aegis-dos-protection/include/Threads/AttackThread.hpp
2021-10-23 16:53:40 +02:00

449 lines
14 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#pragma once
#include <rte_ether.h>
#include "PacketDissection/PacketContainerLean.hpp"
#include "PacketDissection/PacketInfo.hpp"
#include "PacketDissection/PacketInfoIpv4Tcp.hpp"
#include "RandomNumberGenerator.hpp"
#include "Threads/ForwardingThread.hpp"
class AttackThread : public Thread {
private:
inline void run() {
std::cout << "\nRunning on lcore " << rte_lcore_id()
<< ". [Ctrl+C to quit]\n"
<< std::endl;
while (likely(_quit == false)) {
// have skip iterate field in config and skip for nb of packets
iterate();
#ifdef SINGLE_ITERATION
_quit = false;
#endif
}
_running = false;
}
PacketContainerLean* _pkt_container_to_dave;
PacketContainerLean* _pkt_container_to_alice;
RandomNumberGenerator _rng;
unsigned int _nb_worker_threads;
rte_ether_addr _bob_mac;
rte_ether_addr _src_mac;
uint32_t _bob_ip;
uint32_t _alice_ip;
uint8_t _tcp_flags;
enum AttackType { SYN_FLOOD, SYN_FIN_ACK, SYN_FIN, UDP_FLOOD, NO_ATTACK };
AttackType _attack_type;
rte_mbuf* _mbuf_origin;
uint64_t _cycles_old;
uint64_t _data_rate;
uint64_t _nb_attack_packets;
uint64_t _data_rate_per_cycle;
uint64_t _delta_cycles_mean;
uint64_t _total_nb_pkts_to_dave;
uint64_t _total_nb_pkts_from_dave;
uint64_t _total_nb_pkts_to_alice;
uint64_t _total_data_volume_to_alice;
uint64_t _total_nb_pkts_from_alice;
uint64_t _total_data_volume_from_alice;
int _iterations;
uint _call_send_pkts_every_nth_iteration;
// ============ not needed
uint16_t _nb_pkts_to_dave;
uint16_t _nb_pkts_to_alice;
PacketType _pkt_type;
uint64_t _cycles;
uint64_t _delta_cycles;
uint64_t _data_volume;
uint64_t _hz;
int _n;
/**
* This method is used in a loop so every parameter is created before
* the loop. These you pass to the function which initializes the
* variables.
*
* @param[in] pkt_size
* @param[in] cycles
* @param[in] delta_cycles
* @param[in] cycles_old
* @param[in] data_volume
* @param[in] data_rate_per_cycle
* @param[out] nb_attack_packets
*/
inline void calculate_nb_attack_packets(int pkt_size) {
_cycles = rte_get_tsc_cycles();
_delta_cycles = _cycles - _cycles_old;
// data volume to send in bit
_data_volume = _delta_cycles * _data_rate_per_cycle;
_nb_attack_packets = int(_data_volume / (pkt_size * 8));
if (unlikely(_nb_attack_packets == 0)) {
_nb_attack_packets = 2;
}
if (unlikely(_nb_attack_packets >= NUM_MBUF_ARRS * BURST_SIZE - 1)) {
_nb_attack_packets = NUM_MBUF_ARRS * BURST_SIZE - 1;
LOG_INFO << "maximum reached" << LOG_END;
}
LOG_INFO << "Number of cycles: " << _delta_cycles << LOG_END;
LOG_INFO << "Duration of a period: " << (_delta_cycles / _hz)
<< LOG_END;
// set _cycles_old
_cycles_old = _cycles;
}
/**
* @brief
*
* @param byte1
* @param byte2
* @param byte3
* @param byte4
* @return uint32_t
*/
inline uint32_t calculate_ipv4_address(uint8_t byte1, uint8_t byte2,
uint8_t byte3, uint8_t byte4) {
return byte1 * 2 ^ 24 + byte2 * 2 ^ 16 + byte3 * 2 ^ 8 + byte4;
}
/**
* @brief Create a bulk of attack packets, add them to the packets
* already in the PacketContainer.
*/
inline void create_attack_packet_burst_tcp(uint32_t nb_pkts,
uint8_t tcp_flags) {
rte_mempool* mempool = _pkt_container_to_dave->get_mempool_lean();
rte_mbuf* m_copy;
for (int i = 0; i < nb_pkts; ++i) {
m_copy = rte_pktmbuf_copy(_mbuf_origin, mempool, 0, UINT32_MAX);
if (unlikely(m_copy == nullptr)) {
throw std::runtime_error("m_copy is null");
}
PacketInfoIpv4Tcp* pkt_info = static_cast<PacketInfoIpv4Tcp*>(
PacketInfoCreator::create_mini_pkt_info(m_copy, IPv4TCP));
pkt_info->set_src_ip(_rng.gen_rdm_32_bit());
// select one of the following two, which one suits you better
// pkt_info->recalculate_checksums();
pkt_info->prepare_offloading_checksums();
_pkt_container_to_dave->add_mbuf(m_copy);
delete pkt_info;
pkt_info = nullptr;
}
}
/**
* @brief Create a bulk of attack packets, add them to the packets
* already in the PacketContainer.
*/
inline void create_attack_packet_burst_udp(uint32_t nb_pkts) {
rte_mempool* mempool = _pkt_container_to_dave->get_mempool_lean();
rte_mbuf* m_copy;
for (int i = 0; i < nb_pkts; ++i) {
m_copy = rte_pktmbuf_copy(_mbuf_origin, mempool, 0, UINT32_MAX);
if (unlikely(m_copy == nullptr)) {
throw std::runtime_error("m_copy is null");
}
PacketInfoIpv4Udp* pkt_info = static_cast<PacketInfoIpv4Udp*>(
PacketInfoCreator::create_mini_pkt_info(m_copy, IPv4UDP));
pkt_info->set_src_ip(_rng.gen_rdm_32_bit());
// select one of the following two, which one suits you better
// pkt_info->recalculate_checksums();
pkt_info->prepare_offloading_checksums(false);
_pkt_container_to_dave->add_mbuf(m_copy);
delete pkt_info;
pkt_info = nullptr;
}
}
inline void calculate_cycles() {
_cycles = rte_get_tsc_cycles();
_delta_cycles = _cycles - _cycles_old;
if (_n == 1) {
_delta_cycles_mean = _delta_cycles;
}
_delta_cycles_mean =
(_delta_cycles_mean + _delta_cycles / _n) * _n / (_n + 1);
++_n;
LOG_INFO << "delta_cycles_mean: " << _delta_cycles_mean << LOG_END;
// LOG_INFO << "Duration of a period: " << (_delta_cycles / _hz) <<
// LOG_END;
_cycles_old = _cycles;
}
public:
bool _do_attack;
inline AttackThread(PacketContainerLean* pkt_container_to_dave,
PacketContainerLean* pkt_container_to_alice,
unsigned int nb_worker_threads)
: Thread(), _nb_worker_threads(nb_worker_threads), _iterations(0),
_call_send_pkts_every_nth_iteration(0),
_pkt_container_to_dave(pkt_container_to_dave),
_pkt_container_to_alice(pkt_container_to_alice), _nb_pkts_to_dave(0),
_nb_pkts_to_alice(0), _total_nb_pkts_to_dave(0),
_total_nb_pkts_from_dave(0), _total_nb_pkts_to_alice(0),
_total_data_volume_to_alice(0), _total_nb_pkts_from_alice(0),
_total_data_volume_from_alice(0), _pkt_type(NONE), _cycles(0),
_delta_cycles(0), _data_volume(0), _nb_attack_packets(0),
_hz(rte_get_tsc_hz()), _delta_cycles_mean(0), _n(1),
_bob_mac({.addr_bytes = {60, 253, 254, 163, 231, 48}}),
_src_mac({.addr_bytes = {60, 253, 254, 163, 231, 88}}),
_bob_ip(167772162), _alice_ip(167772161), _tcp_flags(0),
_mbuf_origin(nullptr), _do_attack(false) {
// ===== calculate stuff regarding clock calculation ===== //
/*
_data_rate =
int((std::stoi(Configurator::instance()->get_config_as_string(
"attack_rate")) *
1000000) /
_nb_worker_threads);
_data_rate_per_cycle = int(_data_rate / _hz);
// if data_rate < hz
if (_data_rate_per_cycle == 0) {
_data_rate_per_cycle = _data_rate;
}
_cycles_old = rte_get_tsc_cycles();
*/
// ===== read and set attack type =====//
std::string attack_type =
Configurator::instance()->get_config_as_string("attack_type");
if (attack_type == "none") {
_attack_type = NO_ATTACK;
} else if (attack_type == "syn_flood") {
_attack_type = SYN_FLOOD;
_tcp_flags = 0b00000010;
} else if (attack_type == "syn_fin") {
_attack_type = SYN_FIN;
_tcp_flags = 0b00000011;
} else if (attack_type == "syn_fin_ack") {
_attack_type = SYN_FIN_ACK;
_tcp_flags = 0b00010011;
} else if (attack_type == "udp_flood") {
_attack_type = UDP_FLOOD;
} else {
throw std::runtime_error(
"String attack_type in config_attacker.json "
"does not match any type");
}
LOG_INFO << "Attack type " << attack_type << " is set." << LOG_END;
// =====set number of attack packets =====//
_nb_attack_packets =
Configurator::instance()->get_config_as_unsigned_int(
"number_of_attack_packets_per_thread_per_send_call");
_call_send_pkts_every_nth_iteration =
Configurator::instance()->get_config_as_unsigned_int(
"call_send_pkts_every_nth_iteration");
LOG_INFO << "number_of_attack_packets_per_thread_per_send_call : "
<< _nb_attack_packets << LOG_END;
//===== create origin attack packet=====//
_mbuf_origin =
rte_pktmbuf_alloc(_pkt_container_to_dave->get_mempool_lean());
if (_attack_type == SYN_FLOOD || _attack_type == SYN_FIN ||
_attack_type == SYN_FIN_ACK) {
PacketInfo* pkt_info_plain =
PacketInfoCreator::create_pkt_info(_mbuf_origin, IPv4TCP);
PacketInfoIpv4Tcp* pkt_info_origin =
static_cast<PacketInfoIpv4Tcp*>(pkt_info_plain);
pkt_info_origin->fill_payloadless_tcp_packet(
_src_mac, _bob_mac, _rng.gen_rdm_32_bit(), _bob_ip,
_rng.gen_rdm_16_bit(), 80, 1, 1, _tcp_flags, 64);
pkt_info_origin->prepare_offloading_checksums();
delete pkt_info_origin;
pkt_info_origin = nullptr;
} else if (_attack_type == UDP_FLOOD) {
PacketInfo* pkt_info_plain =
PacketInfoCreator::create_pkt_info(_mbuf_origin, IPv4UDP);
PacketInfoIpv4Udp* pkt_info_origin =
static_cast<PacketInfoIpv4Udp*>(pkt_info_plain);
pkt_info_origin->fill_payloadless_udp_packet(
_src_mac, _bob_mac, _rng.gen_rdm_32_bit(), _bob_ip,
_rng.gen_rdm_16_bit(), 80);
pkt_info_origin->prepare_offloading_checksums(false);
delete pkt_info_origin;
pkt_info_origin = nullptr;
}
// =====attack rate
}
inline ~AttackThread() { rte_pktmbuf_free(_mbuf_origin); }
inline static int s_run(void* thread_vptr) {
AttackThread* thread = static_cast<AttackThread*>(thread_vptr);
thread->run();
return 0;
}
inline void iterate() {
// ===== ALICE <--[MALLORY]-- DAVE/BOB ===== //
_pkt_container_to_alice->poll_mbufs(_nb_pkts_to_alice);
_total_nb_pkts_from_dave += _nb_pkts_to_alice;
// continue if no packets are received
if (likely(_nb_pkts_to_alice > 0)) {
// drop all packets that do not go to the mallory interface
for (int i = 0; i < _nb_pkts_to_alice; i++) {
rte_mbuf* mbuf = _pkt_container_to_alice->get_mbuf_at_index(i);
uint32_t ip4_addr =
PacketInfoCreator::get_dst_ip_from_mbuf(mbuf);
if (likely(ip4_addr != 0 && ip4_addr != _alice_ip)) {
_pkt_container_to_alice->drop_polled_mbuf(i);
} else {
_total_data_volume_to_alice += rte_pktmbuf_pkt_len(mbuf);
}
}
_total_nb_pkts_to_alice += _pkt_container_to_alice->send_mbufs();
}
// ===== ALICE --[MALLORY]--> DAVE/BOB ===== //
_pkt_container_to_dave->poll_mbufs(_nb_pkts_to_dave);
_total_nb_pkts_from_alice += _nb_pkts_to_dave;
for (int i = 0; i < _nb_pkts_to_dave; ++i) {
_total_data_volume_from_alice += rte_pktmbuf_pkt_len(
_pkt_container_to_dave->get_mbuf_at_index(i));
}
if (unlikely(_iterations == _call_send_pkts_every_nth_iteration)) {
_iterations = 0;
// create attack packets
if (likely(_do_attack)) {
if (_attack_type == SYN_FLOOD || _attack_type == SYN_FIN ||
_attack_type == SYN_FIN_ACK) {
create_attack_packet_burst_tcp(_nb_attack_packets,
_tcp_flags);
} else if (_attack_type == UDP_FLOOD) {
create_attack_packet_burst_udp(_nb_attack_packets);
}
} else{
_total_nb_pkts_to_dave = 0;
_total_nb_pkts_from_dave = 0;
_total_nb_pkts_to_alice = 0;
_total_data_volume_to_alice = 0;
_total_nb_pkts_from_alice = 0;
_total_data_volume_from_alice = 0;
}
}
++_iterations;
_total_nb_pkts_to_dave = _total_nb_pkts_to_dave +
_pkt_container_to_dave->send_mbufs();
// calculate_cycles();
}
inline uint64_t get_total_nb_pkts_to_dave() {
return _total_nb_pkts_to_dave;
}
inline uint64_t get_total_nb_pkts_from_dave() {
return _total_nb_pkts_from_dave;
}
inline uint64_t get_total_nb_pkts_to_alice() {
return _total_nb_pkts_to_alice;
}
inline uint64_t get_total_data_volume_to_alice() {
return _total_data_volume_to_alice;
}
inline uint64_t get_total_nb_pkts_from_alice() {
return _total_nb_pkts_from_alice;
}
inline uint64_t get_total_data_volume_from_alice() {
return _total_data_volume_from_alice;
}
inline int get_atk_pkt_type() {
if ((_attack_type == SYN_FLOOD) || (_attack_type == SYN_FIN) ||
(_attack_type == SYN_FIN_ACK)) {
return 1;
}
return 0;
}
};