emotionale-robotik/hackathon/vision.py

56 lines
1.6 KiB
Python

import torch
import numpy as np
def check_cuda_available():
use_cuda = torch.cuda.is_available()
if use_cuda:
print("Cuda will be used for calculation")
return "cuda"
else:
print("Warning: CPU will be used for calculation.")
print("The calculation could be slowly.")
return "cpu"
def check_camera_available(capture):
if not capture.isOpened():
print("Cannot open camera")
exit()
def detect_faces(mtcnn, frame):
bounding_boxes, probs = mtcnn.detect(frame, landmarks=False)
if bounding_boxes is not None:
bounding_boxes = bounding_boxes[probs > 0.9]
else:
bounding_boxes = []
return bounding_boxes
def adjust_bounding_boxes(bounding_boxes, x_limit, y_limit):
limited_bounding_boxes = []
for bounding_box in bounding_boxes:
box = bounding_box.astype(int)
x1, y1, x2, y2 = box[0:4]
xs = [x1, x2]
ys = [y1, y2]
xs.sort()
ys.sort()
xs[0] = np.clip(xs[0], 0, x_limit - 2)
xs[1] = np.clip(xs[1], 0, x_limit - 1)
ys[0] = np.clip(ys[0], 0, y_limit - 2)
ys[1] = np.clip(ys[1], 0, y_limit - 1)
limited_box = [xs[0], ys[0], xs[1], ys[1]]
limited_bounding_boxes.append(limited_box)
return limited_bounding_boxes
def predict_emotions_from_faces(emotion_recognizer, frame, bounding_boxes):
emotions = []
for bounding_box in bounding_boxes:
x1, y1, x2, y2 = bounding_box[0:4]
face_img = frame[y1:y2, x1:x2, :]
emotion, _ = emotion_recognizer.predict_emotions(face_img, logits=True)
emotions.append(emotion)
return emotions