweise:
|
||
- Modellierung von Sichen z.B. für verschiedene Fachabteilungen
|
||
- Analyse der vorliegenden Sichten in Bezug auf Konflikte
|
||
- Integration der Sichten in ein Gesamtschema
|
||
- Phasen:
|
||
- Sichtentwurf
|
||
- Sichtanalyse
|
||
- Sichtintegration
|
||
- Ergebnis: konzeptionelles Gesamtschema (z.B. ER Schema)
|
||
|
||
#### weiteres Vorgehen beim Entwurf
|
||
- ER-Modellierung von verschiedenen Sichten auf Gesamtinformation, z.B. für verschiedene Fachabteilungen eines Unternehmens -> konzeptueller Entwurf
|
||
- Verteilungsentwurf bei verteilter Speicherung
|
||
- Abbildung auf konkretes Implementierungsmodell -> logischer Entwurf
|
||
- Datendefinition, Implementierung und Wartung -> physischer Entwurf
|
||
|
||
#### Sichtintegration
|
||
- Analyse der vorliegenden Sichten in Bezug auf Konflikte
|
||
- Integration der Sichten in ein Gesamtschema
|
||
|
||
#### Integrationskonflikte
|
||
- Namenskonflikte: Homonyme/Synonyme
|
||
- Typkonflikte: verschiedene Strukturen für das gleiche Element
|
||
- Wertebereichskonflikte: verschiedene Wertebereiche für ein Element
|
||
- Bedingungskonflikte: z.B. verschiedene Schlüssel für ein Element
|
||
- Strukturkonflikte: gleicher Sachverhalt durch unterschiedliche Konstrukte ausgedrückt
|
||
|
||
### Verteilungsentwurf
|
||
- sollen Daten auf mehreren Rechnern verteilt vorliegen, muss Art und Weise der verteilten Speicherung festgelegt werden
|
||
- horizontale Verteilung z.B. Kunden 1-1000 und Kunden 10001-20000
|
||
- vertikale Verteilung z.B. Adresse in DB1, Konto in DB2
|
||
|
||
### Logischer Entwurf
|
||
- Sprachmittel: Datenmodell des ausgewählten "Realisierungs"DBMS
|
||
- Vorgehensweise
|
||
1. (automatische) Transformation des konzeptionellen Schemas z.B. ER -> relationales Modell
|
||
2. Verbesserung des relationalen Schemas anhand von Gütekriterien
|
||
- Ergebnis: logisches Schema
|
||
|
||
### Datendefinition
|
||
- Umsetzung des logischen Schemas in ein konkretes Schema
|
||
- Sprachmittel: DDL und DML eines DBMS
|
||
- Datenbankdeklaration in der DDL des DBMS
|
||
- Realisierung der Integritätssicherung
|
||
- Definition der Benutzersichten
|
||
|
||
### Physischer Entwurf
|
||
- Ergänzen des physischen Entwurfs um Zugriffsunterstützung bzgl Effizienzverbesserung, z.B. Definition von Indexen
|
||
- Index:
|
||
- Zugriffspfad: Datenstruktur für zusätzlichen, schlüsselbasierten Zugriff auf Tupel
|
||
- meist als B*-Baum realisiert
|
||
- Sprachmittel: Speicherstruktursprache SSL
|
||
|
||
Indexe in SQL, z.B.: ```create index WeinIdx on WEINE (Name)```
|
||
|
||
Notwendigkeit für Zugriffspfade:
|
||
- Beispiel: Tabelle mit 100GB Daten, Festplattentransferrate ca 50MB/s
|
||
- Operation: Suchen eines Tupels (Selektion)
|
||
- Implementierung: sequentielles Durchsuchen
|
||
- Aufwand: 102.500/50 = 2048 sec ~ 34 Minuten
|
||
|
||
### Implementierung & Wartung
|
||
- Wartung
|
||
- weitere Optimierung der physischen Ebene
|
||
- Anpassung an neue Anforderungen und Systemplattformen
|
||
- Portierung auf neue Datenbankmanagementsysteme
|
||
- etc
|
||
|
||
|
||
## Kapazitätserhaltende Abbildungen
|
||
Umsetzung des konzeptionellen Schemas
|
||
- Umsetzung auf logisches Schema
|
||
- Erhaltung der Informationskapazität
|
||
- Kapazitäts**erhöhende** Abbildung: Abbildung auf R mit genau einem Schlüssel K ( K={{A},{B}} )
|
||
- Kapazitäts**vermindernde** Abbildung: Relationsschema mit einem Schlüssel
|
||
- Kapazitäts**erhaltende** Abbildung: kapazitätserhaltend mit Schlüssel beider Entity Typen im Relationsschema als neuer Schlüssel
|
||
|
||
## ER-auf-RM Abbildung
|
||
### ER Abbildung auf Relationen
|
||
- Entity-Typen und Beziehungstypen: jeweils auf Relationenschemata
|
||
- Attribute: Attribute des Relationenschemas, Schlüssel werden übernommen
|
||
- Kardinalitäten der Beziehungen: durch Wahl der Schlüssel bei den zugehörigen Relationenschemata ausgedrückt
|
||
- in einigen Fällen: Verschmelzen der Relationenschemata von Entity- und Beziehungstypen
|
||
- zwischen den verbleibenden Relationenschemata diverse Fremdschlüsselbedingungen einführen
|
||
|
||
### Abbildung von Beziehungstypen
|
||
- neues Relationenschema mit allen Attributen des Beziehungstyps, zusätzlich Übernahme aller Primärschlüssel der beteiligten Entity-Typen
|
||
- Festlegung der Schlüssel:
|
||
- m:n-Beziehung: beide Primärschlüssel zusammen werden Schlüssel im neuen Relationenschema
|
||
- 1:n-Beziehung: Primärschlüssel der n-Seite (bei der funktionalen Notation die Seite ohne Pfeilspitze) wird Schlüssel im neuen Relationenschema
|
||
- 1:1-Beziehung: beide Primärschlüssel werden je ein Schlüssel im neuen Relationenschema, der Primärschlüssel wird dann aus diesen Schlüsseln gewählt
|
||
- optionale Beziehungen ([0,1] oder [0,n]) werden nicht verschmolzen
|
||
- bei Kardinalitäten [1,1] oder [1,n] (zwingende Beziehungen) Verschmelzung möglich:
|
||
- 1:n-Beziehung: das Entity-Relationenschema der n-Seite kann in das Relationenschema der Beziehung integriert werden
|
||
- 1:1-Beziehung: beide Entity-Relationenschemata können in das Relationenschema der Beziehung integriert werden
|
||
|
||
## Übersicht über Transformationen
|
||
| ER Konzept | wird abgebildet auf relationales Konzept |
|
||
| -- | -- |
|
||
| Entity Typ $E_i$ | Relationsenschema $R_i$ |
|
||
| Attribute von $E_i$ | Attribute von $R_i$ |
|
||
| Primärschlüssel $P_i$ | Primärschlüssel $P_i$ |
|
||
| Beziehungstyp | Relationenschema, Attribute $P_1,P_2$ |
|
||
| dessen Attribute | weitere Attribute |
|
||
| 1:n | $P_2$ wird Primärschlüssel der Beziehung |
|
||
| 1:1 | $P_1$ und $P_2$ werden Schlüssel der Beziehung |
|
||
| m:n | $P_1 \cup P_2$ wird Primärschlüssel der Beziehung |
|
||
| IST Beziehung | $R_1$ erhält zusätzlichen Schlüssel $P_2$ |
|
||
|
||
# Relationale Entwurfstheorie
|
||
|
||
|
||
# die Datenbanksprache SQL
|
||
|
||
|
||
# Grundlagen von Anfragen: Algebra & Kalkül
|
||
|
||
|
||
# Transaktionen, Integrität und Trigger
|
||
|
||
|
||
# Sichten und Zugriffskontrolle
|
||
|
||
|
||
# NoSQL Datenbanken |