aegis-dos-protection/test/RandomNumberGenerator_test.cpp
2021-10-24 12:52:16 +02:00

456 lines
18 KiB
C++

#include "RandomNumberGenerator.hpp"
#include <catch2/catch.hpp>
#include <iostream>
#include <time.h> // is used for testing the time in the 3rd test case
TEST_CASE("random_number_generator_basic", "[]") {
// This test was written to check basic functions like whether different
// numbers are generated.
SECTION("check_whether_different_16", "[]") {
// creates a new RNG object
RandomNumberGenerator* xor_shift = new RandomNumberGenerator();
// creates two pseudo random 16 bit numbers
u_int16_t test_1 = xor_shift->gen_rdm_16_bit();
u_int16_t test_2 = xor_shift->gen_rdm_16_bit();
// printes these numbers out
std::cout << "1st generated 16 bit int: " << test_1 << std::endl;
std::cout << "2nd generated 16 bit int: " << test_2 << std::endl;
// checks whether these numbers are different
// test1 == test2 wouldn't means that the test isn't random.
// This section just exists to see whether the algorithm basically works
// and generates numbers.
CHECK(test_1 != test_2);
}
// The same test like above but for the 32 bit algorithm:
SECTION("CheckWhetherDifferent32", "[]") {
RandomNumberGenerator xor_shift;
u_int32_t test_1 = xor_shift.gen_rdm_32_bit();
u_int32_t test_2 = xor_shift.gen_rdm_32_bit();
std::cout << "1st generated 32 bit int: " << test_1 << std::endl;
std::cout << "2nd generated 32 bit int: " << test_2 << std::endl;
CHECK(test_1 != test_2);
}
// The same test like above but for the 64 bit algorithm:
SECTION("CheckWhetherDifferent64", "[]") {
RandomNumberGenerator xor_shift;
u_int64_t test_1 = xor_shift.gen_rdm_64_bit();
u_int64_t test_2 = xor_shift.gen_rdm_64_bit();
std::cout << "1st generated 64 bit int: " << test_1 << std::endl;
std::cout << "2nd generated 64 bit int: " << test_2 << std::endl;
CHECK(test_1 != test_2);
// empty line for better layout in testlog
std::cout << std::endl;
}
// This test checks the type of the return value.
// This particular section is for 16 bit
SECTION("CheckSize16", "[]") {
// Creates a RNG and generates a number like above
RandomNumberGenerator xor_shift;
u_int16_t test_value = xor_shift.gen_rdm_16_bit();
std::cout << "values that are generated for checking the size: "
<< std::endl;
std::cout << "generated value: " << test_value << std::endl;
// checks wheter the size of the return value is 16 bit or 2 byte
CHECK(sizeof(test_value) == 2);
}
// The same for 32 bit
SECTION("CheckSize32", "[]") {
RandomNumberGenerator xor_shift;
u_int32_t test_value = xor_shift.gen_rdm_32_bit();
std::cout << "generated value (32 bit): " << test_value << std::endl;
// checks wheter the size of the return value is 32 bit or 4 byte
CHECK(sizeof(test_value) == 4);
}
// The same for 64 bit
SECTION("CheckSize64", "[]") {
RandomNumberGenerator xor_shift;
u_int64_t test_value = xor_shift.gen_rdm_64_bit();
std::cout << "generated value (64 bit): " << test_value << std::endl;
// checks wheter the size of the return value is 64 bit or 8 byte
CHECK(sizeof(test_value) == 8);
std::cout << std::endl;
}
// Checks whether different numbers are generated when using different RNGs
SECTION(
"Check whether different when using different RNG objects for 16 bit",
"[]") {
// creating two objects
RandomNumberGenerator xor_shift_1;
RandomNumberGenerator xor_shift_2;
// generating two values of 16 bit
std::cout << "16 bit seed 1: " << xor_shift_1._seed_x16 << std::endl;
std::cout << "16 bit seed 2: " << xor_shift_2._seed_x16 << std::endl;
u_int16_t test_1_16_bit = xor_shift_1.gen_rdm_16_bit();
u_int16_t test_2_16_bit = xor_shift_2.gen_rdm_16_bit();
CHECK(test_1_16_bit != test_2_16_bit);
}
// the same for 32 bit again:
SECTION(
"Check whether different when using different RNG objects for 32 bit",
"[]") {
RandomNumberGenerator xor_shift_1;
RandomNumberGenerator xor_shift_2;
std::cout << "32 bit seed 1: " << xor_shift_1._seed_x32 << std::endl;
std::cout << "32 bit seed 2: " << xor_shift_2._seed_x32 << std::endl;
u_int32_t test_1_32_bit = xor_shift_1.gen_rdm_32_bit();
u_int32_t test_2_32_bit = xor_shift_2.gen_rdm_32_bit();
CHECK(test_1_32_bit != test_2_32_bit);
}
// the same for 64 bit again:
SECTION(
"Check whether different when using different RNG objects for 64 bit",
"[]") {
RandomNumberGenerator xor_shift_1;
RandomNumberGenerator xor_shift_2;
std::cout << "64 bit seed 1: " << xor_shift_1._seed_x64 << std::endl;
std::cout << "64 bit seed 2: " << xor_shift_2._seed_x64 << std::endl;
u_int64_t test_1_64_bit = xor_shift_1.gen_rdm_64_bit();
u_int64_t test_2_64_bit = xor_shift_2.gen_rdm_64_bit();
CHECK(test_1_64_bit != test_2_64_bit);
std::cout << std::endl;
}
// This test checks whether two RNGs generate the same number after the seed
// is set to the same number
SECTION("Check whether the same numbers are generated with the same seed "
"for 16 bit",
"[]") {
RandomNumberGenerator xor_shift_1;
RandomNumberGenerator xor_shift_2;
// set the seed to the same value in both RNGs
xor_shift_1._seed_x16 = 30000;
xor_shift_2._seed_x16 = 30000;
std::cout << "16 bit seed for RNG 1: " << xor_shift_1._seed_x16
<< std::endl;
std::cout << "16 bit seed for RNG 2: " << xor_shift_2._seed_x16
<< std::endl;
u_int16_t test_1_16_bit = xor_shift_1.gen_rdm_16_bit();
u_int16_t test_2_16_bit = xor_shift_2.gen_rdm_16_bit();
std::cout << "number generated from RNG 1: " << xor_shift_1._seed_x16
<< std::endl;
std::cout << "number generated from RNG 2: " << xor_shift_2._seed_x16
<< std::endl;
// check whether the results are the same too
CHECK(test_1_16_bit == test_2_16_bit);
std::cout << std::endl;
}
// the same test for 32 bit
SECTION("Check whether the same numbers are generated with the same seed "
"for 32 bit",
"[]") {
RandomNumberGenerator xor_shift_1;
RandomNumberGenerator xor_shift_2;
// set the seed to the same value in both RNGs
xor_shift_1._seed_x32 = 30000000;
xor_shift_2._seed_x32 = 30000000;
std::cout << "32 bit seed for RNG 1: " << xor_shift_1._seed_x32
<< std::endl;
std::cout << "32 bit seed for RNG 2: " << xor_shift_2._seed_x32
<< std::endl;
u_int32_t test_1_32_bit = xor_shift_1.gen_rdm_32_bit();
u_int32_t test_2_32_bit = xor_shift_2.gen_rdm_32_bit();
std::cout << "number generated from RNG 1: " << xor_shift_1._seed_x32
<< std::endl;
std::cout << "number generated from RNG 2: " << xor_shift_2._seed_x32
<< std::endl;
// check whether the results are the same too
CHECK(test_1_32_bit == test_2_32_bit);
std::cout << std::endl;
}
// the same test for 64 bit
SECTION("Check whether the same numbers are generated with the same seed "
"for 64 bit",
"[]") {
RandomNumberGenerator xor_shift_1;
RandomNumberGenerator xor_shift_2;
// set the seed to the same value in both RNGs
xor_shift_1._seed_x64 = 30000000000;
xor_shift_2._seed_x64 = 30000000000;
std::cout << "64 bit seed for RNG 1: " << xor_shift_1._seed_x64
<< std::endl;
std::cout << "64 bit seed for RNG 2: " << xor_shift_2._seed_x64
<< std::endl;
u_int64_t test_1_64_bit = xor_shift_1.gen_rdm_64_bit();
u_int64_t test_2_64_bit = xor_shift_2.gen_rdm_64_bit();
std::cout << "number generated from RNG 1: " << xor_shift_1._seed_x64
<< std::endl;
std::cout << "number generated from RNG 2: " << xor_shift_2._seed_x64
<< std::endl;
// check whether the results are the same too
CHECK(test_1_64_bit == test_2_64_bit);
std::cout << std::endl;
}
SECTION("Check whether generated numbers are really in the interval",
"[]") {
RandomNumberGenerator xor_shift;
u_int16_t test_value;
int lower_limit = 1024;
int upper_limit = 49151;
bool no_number_has_been_outside_the_interval = true;
// inside the for loop an if statement checks for 1,000,000 generated
// numbers whether they are really in the interval
for (int i = 0; i < 10000000; i++) {
test_value =
xor_shift.gen_rdm_16_bit_in_interval(lower_limit, upper_limit);
if (test_value < lower_limit || test_value > upper_limit) {
no_number_has_been_outside_the_interval = false;
}
}
std::cout << "No generated number has been outside the interval? (1 "
"means true) --> "
<< no_number_has_been_outside_the_interval << std::endl;
std::cout << std::endl;
CHECK(no_number_has_been_outside_the_interval == true);
}
}
TEST_CASE("RandomNumberGeneratorStatistics", "[]") {
// The result of the chi square test shows how uniform the generated numbers
// are distributed
// A big chi square means that the actual frequencies vary widely from the
// theoretical frequencies.
SECTION("ChiSquare16", "[]") {
RandomNumberGenerator xor_shift;
// 65536 - 1 = 2 ^ 16 different numbers can be generated
int r = 65536 - 1;
// 1,000,000 numbers are generated
int n = 1000000;
u_int16_t t;
// this array counts how often each number from 0 to r is returned as a
// result
int f[r] = {};
for (int i = 0; i < r; i++) {
f[i] = 0;
}
for (int i = 1; i < n; i++) {
t = xor_shift.gen_rdm_16_bit_in_interval(1024, 49151);
f[t]++;
}
double chisquare = 0.0;
for (int i = 0; i < r; i++) {
// chi square is calculated
chisquare = chisquare + ((f[i] - n / r) * (f[i] - n / r) / (n / r));
}
std::cout << "+++ chi square test for gen_rdm_16_bit_in_interval() +++"
<< std::endl;
std::cout << "chi square is: " << chisquare << std::endl;
double k = sqrt(chisquare / (n + chisquare));
std::cout << "k is: " << k << std::endl;
// k is in [0; k_max] with k_max ≈ 1
// Calculating k_norm wouldn't make sense.
// 0 means that every number is generated equally frequent
// 1 means not random at all
// A bad result could be improved by returning _seed_x16 instead of
// _seed_x16 % 48128 + 1024 (valid port number) in
// RandomNumberGenerator.cpp.
CHECK(k < 1.0);
std::cout << std::endl;
}
SECTION("ChiSquare16", "[]") {
RandomNumberGenerator xor_shift;
// 65526 - 1 = 2 ^ 16 different numbers can be generated
int r = 65536 - 1;
// 1,000,000 numbers are generated
int n = 1000000;
u_int16_t t;
// this array counts how often each number from 0 to r is returned as a
// result
int f[r] = {};
for (int i = 0; i < r; i++) {
f[i] = 0;
}
for (int i = 1; i < n; i++) {
t = xor_shift.gen_rdm_16_bit();
f[t]++;
}
double chisquare = 0.0;
for (int i = 0; i < r; i++) {
// chi square is calculated
chisquare = chisquare + ((f[i] - n / r) * (f[i] - n / r) / (n / r));
}
std::cout << "+++ chi square test for gen_rdm_16_bit() +++"
<< std::endl;
std::cout << "chi square is: " << chisquare << std::endl;
double k = sqrt(chisquare / (n + chisquare));
std::cout << "k is: " << k << std::endl;
CHECK(k < 1.0);
std::cout << std::endl;
}
// the following test fails due to an segmentation violation signal
// 32 bit seems to be to big
/*SECTION("ChiSquare32", "[]") {
RandomNumberGenerator xor_shift;
u_int32_t r = 4294967296 - 1;
u_int64_t n = 10000000000;
u_int32_t t;
int f[r] = {};
for (u_int64_t i = 0; i < r; i++) {
f[i] = 0;
}
for (u_int64_t i = 1; i < n; i++) {
t = xor_shift.gen_rdm_32_bit();
f[t]++;
}
double chisquare = 0.0;
for (int i = 0; i < r; i++) {
chisquare = chisquare + ((f[i] - n / r) * (f[i] - n / r) / (n / r));
}
std::cout << "chi square is: " << chisquare << std::endl;
double k = sqrt(chisquare / (n + chisquare));
std::cout << "k is: " << k << std::endl;
// k is in [0; k_max] with k_max ≈ 1
// 0 means independence
// 1 means not random at all
CHECK(k < 1.0);
}*/
}
TEST_CASE("RandomNumberGeneratorTime", "[]") {
// The following section is calculating the time for generating n
// 16 bit numbers with a single RNG object
SECTION("TestTime16", "[]") {
// the following two lines initialize and start the timer
double time1 = 0.0, tstart;
tstart = clock();
// creating a RNG object
RandomNumberGenerator xor_shift;
// amount of numbers generated
// can be changed if neccessary, but it you will get a segmentation
// violation error if it's to big
long n = 10000000;
// variable to store generated number
uint16_t test_value;
// generating those numbers
for (long i = 0; i < n; i++) {
test_value = xor_shift.gen_rdm_16_bit();
}
// stops the timer and calculates the difference between start and end
time1 += clock() - tstart;
// prints out the time
std::cout << "time needed to generate " << n
<< " 16 bit numbers: " << time1 / CLOCKS_PER_SEC << " s"
<< std::endl;
CHECK(time1 / CLOCKS_PER_SEC < 10.0);
}
// This test calculates the time needed to generate a certain amount of 16
// bit ints with rand() allowowing a comparison with xorShift
SECTION("TestTime16Rand", "[]") {
double time1 = 0.0, tstart;
tstart = clock();
long n = 10000000;
uint16_t test_value;
for (long i = 0; i < n; i++) {
test_value = rand();
}
time1 += clock() - tstart;
std::cout << "time needed to generate " << n
<< " 16 bit numbers with rand(): " << time1 / CLOCKS_PER_SEC
<< " s" << std::endl;
CHECK(time1 / CLOCKS_PER_SEC < 10.0);
}
// the same test for 32 bit numbers
SECTION("TestTime32", "[]") {
double time1 = 0.0, tstart;
tstart = clock();
RandomNumberGenerator xor_shift;
long n = 10000000;
uint32_t test_value;
for (long i = 0; i < n; i++) {
test_value = xor_shift.gen_rdm_32_bit();
}
time1 += clock() - tstart;
std::cout << "time needed to generate " << n
<< " 32 bit numbers: " << time1 / CLOCKS_PER_SEC << " s"
<< std::endl;
CHECK(time1 / CLOCKS_PER_SEC < 1.0);
}
// true 32 bit numbers with shifting and rand() for comparison to the
// section above
SECTION("TestTime32Rand", "[]") {
double time1 = 0.0, tstart;
tstart = clock();
long n = 10000000;
uint32_t test_value;
for (long i = 0; i < n; i++) {
test_value = (uint16_t)rand();
test_value |= (uint16_t)rand() << 16;
}
time1 += clock() - tstart;
std::cout << "time needed to generate " << n
<< " 32 bit numbers with rand() and shifting: "
<< time1 / CLOCKS_PER_SEC << " s" << std::endl;
CHECK(time1 / CLOCKS_PER_SEC < 1.0);
}
// the same test for 64 bit numbers
SECTION("TestTime64", "[]") {
double time1 = 0.0, tstart;
tstart = clock();
RandomNumberGenerator xor_shift;
long n = 10000000;
uint64_t test_value;
for (long i = 0; i < n; i++) {
test_value = xor_shift.gen_rdm_64_bit();
}
time1 += clock() - tstart;
std::cout << "time needed to generate " << n
<< " 64 bit numbers: " << time1 / CLOCKS_PER_SEC << " s"
<< std::endl;
CHECK(time1 / CLOCKS_PER_SEC < 1.0);
}
// true 64 bit numbers with shifting and rand() for comparison to the
// section above
SECTION("TestTime64Rand", "[]") {
double time1 = 0.0, tstart;
tstart = clock();
long n = 10000000;
uint64_t test_value = 0;
for (long i = 0; i < n; i++) {
// the following lines have been copied from
// Treatment::create_cookie_secret()
u_int64_t value1 = (uint16_t)rand();
value1 = (value1 << 48);
test_value |= value1;
u_int64_t value2 = (uint16_t)rand();
value2 = (value2 << 32);
test_value |= value2;
u_int64_t value3 = (uint16_t)rand();
test_value |= value3;
}
time1 += clock() - tstart;
std::cout << "time needed to generate " << n
<< " 64 bit numbers with rand() and shifting: "
<< time1 / CLOCKS_PER_SEC << " s" << std::endl;
CHECK(time1 / CLOCKS_PER_SEC < 1.0);
}
}