
Systemsicherheit

Introduction
Critical Properties

• Security + Safety
• Reliability
• Correctness
• Availability
• Real Time
• Scalability
• Openness

Responsibility for risks -¿ guaranteed properties!
Relevance of Security: Security properties if any IT system are
mission-critial - independet of its application domain

Security Goals
Our Faculty’s Education and Examination Management System

• Maintains:

– Course profiles (examination form/date, credit points)
– Students records (personal data, registration to

examinations, grades)

• Services:

– Enrolment/expulsion of students
– Registration to examination
– Registration of examination marks
– Information and attestations desk

• Operational Risks

– Conditio sine qua non: Provability of information properties
– Fake registration to examinations: integrity,

non-repudiability (”nicht-abstreitbar”)
– Leakage of grades, personal data: confidentiality, integrity
– Forgery of attestations: authenticity, integrity

Industry Control Systems

• e.g. Factorys, energy and water plants (public infrastructure)

– ”Chinese Hacking Team Caught Takin over decoy water
plant”

– Ïnternet Attack shuts off the Heat in Finland”

• Operational risks: Integrity & Availability of public community
support systems

Message
• Goal of IT Security: **Reduction of Operational Risks of IT

Systems**
• Elementary: Protection of

– Confidentiality
– Integrity
– Availability
– Non-repudiability

Specific Security Goals (Terms)

• **Confidentiality**: the property of information to be available
only to anauthorized user group

• **Integrity**: the property of information to be protected against
unauthorized modification

• **Availability**: the property of information to be available in an
reasonable time frame

• **Authenticity**: the property to be able to identify the author
of an information

• **Non-repudiability**: the combination of integrity and
authenticity

Safety Security
Goal To protect environment against hazards caused by system failures To protect IT systems against hazards caused by malicious attacks

Technical failures: power failure, ageing, dirt Industrial espionage, fraud, blackmailing
Human errors: stupidity, lacking education, carelessness Terrorism, vandalism
Force majeure: fire, lightning, earth quakes

=¿ making sure things work in the presence of system failures in the face of an intelligent and maliciousadversary

Security Engineering
Security Goals in Practice

• ... are diverse and complex to achieve
• ... require multiple stakeholders to cooperate
• ... involve cross-domain expertise

Security Engineering:

• Is a methodology that tries to tackle this complexity.
• Goal: Engineering IT systems that are *secure by design*.
• Approach: Stepwise increase of guarantees -¿ formal methods

required!

Steps in Security Engineering:

Lecture Roadmap
1. Security Requirements: Vulnerabilites, Threats, Risks 2. Security
Policies and Models: Access Control, Information Flow, Non-Interference
3. Practical Security Engineering: Model Engineering, Model,
Specification, Model Implementation 4. Security Mechanisms: FYI
Authorization, Authentication, Cryptography 5. Security Architectures:
TCBs and Reference Monitors, Nizza,SELinux, Kerberos

Security Requirements
Motivation
Goal of Requirements Engineering:
Methodology for

• identifying
• specifying

the desired security properties of an IT system.
Result:

• Security requirements, which definewhatsecurity properties a
system should have.

• These again are the basis of asecurity policy: Defineshowthese
properties are achieved

Influencing Factors

• Codes and acts (depending on applicable law)

– EU General Data Protection Regulation (GDPR)
– US Sarbanes-Oxley Act (SarbOx)

• Contracts with customers
• Certification

– For information security management systems (ISO 27001)
– Subject to German Digital Signature Act (Signaturgesetz),

toCommon

• Criteria
• Company-specific guidelines and regulations

– Access to critical data
– Permission assignment

• Company-specific infrastructure and technical requirements

– System architecture
– Application systems (such as OSs, Database Information

Systems)

General Methodology: How to Come up with Security Requirements
Specialized steps in regular software requirements engineering: 1.
Identify and classifyvulnerabilities. 2. Identify and classifythreats. 3.
Match both, where relevant, to yieldrisks. 4. Analyze and decide which
risks should bedealt with. -¿ Fine-grained Security Requirements

Vulnerability Analysis
Goal: Identification of

• technical
• organizational
• human

vulnerabilities of IT systems. ¿ Vulnerability ¿ ¿ Feature of hardware and
software constituting, an organization running, or a human operating an
IT system, which is a necessary precondition for any attack in that
system, with the goal to compromise one of its security properties. Set of
all vulnerabilities = a system’sattack surface.

Human Vulnerabilities
Examples:

• Laziness

– Passwords on Post-It
– Fast-clicking exercise: Windows UAC pop-up boxes

• Social Engineering

– Pressure from your boss
– A favor for your friend
– Blackmailing: The poisoned daughter, ...
– An important-seeming email

• Lack of knowledge

– Importing and executing malware
– Indirect, hidden information flowin access control systems

¿ Social Engineering ¿ ¿ Influencing people into acting against their own
interest or the interest of an organisation is often a simpler solution than
resorting to malware or hacking. ¿ Both law enforcement and the
financial industry indicate that social engineering continues to enable
attackers who lack the technical skills, motivation to use them or the
resources to purchase or hire them. Additionally, targeted social
engineering allows those technically gifted to orchestrate blended attacks
bypassing both human and hardware or software lines of defence.
[Europol](https://www.europol.europa.eu/crime-areas-and-trends/crime-
areas/cybercrime/social-engineering)

Indirect Information Flow in Access Control
Systems A More Detailed Scenario

• AlphaCompany has two departments: Research &
Development(R&D) and Sales

• Ann is project manager and Bob is developer working in R&D on
ProjectX, Chris is a busybody sales manager writing a marketing
flyer about ProjectX

• All R&D developers communicate via an electronic bulletin
board, including any preliminary product features not yet ready
for release

• Bob is responsible for informing sales about release-ready
features, using ashared web document

¿ Security Requirement ¿ ¿ No internal information about a project,
which is not approved by the project manager, should ever go into the
product flyer.
Access Control Configuration

• 3 users:ann,bob,chris
• 2 groups:

– crewx: ann, bob, ...
– sales: ann, bob

• Settings:

drw\item --\item --\item 1 ann crewx 2020 -04 -14 15:10 ProjectXFiles
-rw\item r-\item --\item 1 ann crewx 2020 -04 -14 15:10 ProjectXBoard
-rw\item r-\item --\item 1 bob sales 2020 -04 -14 14:22 NotesToSales
-rw\item --\item --\item 1 chris sales 2020 -04 -13 23:58 SalesFlyer.pdf

• Result:

– all users apparently set their permissions perfectly - from
their own point of view

– all three together createda severe information flow
vulnerability...

1/17

Systemsicherheit

• Ann has read access to the folder ProjectX Files
• Ann legitimately writes news from these files to the ProjectX

Board
• Bob legitimately updates NotesToSales with these news
• Human vulnerability: Bob’s laziness, friendship with Chris,

blackmailing by Chris, ... (see above) make him write about
unapproved new features

• -¿ Chris misuses this information in the Sales Flyer...

¿ Forbidden Information Flow ¿ ¿ Internal information about ProjectX
goes into the product flyer!
Problem Analysis:

• Limited knowledge of users

– limited horizon: knowledge about the rest of a system
configuration for making a sound decision about
permissions

– limited problem awareness: see ”lack of knowledge”
– limited skills

• Problem complexity -¿ effects ofindividualpermission assignments
by users (= discretionary) tosystem-widesecurity properties

• Limited configuration options and granularity: archaic and inapt
security mechanisms in system and application software

– no isolation of non-trusted software
– no enforcement of global security policies

• -¿ Effectiveness of discretionary access control (DAC), configured
by users?

Organizational Vulnerabilities
Examples:

• Access to rooms (servers!)
• Assignment of permission on organizational level, e. g.

– 4-eyes principle
– need-to-know principle
– definition of roles and hierarchies

• Management of cryptographic keys

– -¿ e. g. for issuing certificates

• -¿ Master course on ÏT-Sicherheitsmanagement”(in German)

Technical Vulnerabilities
The Problem: Complexity of IT Systems

• ... will in foreseeable timenotbe
• Completely, consistently, unambiguously, correctly specified

– -¿ contain specification errors

• Correctly implemented

– -¿ contain programming errors

• Re-designed on a daily basis(many security mechanisms of
today’s systems are older than 40 years)

– -¿ contain conceptual weaknesses and vulnerabilities

Buffer Overflow Attacks Example for Exploitation of
Implementation Errors
in privileged system software:

• Operating Systems (OSs)
• SSH demons
• Web servers
• Database servers

Consequence: Privileged software can be tricked into executing attacker’s
code
Approach: Cleverly forged parameters overwrite procedure activation
frames in memory

• -¿ exploitation of missing length checks on input buffers
• -¿ buffer overflow

What an Attacker Needs to Know

Necessary Knowledge and Skills
• Source code of the target program (e. g. a privileged server),

obtained by disassembling
• Better: symbol table, as with an executable not stripped from

debugging information
• Even better: most precise knowledge about the compiler used

w.r.t. runtime management

– how call conventions affect the stack layout
– degree to which stack layout is deterministic, which eases

experimentation

Sketch of the Attack Approach (Observations during program execution)

• Stack grows towards the small addresses

– -¿ small whenever a procedure is called, all its information
is stored in aprocedure frame = subsequent addresses below
those of previously stored procedure frames

• in each procedure frame: address of the next instruction to call
after the current procedure returns (ReturnIP)

• after storing the ReturnIP, compilers reserve stack space for local
variables -¿ these occupy lower addresses

Preparing the Attack Attacker carefully prepares an input
argument msg:‘0 ...0 /bin/shell#system ‘

void processSomeMsg(char *msg , int msgSize){
char localBuffer [1024];
int i=0;
while (i<msgSize) {

localBuffer[i] = msg[i];
i++;

}
...

}

Result:
• Attacker made victim program overwrite runtime-critical parts of

its stack:

– by counting up to the length of msg
– at the same time writing back over previously save runtime

information -¿ ReturnIP

• After finishing processSomeMsg: victim program executes code at
address of ReturnIP =address of a forged call to execute arbitrary
programs!

• Additional parameter to this call: file system location of a shell

¿ Security Breach ¿ ¿ The attacker can remotely communicate, upload,
download, and execute anything- with cooperation of the OS, since all of
this runs with the original privileges of the victim program!

Summary
Vulnerabilities

• Human

– Laziness
– Social engineering
– Lack of knowledge (e. g. malware execution, DAC

shortcoming)

• Organizational

– Key management
– Physical access to rooms, hardware

• Technical

– Weak security paradigms
– Specification and implementation errors

• -¿ A whole zoo of vulnerabilities!

How can we identify all during systems design and engineering...?

• Vulnerabilities catalogues: ISO 27001, ISO 27002
• Vulnerabilities databases, such as CVE
• Tools (we will see...)

Threat Analysis
Goal: Identification of

• Attack objectives and attackers
• Attack methods and practices (a.k.a. ”Tactics, Techniques, and

Procedures (TTPs)”)
• -¿ know your enemy

Approach: Compilation of a threat catalog, content:

• identified attack objectives
• identified potential attackers
• identified attack methods & techniques
• damage potential of attacks

Attack Objectives and Attackers
Attack Objectives

• Economical and political power
• Profit
• Wreak havoc (energy infrastructure, water plants, air traffic ...)
• Meet a challenge

Attackers

• Professional organizations (which may be hired by anyone, incl.
competitors or governments)

• Active and former employees (”Remember that IT guy we fired
last year ...?”)

• Terrorists
• Hackers (both good or evil)

Examples

• Economic Espionage
• Objective: economic and political power, profit
• Victims: high tech industry(companies that rely on the secrecy of

their know-how to successfully compete)
• Attackers:

– Competitors, (foreign) governments -¿ professional
organizations

– Insiders
∗ regular, often privileged users of IT systems
∗ statistically large share(¿ 40

∗ often indirect -¿ social engineering (Önly amateurs
target systems; professional target people.”)

∗ statistical profile: age 30-40, executive function
(department heads, system administrators, lead
programmers, ...)

∗ weapons: technical and organisational insider
knowledge, technical skills

∗ -¿ Your own people.

• Personal Profit

– Objective: becoming rich(er)(expensive life style, ambitious
projects, medical conditions)

– Attackers:
∗ Competitors
∗ Insiders

· profile: age 40-50, management function
· typically: career peak reached, midlife crisis, new

boat, new house, new partner, ...
· weapons: organisational insider knowledge,

organisational authority, management and
leadership skills

• Wreak Havoc

– Objective: damaging or destroying things or lives,
blackmailing, meeting a challenge (egomania, narcissism,
sportive challange)

2/17

Systemsicherheit

– Attackers:
∗ Terrorists: motivated by faith and philosophy, paid by

organisations and governments
∗ Avengers: see insiders
∗ Psychos: all ages, all types, personality disorder

(egomania, narcissism, paranoia, ...)
∗ -¿ No regular access to IT systems, no insider

knowledge, butskills and tools.

Attack Methods
Exploitation of Vulnerabilities

• Human: Social engineering, laziness, lack of knowledge
• Organizational: Rights management, key management, room

access
• Technical: Weak protection paradigms, specification and

implementation errors

Examples Scenario 1: Insider Attack

• Social Engineering, plus
• Exploitation of conceptual vulnerabilities (DAC),plus
• Professionally tailored malware

Scenario 2: Malware(a family heirloom ...)

• Trojan horses: Executable code with hidden functionality.
• Viruses: Code for self-modification and self-duplication, often

coupled with damaging the host.
• Logical bombs: Code that is activated by some event recognizable

from the host (e. g. time, date, temperature, pressure, geographic
location, ...).

• Backdoors: Code that is activated through undocumented
interfaces (mostly remote).

• Ransomware: Code for encrypting possibly all user data found on
the host, used for blackmailing the victims (to pay for
decryption).

• Worms and worm segments: Autonomous, self-duplicating
programs. Originally designed for good: to make use of free
computing power in local networks.

Scenario 3: Outsider Attack

• Attack Method: Buffer Overflow
• Exploitation of implementation errors

Scenario 4: High-end Malware:Root Kits

• Goal: Invisible, total, sustainable takeover of a complete IT
system

• Method: Comprehensive tool kit for fully automated attacks 1.
automatic analysis of technical vulnerabilities 2. automated
attack execution 3. automated installation of backdoors 4.
automated installation and activation of stealth mechanisms

• Target: Attacks on all levels of the software stack:

– firmware
– bootloader
– operating system (e. g. drivers, file system, network

interface)
– system applications (e. g. file and process managers)
– user applications (e. g. web servers, email, office)

• tailored to specific software and software versions found there!

Root Kits Step 1: Vulnerability Analysis

• Tools look for vulnerabilities in

– Active privileged services and demons (from inside a
network:nmap, from outside: by port scans) -¿
Discovers:web server, remote access server (sshd), file server
(ftpd), time server (ntpd), print server
(cupsd),bluetoothd,smbd, ...

– Configuration files -¿ Discovers: weak passwords, open ports
– Operating systems -¿ Discovers: kernel and system tool

versions with known implementation errors

• Using built-in knowledge base: an automatable vulnerability
database

• Result: System-specific collection of vulnerabilities -¿ choice of
attack method andtools to execute

Step 2: Attack Execution

• Fabrication oftailored softwareto exploit vulnerabilities in

– Server processes or system tool processes (demons)
– OS kernel itself to execute code of attacker withroot

privileges

• This code

– First installs smoke-bombs for obscuring attack
– Then replaces original system software by pre-fabricated

modules
∗ servers and demons
∗ utilities and libraries
∗ OS modules

– containing

∗ backdoors (-¿ step 3)
∗ smoke bombs for future attacks (-¿ step 4)

• Results:

– Backdoors allow forhigh-privilege access within fractions of
seconds

– System modified with attacker’s servers, demons, utilities,
OS modules

– Obfuscation of modifications and future access

Step 3: Attack Sustainability

• Backdoors for any further control & command in

– Servers (e. g.sshdemon)
– Utilities (e. g.login)
– Libraries (e. g.PAM, pluggable authentication modules)
– OS (system calls used by programs likesudo)

• Modificationsof utilities and OS to prevent

– Killing root kit processes and connections (kill,signal)
– Removal of root kit files (rm,unlink)

• Results: Unnoticed access for attacker

– Anytime
– Highly privileged
– Extremely fast
– Virtually unpreventable

Step 4: Stealth Mechanisms (Smoke Bombs)

• Clean logfiles (entries for root kit processes, network
connections), e.g. syslog,kern.log,user.log,daemon.log,auth.log, ...

• Modify system admin utilities

– Process management(hide running root kit processes), e.g.
ps,top,ksysguard,taskman

– File system (hide root kit files), e.g. ls,explorer,finder
– Network (hide active root kit connections), e.g.

netstat,ifconfig,ipconfig,iwconfig

• Substitute OS kernel modules and drivers (hide root kit processes,
files, network connections), e.g. /proc/...,stat,fstat,pstat

• Result:Processes, files and communication of root kit become
invisible

Risk and Damage Potential:

• Likeliness of success: extremely highin today’s commodity OSs

– High number of vulnerabilities
– Speed
– Refined methodology
– Fully automated

• Fighting the dark arts:extremely difficult

– Number and cause of vulnerabilities
– number of ßecurity updates”last month?
– specification/implementation errors, weak security

mechanisms
– Speed
– Smoke bombs

• Prospects for recovering the system after successful attack:near
zero

Countermeasures - Options:

• Reactive: Well ...(even your OS might have become your enemy)
• Preventive:

– Counter with same tools for vulnerability analysis (we do
this for years now -¿ 50 Billions € damage taken...)

– Write correct software (we try this for years now -¿ 50
Billions € damage taken...)

¿ Security Engineering

• New paradigms:policy-controlled systems -¿ powerful software
platforms

• New provable guarantees: formal security models -¿ reducing
specification errors and faultsby design

• New security architectures -¿ limiting bad effectsof
implementation errors and faults

Damage Potential
Industrial Espionage:

• Loss of control over critical knowledge -¿ loss of economical or
political power(high-risk technologies!)

• Economical damage (contract penalties, loss of profit, image
damage) Quantity: 50 000 000 000 €, 40% caused by IT

Personal Profit: Individual loss of money(zero sum game)
Terrorism, hackers:

• Loss of critical infrastructures (energy, water, communication)
• Loss of sea, air, land transport infrastructure
• Damage of financial systems

Summary
Know Your Enemy

• Attack goals and attackers

– Economical and political power, financial gain
– Professional organizations, insiders

• Attack methods und techniques: exploiting vulnerabilities

– human
– organizational
– technical

• -¿ A zoo of threats, practical assistance:

– National (Germany): BSI IT-Grundschutz standards and
catalogues

– International:Common Criteria

3/17

Systemsicherheit

Risk Analysis
Goal: Identification and Classification of scenario-specific risks when
designing an IT system
Approach:

• Risks ⊆ Vulnerabilities × Threats
• Correlation of vulnerabilities and matching threats

– -¿ Risk catalogue

• Classification of risks

– -¿ Complexity reduction

• -¿ Risk matrix

Correlation of Vulnerabilities and Threats

• Goal: Risk catalogue: n : m correlation

Examples
• Vulnerability: Implementation error in database access control -¿

Contents can be accessed by unauthorized users
• Threat: Professional team of attackers, contracted by competitor
• -¿ Risk: Confidentiality breach

• Vulnerability: Conceptual vulnerability: discretionary access
control configuration only

• Threat: Employee in critical financial situation
• -¿ Risk:

– Disclosure and sale of corporate secrets
– Redirection of funds

• n Vulnerabilities
• m Threats
• -¿ x Risks

Usually: max(n,m) << x ≤ nm -¿ quite largerisk catalogue!

Risk Classification
Goal: Catalogue reduction -¿ major and minor risks
Approach: Qualitative risk matrix; dimensions:

Risk Matrix
Damage Potential Assessment
Examples for risks:

• Cloud computing:”Loss of VM integrity¿ contract penalties, loss
of confidence/reputation

• Industrial plant control:”Tampering with frequency converters¿
damage or destruction of facility

• Critical public infrastructure:”Loss of availability due to DoS
attacks¿ interrupted services, possible impact on public safety (cf.
Finnish heating plant)

• Traffic management:”Loss of GPS data integrity¿ maximum
credible accident w. r. t. safety

General Fact: Damage potential is highly
scenario-specific Example: ”Confidentiality breach of database
contents”

• Articles in online newspapers

– -¿ small to mediumdamage due to lost paywall revenues

• Account data of banks

– -¿ mission-criticalloss of trust

• Plant control data of industrial production facility

– -¿ mission-criticalloss of market leadership

Depends on diverse, mostly non-technical side conditions -¿ advisory
board needed for assessment:engineers, managers, users, ...

Occurrence Probability Assessment Examples for risks:

• Cloud computing:”Loss of VM integrity”

– -¿ depending on client data sensitivity

• Industrial plant control:”Tampering with frequency converters”

– -¿ depending on plant sensitivity(cf.Stuxnet: nuclear
centifuges)

• Critical public infrastructure:”Loss of availability due to DoS
attacks”

– -¿ depending on terroristic threat level

• Traffic management:”Loss of GPS data integrity”

– -¿ depending on terroristic threat level

General Fact: Occurrence probability ishighly scenario-specific
Example: ”Confidentiality breach of database contents”

• Articles in online newspapers

– -¿ smallfor articles that are publicly available anyway

• Account data of banks

– -¿ medium, due to high attack costs compared to potential
gain

• Plant control data of industrial production facility

– -¿ high, due to high financial or political gain

Depends on diverse, mostly non-technical side conditions -¿ advisory
board needed for assessment:engineers, managers, users, ...

Advisory Board Output Example
Object Risk Dmg. Pot. Rationale
Personal Data (PD) Loss of Confidentiality medium (1) Data protection acts, (2) Violation of personal rights

Loss of Integrity low Errors fast and easily detectable and correctable
Loss of Availability low Failures up to one week can be tolerated by manual procedures

Technical Control Data (TCD) Loss of Confidentiality high Loss of market leadership
Loss of Integrity high Production downtime
Loss of Availability low Minimal production delay, since backups are available

Object Risk Dmg. Pot. Rationale
Personal Data (PD) Loss of Confidentiality medium Certified software

Loss of Integrity low Certified software, small incentive
Loss of Availability medium Certified software

Technical Control Data (TCD) Loss of Confidentiality high Huge financial gain by competitors
Loss of Integrity medium Medium gain by competitors or terroristic attackers
Loss of Availability low Small gain by competitors or terroristic attackers

Resulting Risk Matrix
Identify 3 Regions
Form Risks to Security Requirements

• avoid: Intolerable risk, no reasonable proportionality of costs and
benefits

– -¿ Don’t implement such functionality!

• bear: Acceptable risk

– -¿ Reduce economical damage, e. g. by insurance.

• deal with: Risks that yieldsecurity requirements

– -¿ Prevent or control by system-enforced security policies.

Additional Criteria:

• Again, non-technical side conditions may apply:

– Expenses for human resources and IT
– Feasibility from organizational and technological viewpoints

• -¿ Cost-benefit ratio:management and business experts involved

Security Policies and Models
Security Policies
Motivation - A Traditional Scenario:

• Similarity to systems security:protecting valued assets from
threats (human life, cargo, ship)

• Difference: thousands of years of experience
• → We may learn something here!

• What Protects these Assets?

– Navigation lights:protect against collisions
– Cannons/Guns:protect against pirates
– Reefs, drift anchors:protect against bad weather

• → Security Mechanisms

– Watch:protect against collisions
– The art of sailing, regulations:protect against & comply

with special marine conditions(climate, traffic, canal
navigation rules)

• → Competent & coordinated operation of mechanisms
• → Security Policies

– Construction of hull
– Placement of security mechanisms(nav lights in hold)

• → Effectiveness of mechanisms and enforcement of security
policies

• → Security Architecture

Terminology
Security Policies: A Preliminary Definition

• We have risks:

– Gales → ship capsizes, pirates → ship captured
– Malware attack → violation of confidentiality and integrity

of patient’s medical records

• We infer security requirements:

– Protect against gale force 12
– Valid information flows

• We design a security policy:

– Rules for dealing with storms, pirates
– Rules for controlling information flows

¿ Security Policy ¿ ¿ A set of rules designed to meet a set of security
objectives.
¿ Security Objective ¿ ¿ A statement of intent to counter a given threat
or to enforce a given security policy. (Common Criteria for Information
Technology Security Evaluation, since 1996)
Policy representations:

• informal (natural language) text
• formal model
• functional software specification
• executable code

Example 1: Excerpt from the Unix Security Policy

• ∃ subjects(humans, processes) and objects(files, sockets, ...)
• Each object has an owner
• Owners control access permissions for their objects (→ DAC)
• ∃ 3 permissions: read, write, execute
• ∀ objects: specific permissions can be granted for 3 subject

classes: owner, group, others
• Example: ‘
• rw• r-• r-
• 1 peter vsbs 2020-04-19 23:59 syssec-03.pdf‘
• Result:

– → identity based + discretionary access control (IBAC +
DAC)

– → high degree of individual freedom
– → global responsibility, limited individual horizon

4/17

Systemsicherheit

Example 2: Excerpt from the AlphaCompany
Security Policy

• Authentication: 1. Each user must be identified based on key
certificates issued by Airbus

• Authorization: 2. Access to ProjectX files is granted only to the
project staff (role-based access control) 3. Changes to files are
allowed only if both, the responsible engineer as well as the
project leader, approve (”four eyes principle”) 4. No information
must flow from ProjectX to sales department

• Communication: 5. For protecting integrity, confidentiality and
authenticity, every communication is encrypted and digitally
signed.

How to Implement Security Policies - Some Previews

• A Integrated insystems software

– Operating systems
– Database systems
– Middleware platforms

• B Integrated inapplication systems

Implementation Alternative A
The security policy is handled anOS abstractionon its own →
implemented inside the kernel
Policy Enforcement in SELinux

• Security Server: Policy runtime environment (protected in kernel
space)

• Interceptors:Total control of critical interactions
• Policy Compiler: Translates human-readable policy modules in

kernel-readable binary modules
• Security Server: Manages and evaluates these modules

Implementation Alternative B
Application-embedded Policy: The security policy is only known and
enforced by oneuser program → implemented in a user-space application
Application-level Security Architecture: The security policy is known
and enforced by several collaborating user programs in anapplication
systems → implemented in a local, user-space security architecture
Policy Server Embedded in Middleware: The security policy is
communicated and enforced by several collaborating user programs in
adistributed application systems → implemented in a distributed,
user-space security architecture

Security Models
Why We Use Formal Models
Goal of Formal Security Models

• Complete, unambiguous representation of security policies for 1.
analyzing and explaining its behavior:

– → ”This security policy will never allow that ...”
– → ”This security policy authorizes/denies an access under

conditions ... because ...”2. enabling its correct
implementation:

– → ”This rule is enforced by a C++ method ...”

How We Use Formal Models: Model-based Methodology

• Abstraction from (usually too complex) reality → get rid of
insignificant details e. g.: allows statements about computability
and computation complexity

• Precisionin describing what is significant → Model analysis and
implementation

¿ Security Model ¿ ¿ A security model is a precise, generally formal
representation of a security policy.
Model Spectrum

• Models for access control policies:

– identity-based access control (IBAC)
– role-based access control (RBAC)
– attribute-based access control (ABAC)

• Models for information flow policies

– → multilevel security(MLS)

• Models for non-interference/domain isolation policies

– → non-interference(NI)

• In Practice: Most oftenhybrid models

Access Control Models
Formal representations of permissions to execute operations on objects,
e. g.:

• Reading files
• Issuing payments
• Controlling industrial centrifuges

Security policies describeaccess rules → security models formalize them
Taxonomy ¿ Identity-based access control models (IBAC) ¿ ¿ Rules
based on the identity of individual subjects (users, apps, processes, ...) or

objects (files, directories, database tables, ...) → Änn may read ProjectX
Files.”
¿ Role-based access control models (RBAC) ¿ ¿ Rules based on roles of
subjects in an organization → ”Ward physicians may modify electronic
patient records (EPRs) in their ward.”
¿ Attribute-based access control models (ABAC) ¿ ¿ Rules based on
attributes of subjects and objects → ”PEGI 18 rated movies may only
be streamed to users aged 18 and over.”
¿ Discretionary Access Control (DAC) ¿ ¿ Individual users specify access
rules to objects within their area of responsibility (ät their discretion”).
Example: Access control in many OS (e. g. Unix(oids), Windows)
Consequence: Individual users

• enjoy freedom w. r. t. granting access permissions as individually
needed

• need to collectively enforce their organization’s security policy:

– competency problem
– responsibility problem
– malware problem

¿ Mandatory Access Control (MAC) ¿ ¿ System designers and
administrators specify system-wide rules, that apply for all users and
cannot be sidestepped.
Examples:

• Organizational: airport security check
• Technical: medical information systems, policy-controlled

operating systems(e. g. SELinux)

Consequence:

• Limited individual freedom
• Enforced by central instance:

– clearly identified
– competent (security experts)
– responsible (organizationally & legally)

DAC vs. MAC In Real-world Scenarios: Mostly hybrid models
enforced by both discretionary and mandatory components, e. g.:

• DAC: locally within a project, team members individually define
permissions w. r. t. documents (implemented in project
management software and workstation OSs) inside this closed
scope;

• MAC:globally for the organization, such that e. g. only
documents approved for release by organizational policy rules
(implemented in servers and their communication middleware)
may be accessed from outside a project’s scope.

Identity-based Access Control Models (IBAC)
Goal: To precisely specify the rights ofindividual, acting entities.
Basic IBAC Paradigm

• User named s reads file named o
• Client s transfers money to bank account o
• Process with ID s sends over socket with ID o

There are

• Subjects, i. e. active and identifiable entities, that execute
• operations on
• passive and identifiable objects, requiring
• rights (also: permissions, privileges) which

– control (restrict) execution of operations,
– are checked against identity of subjects and objects.

Access Control Functions [Lampson, 1974]

• A really basic model to define access rights:

– Who (subject) is allowed to do what (operation) on which
object

– Fundamental to OS access control since 1965 (Multics OS)
– Formal paradigms: sets and functions

• Access Control Function (ACF)

– f : S ×O ×OP → {true, false} where
– S is a set of subjects (e. g. users, processes),
– O is a set of objects(e. g. files, sockets, EPRs),
– OP is a finite set of operations(e. g. reading, writing,

deleting).

• Interpretation: Rights to execute operations are modeled by the
ACF:

– any s ∈ S represents an authenticated active entity (e. g. a
user or process) which potentially executes operations on
objects

– any o ∈ O represents an authenticated passive entity (e. g.
a file or a database table) on which operations are executed

– for any s ∈ S,o ∈ O,op ∈ OP :s is allowed to execute op on
o iff f(s,o,op)=true.

– Model making: finding a tuple<S,O,OP, f>
– → Definition of S,O, and OP
– → Definition of f

iff = ı̈f and only if”
Example: Implementation of f in a Unix OS (heavily simplified):

• S: set of identifiers for users who execute processes
• O: set of identifiers for system objects, e. g. files, directories,

sockets, ...
• OP: set of system call identifiers

Example for f(caller,file,read):

read (caller , file) {
if !(caller.uid == 0) {/* is caller == root? */

if !(R_MODE in file.inode.othersRWX) {/* check "other"-rights */
if !(caller.gid == file.inode.group && R_MODE in file.inode.groupRWX) {/* check "group"-rights */

if !(caller.uid == file.inode.owner && R_MODE in file.inode.ownerRWX) {/* check "group"-rights */
return ERR_ACCESS_DENIED;/* insufficient rights: deny access */

} } }
/* execute syscall "read" */
}

5/17

Systemsicherheit

Access Control Matrix Access Control Functions in Practice
Lampson [1974] already addresses the questions how to ...

• store in a well-structured way,
• efficiently evaluate, and
• completely analyze an ACF:

¿ Access Control Matrix (ACM) ¿ ¿ An ACM is a matrix

m : S ×O → 2OP , such that ∀s ∈ S, ∀o ∈ O : op ∈ m(s, o)⇔ f(s, o, op).
An ACM is a rewriting of the definition of an ACF: nothing is added,
nothing is left out (”⇔”). Despite a purely theoretical model: paved the
way for practically implementing AC meta-informationas

• tables
• 2-dimensional lists
• distributed arrays and lists

Example

• S = {s1, ..., sn}
• O = {o1, ..., ok}
• OP = {read, write}
• 2OP = {∅, {read}, {write}, {read, write}}2

Implementation Notes

• ACMs are implemented in most

– Operating systems
– Database information systems
– Middleware platforms(CORBA, Jini/Apache River, Web

Services)
– Distributed security architectures (Kerberos)

• whose security mechanisms use one of two implementations:

Access Control Lists (ACLs)

• Columns of the ACM: ‘char*o3[N] = ”, ”, ”rw”, ...;‘
• Found in I-Nodes of Unix(oids), Windows, Mac OS

Capability Lists

• Rows of the ACM: ‘char* s1[K] = ”, ”r”, ”, ...;‘
• Found in distributed OSs, middleware, Kerberos

What we Actually Model: ¿ Protection State ¿ ¿ A fixed-time snapshot
of all active entities, passive entities, and any meta-information used for
making access decisions is called theprotection state of an access control
system.
¿ Goal of ACFs/ACMs ¿ ¿ To precisely specify a protection state of an
AC system.

The Harrison-Ruzzo-Ullman Model (HRU) Our
HIS scenario ... modeled by an ACM:

• S = {cox, kelso, carla, ...}
• O = {patId, diag,medic, ...}

m parId diag medic
cox read, write read, write read, write

kelso read read read
carla read ∅ read

...
We might do it like this, but ... Privilege escalation question: ”Can it
ever happen that in a given state, some specific subject obtains a specific
permission?”∅⇒ {r, w}

• ACM models a single state 〈S,O,OP,m〉
• ACM does not tell us anything about what might happen in the

future
• Behavior prediction → proliferation of rights → HRU safety

Why ßafety”, not ßecurity”? Well, historical ...
We need a model which allows statements about

• Dynamic behavior of right assignments
• Complexity of such an analysis

Idea [Harrison et al., 1976]: A (more complex) security model combining

• Lampson’s ACM → for modeling single protection state
(snapshots) of an AC system

• Deterministic automata (state machines) → for modeling runtime
changes of a protection state

This idea was pretty awesome. We need to understand automata, since
from then on they were used for most security models. → Small excursus

Deterministic Automata Mealy Automaton:
<Q,

∑
,Ω, δ, λ, q0>

• Q is a finite set of states (state space), e. g. Q = {q0, q1, q2}
•
∑

is a finite set of input words (input alphabet), e. g.
∑

= {a, b}
• Ω is a finite set of output words (output alphabet), e. g.

Ω = {yes, no}
• δ : Q×

∑
→ Q is the state transition function

• λ : Q×
∑
→ Ω is the output function

• q0 ∈ Q is the initial state
• δ(q, σ) = q′ and λ(q, σ) = ω can be expressed through thestate

diagram: a directed graph <Q,E>, where each edge e ∈ E is
represented by a state transition’s predecessor node q, its
successor node q′, and a string ”σ|ωöf its input and output,
respectively.

Example: Return ”yes”for any input in an unbroken sequence of äör ”b”,
”noötherwise.

HRU Security Model How we use Deterministic Automata

• Snapshot of an ACMis the automaton’s state
• Changes of the ACMduring system usage are modeled by state

transitions of the automaton
• Effects ofoperationsthat cause such transitions are described by

the state transition function
• Analyses ofright proliferation(→ privilege escalation)are enabled

by state reachability analysis methods

An HRU model is a deterministic automaton <Q,
∑
, δ, q0, R> where

• Q = 2S × 2O ×M is the state space where

– S is a (not necessarily finite) set of subjects,
– O is a (not necessarily finite) set of objects,

– M = {m|m : S ×O → 2R} is a (not necessarily finite) set
of possible ACMs,

•
∑

= OP ×X is the (finite) input alphabet where

– OP is a set of operations,

– X = (S ∪O)k is a set of k-dimensional vectors of
arguments (subjects or objects) of these operations,

• σ : Q×
∑
→ Q is the state transition function,

• q0 ∈ Q is the initial state,
• R is a (finite) set of access rights.

Interpretation

• Each q = Sq, Oq,mq ∈ Q models a system’s protection state:

– current subjects set Sq ⊆ S
– current objects set Oq ⊆ O
– current ACM mq ∈M where mq : Sq ×Oq → 2R

• State transitions modeled by δ based on

– the current automaton state
– an input word <op, (x1, ..., xk)> ∈

∑
where op

∗ may modify Sq (create a user xi, kill a process xi

etc.),
∗ may modify Oq (create/delete a file xi, open a socket
xi etc.),

∗ may modify the contents of a matrix cell mq(xi, xj)
(enter or remove rights) where 1 ≤ i, j ≤ k.

– → We also call δ the state transition scheme (STS) of a
model.

– Historically: äuthorization scheme”[Harrison et al., 1976].

State Transition Scheme (STS) Using the STS,

σ : Q×
∑
→ Q is defined by a set of specifications in the normalized

form σ(q,<op, (x1, ..., xk)>)=if
r1 ∈ mq(xs1, xo1) ∧ ... ∧ rm ∈ mq(xsm, xom) then p1 ◦ ... ◦ pn where

• q = {Sq, Oq,mq} ∈ Q, op ∈ OP
• r1...rm ∈ R
• xs1, ..., xsm ∈ Sq and xo1, ..., xom ∈ Oq where si and oi,

1 ≤ i ≤ m, are vector indices of the input arguments:
1 ≤ si, oi ≤ k

• p1, ..., pn are HRU primitives
• Note: ◦ is the (transitive) function composition operator:

(f ◦ g)(x) = g(f(x))

Whenever q is obvious or irrelevant, we use a programming-style notation
Interpretation: The structure of STS definitions is fixed in HRU:

• ı̈f”: A conjunction of condition clauses (or just conditions) with
the sole semantics ı̈s some right in some matrix cell”.

• ”then”: A concatenation (sequential execution) of HRU
primitives.

Conditions: Expressions that need to evaluate ”true”for state q as a
necessary precondition for command op to be executable (= can be
successfully called).
Primitives: Short, formal macros that describe differences between q and
a successor state q′ = σ(q,<op, (x1, ..., xk)>) that result from a
complete execution of op:

• enter r into m(xs, xo)
• delete r from m(xs, xo)
• create subject xs
• create object xo
• destroy subject xs
• destroy object xo
• → Each of these with the intuitive semantics for manipulating
Sq, Oq or mq .

Note the atomic semantics: the HRU model assumes that each command
successfully called is always completely executed!
How to Design an HRU Security Model: 1. Model Sets: Subjects, objects,
operations, rights → define the basic sets S,O,OP,R 2. STS: Semantics
of operations (e. g. the future API of the system to model) that modify
the protection state → define σ using the normalized form/programming
syntax of the STS 3. Initialization: Define a well-known initial stateq
0 = <S0, O0,m0> of the system to model
An Open University Information System

• Informal security policy (heavily simplified):2 rules

– Ä sample solution for home assignments can be downloaded
by students only after submitting their own solution.”

∗ a condition for readSample
∗ a effect of writeSolution

– SStudent solutions can be submitted only before
downloading any sample solution.”

∗ a condition for writeSolution
∗ a effect of readSample

6/17

Systemsicherheit

Model Making 1. Sets

• Subjects, objects, operations, rights:

– Subjects: An unlimited number of possible students: S ∼= N
(S is isomorphic to N)

– Objects: An unlimited number of possible solutions: O ∼= N
– Operations:

∗ (a) Submit own solution:
writeSolution(sstudent, osolution)

∗ (b) Download sample solution:
readSample(sstudent, osample)

∗ → OP = {writeSolution, readSample}
– Rights: Exactly one right allows to execute each operation:
R ∼= OP

∗ → R = {write, read}

2. State Transition Scheme

• Effects of operations on protection state:

– writeSolution Informal Policy: Ä sample solution (...) can
be downloaded by students only after submitting their own

solution.”⇔ Ïf the automaton receives an input
〈writeSolution,(s,o)〉 and the conditions are satisfied, it
transitions to a state where s is allowed to download the
sample solution.”

command writeSolution(s,o) ::= if write \in m(s,o)
then

enter read into m(s,o);
fi

• readSample
• Informal Policy: SStudent solutions can be submitted only before

downloading any sample solution.”⇔ Ïf the automaton receives
an input〈readSample,(s,o)〉and the conditions are satisfied, it
transitions to a state wheresis denied to submit a solution.”

command readSample(s,o) ::= if read\in m(s,o)
then

delete write from m(s,o);
fi

3. Initialization

• By model definition: q0 = <S0, O0,m0>
• For a course with (initially) three students:

– S0 = {sAnn, sBob, sChris}
– O0 = {oAnn, oBob, oChris}
– m0:

∗ m0(sAnn, oAnn) = {write}
∗ m0(sBob, oBob) = {write}
∗ m0(sChris, oChris) = {write}
∗ m0(s, o) = ∅⇔ s 6= o

– Interpretation: ”There is a course with three students, each
of whom has their own workspace to which she is allowed
to submit (write) a solution.”

Model Behavior

• Initial Protection State

m oAnn oBob oChris
sAnn write ∅ ∅
sBob ∅ write ∅
sChris ∅ ∅ write

• After writeSolution(sChris, oChris)
m oAnn oBob oChris
sAnn write ∅ ∅
sBob ∅ write ∅
sChris ∅ ∅ write, read

• After readSample(sChris, oChris)
m oAnn oBob oChris
sAnn write ∅ ∅
sBob ∅ write ∅
sChris ∅ ∅ read

Summary

• Model Behavior

– The model’sinputis a sequence of actions from OP together
with their respective arguments.

– The automaton changes its state according to the STS and
the semantics of HRU primitives (here: enter and delete).

– In the initial state, each student may (repeatedly) submit
her respective solution.

• Tricks in this Example

– The sample solution is not represented by a separate object
→ no separate column in the ACM.

– Instead, we smuggled thereadright for it into the cell of
each student’s solution ...

• Where Do We Stand?

– We can now model a security policy for particular IBAC
scenarios

– We can formally express them through an automaton-based
framework.

• What’s Next? Why all this?

– Correct specification and implementation of the modeled
policy

– Analysis of security properties → Next ...

HRU Model Analysis

• Reminder: ”For a given security model, is it possible that a
subjecteverobtains a specific permission with respect to a specific
object?”

• Analysis of Right Proliferation → The HRU safety problem.

InputSequences

• ”What is the effect of an input in a given state?”→ asingle state
transitionas defined by δ

• ”What is the effect of an input sequence in a given state?”→ a
composition ofsequential state transitionsas defined by δ∗

¿ Transitive State Transition Function δ∗ ¿ ¿ Let σσ ∈
∑∗ be a

sequence of inputs consisting of a single input σ ∈
∑
∪{ε} followed by a

sequence σ ∈
∑∗, where ε denotes an empty input sequence. Then,

δ∗ : Q×
∑∗ → Q is defined by

• δ∗(q, σσ∗) = δ∗(δ(q, σ), σ∗)
• δ∗(q, ε) = q.

HRU Safety A state q of an HRU model is called HRU safe with respect
to a right r ∈ R iff, beginning with q, there is no sequence of commands
that enters r in an ACM cell where it did not exist in q. According to
Tripunitara and Li [2013], this property (Due to more technical details,
it’s called simple-safety there.) is defined as: ¿ HRU Safety ¿ ¿ For a
state q = {Sq, Oq,mq} ∈ Q and a right r ∈ R of an HRU model
<Q,

∑
, δ, q0, R>, the predicate safe(q, r) holds iff ¿

∀q′ = Sq′ , Oq′ ,mq′ ∈ {δ
∗(q, σ∗)|σ∗ ∈

∑∗}, ∀s ∈ Sq′ , ∀o ∈ Oq′ : r ∈
mq′ (s, o)⇒ s ∈ Sq ∧ o ∈ Oq ∧ r ∈ mq(s, o). ¿ ¿ We say that an HRU

model is safe w.r.t. r iff safe(q0, r).

HRU Safety Examples

• Assume all states in {δ∗(q, σ∗)|σ∗ ∈
∑∗} have been validated

except for q′:

– State transfer 1

mq o1 o2 o3
s1 {r1, r3} {r1, r3} {r2}
s2 {r1} {r1} {r2}
s3 ∅ ∅ {r2}

∗ ⇒ δ∗(q, σ∗)

mq′ o1 o2 o3
s1 {r1, r3} {r1} {r2}
s2 {r1, r2} {r1} {r2}
s3 ∅ ∅ ∅
∗ r3 6∈ mq′ (s1, o2) ∧ r3 ∈ mq(s1, o1)⇒ safe(q, r3)

∗ r2 ∈ mq′ (s2, o1) ∧ r2 6∈ mq(s2, o1)⇒ ¬safe(q, r2)

– State transfer 2

mq o1 o2 o3
s1 {r1, r3} {r1, r3} {r2}
s2 {r1} {r1} {r2}
s3 ∅ ∅ {r2}

∗ ⇒ δ∗(q, σ∗)

mq′ o1 o2 o3 o4
s1 {r1, r3} {r1, r3} {r2} ∅
s2 {r1} {r1} {r2} {r2}
s3 ∅ ∅ {r2} ∅
∗ ∀s ∈ Sq′ : r3 6∈ mq′ (s, o4) ∧ r3 ∈ mq(s1, o1) ∧ r3 ∈
mq(s1, o2)⇒ safe(q, r3)

∗ r2 ∈ mq′ (s2, o4) ∧ o4 6∈ Oq ⇒ ¬safe(q, r2)

Let’s dissect the previous definitions: from a practical perspective,
showing that an HRU model is safe w.r.t. r means to 1. Search for any
possible (reachable) successor state q′ of q0 (”{δ(q0, σ)|σ ∈

∑
}”) 2. Visit

all cells in mq′ (”∀s ∈ Sq′ , ∀o ∈ Oq′ : ...”) 3. If r is found in one of these

cells (”r ∈ mq′ (s, o)”), check if

• mq is defined for this very cell (”s ∈ Sq ∧ o ∈ Oq”),
• r was already contained in this very cell in mq (”r ∈ mq(s, o)”).

4. Recursively proceed with 2. for any possible successor state q′′ of q′

(”{δ∗(q0, σ∗)|σ∗ ∈
∑∗}”)

Safety Decidability ¿ Theorem 1 [Harrison et al., 1976] ¿ ¿ Ingeneral,
HRU safety is not decidable.
¿ Theorem 2 (also Harrison et al. [1976]) ¿ ¿ For mono-operational
models, HRU safety is decidable.
SSo ... what is amono-operational HRU model?”→ exactly one primitive
for each operation in the STS:

command op(x_1 , ...,x_k) ::= if r_1 \in m(x_s1 ,x_o1) \wedge
... \wedge
r_m \in m(x_sm ,x_om)

then
p_1;

fi

• Theorem 1: See Harrison et al. [1976], reduction to the
Halteproblem.

• Theorem 2: We’ll have a closer look at this one ...

– Insights into the operational principles modeled by HRU
models

– Demonstrates a method to prove safety property for a
particular, given model

– → ”Proofs teach us how to build things so nothing more
needs to be proven.”(W. E. Kühnhauser)

7/17

Systemsicherheit

Proof of Theorem

• Proof Sketch 1. Find an upper bound for the length of all input
sequences with different effects on the protection state w.r.t.
safety If such can be found: ∃ a finite number of input sequences
with different effects 2. All these inputs can be tested whether
they violate safety. This test terminates because:

– each input sequence is finite
– there is only a finite number of relevant sequences

• → safety is decidable

Given a mono-operational HRU model. Let σ1...σn be any sequence of
inputs in

∑∗ that violates safe(q, r), and let p1...pn be the
corresponding sequence of primitives (same length, since
mono-operational).
Proposition: For each such sequence, there is a corresponding finite
sequence that

• Still violates safe(q, r)
• Consists only of enter and two initial create primitives

In other words: For any input sequence,∃ a finite sequence with the same
effect.
Proof:

• We construct these finite sequences ...→
• Transform σ1...σn into shorter sequences with the same effect: 1.

Remove all input operations that contain delete or destroy
primitives. The sequence still violates safe(q, r), because
conditions of successive commands must still be satisfied (no
absence, only presence of rights is checked). 2. Prepend the
sequence with an initial create subject sinit operation. This won’t
change its netto effect, because the new subject isn’t used
anywhere. 3. Prune the last create subject s operation and
substitute each following reference to s with sinit. Repeat until
allcreate subjectoperations are removed, except from the
initialcreate subject sinit. 4. Same as steps 2 and 3 for objects. 5.
Remove all redundant enter operations (remember: each matrix
cell is a set → unique elements).

Example:
init 1. 2. 3. 4. 5.
... ... create subject sinit; create subject sinit; create subject sinit; create subject sinit;
... create object oinit create object oinit
create subject x2; create subject x2; create subject x2; - - -
create object x5; create object x5; create object x5; create object x5; - -
enter r1 into m(x2,x5); enter r1 into m(x2,x5); enter r1 into m(x2,x5); enter r1 into m(sinit, x5); enter r1 into m(sinit, oinit); enter r1 into m(sinit, oinit);
enter r2 into m(x2,x5); enter r2 into m(x2,x5); enter r2 into m(x2,x5); enter r2 into m(sinit, x5); enter r2 into m(sinit, oinit); enter r2 into m(sinit, oinit);
create subject x7; create subject x7; create subject x7; - - -
delete r1 from m(x2,x5); - - - - -
destroy subject x2; - - - - -
enter r1 into m(x7,x5); enter r1 into m(x7,x5); enter r1 into m(x7,x5); enter r1 into m(sinit, x5); enter r1 into m(sinit, oinit); -
...

Observations

• after step 3:

– Except for sinit, the sequence creates no more subjects
– All rights of the formerly created subjects are accumulated

in sinit → for the evaluation of safe(q, r), nothing has
changed:

∗ generally: ∀s ∈ Sq′ , ∀o ∈ Oq′ : r ∈ mq′ (s, o)⇒ s ∈
Sq ∧ o ∈ Oq ∧ r ∈ mq(s, o)

∗ in this case: ∀s ∈ Sq′ , ∀o ∈ Oq′ : r ∈ mq′ (s, o)⇒ s 6=
sinit ∧ o ∈ Oq ∧ r ∈ mq(s, o)

– The sequence is generally shorter (never longer) than before

• Final Observations

– Except for sinit and oinit, the sequence creates no subjects
or objects

– All entered rights are accumulated in mq′ (sinit, oinit):

∗ generally: ∀s ∈ Sq′ , ∀o ∈ Oq′ : r ∈ mq′ (s, o)⇒ s ∈
Sq ∧ o ∈ Oq ∧ r ∈ mq(s, o)

∗ here: ∀s ∈ Sq′ , ∀o ∈ Oq′ : r ∈ mq′ (s, o)⇒ s 6=
sinit ∧ o 6= oinit ∧ r ∈ mq(s, o)

– This sequence still violates safe(q, r), but its length is
restricted to (|Sq|+ 1)(|Oq|+ 1)|R|+ 2 because

∗ Each enter must enter a new right into a cell
∗ The number of cells is restricted to (|Sq|+ 1)(|Oq|+ 1)

Conclusions from these Theorems

• Dilemma:

– General (unrestricted) HRU models

∗ have strong expressiveness → can model a broad
range of AC policies

∗ are hard to analyze: algorithms and tools for safety
analysis

· → cannot certainly produce accurate results
· → are hard to design for approximative results

– Mono-operational HRU models
∗ have weak expressiveness → goes as far as uselessness:

e. g. for modeling Unix creat(can only create files,
sockets, IPC, ... that no user process can access!)

∗ are efficient to analyze: algorithms and tools for safety
analysis

∗ → are always guaranteed to terminate
∗ → are straight-forward to design

Consequences:

• Model variants with restricted yet usable expressiveness have
been proposed

• Heuristic analysis methods try to provide educated guesses about
safety of unrestricted HRU

(A) Restricted Model Variants Static HRU Models

• Static: no create primitives allowed
• safe(q,r) decidable, but NP-complete problem
• Applications: (static) real-time systems, closed embedded systems

Monotonous Mono-conditional HRU Models

• Monotonous (MHRU): no delete or destroy primitives
• Mono-conditional: at most one clause in conditions part (For

monotonous bi-conditional models, safety is already undecidable
...)

• safe(q,r) efficiently decidable
• Applications: Archiving/logging systems (where nothing is ever

deleted)

Finite Subject Set

• ∀q ∈ Q, ∃n ∈ N : |Sq| ≤ n
• safe(q, r) decidable, but high computational complexity

Fixed STS

• All STS commands are fixed, match particular application
domain (e.g. OS access control [Lipton and Snyder, 1977]) → no
model reusability

• For Lipton and Snyder [1977]: safe(q, r) decidable in linear time
(!)

Strong Type System

• Special model that generalizes HRU: Typed Access Matrix
(TAM) [Sandhu, 1992]

• safe(q, r) decidable in polynomial time for ternary, acyclic,
monotonous variants

• high, though not unrestricted expressiveness in practice

(B) Heuristic Analysis Methods Motivation:

• Restricted model variants: often too weak for real-world
applications

• General HRU models: safety property cannot be guaranteed →
Let’s try to get a piece from both cakes: Heuristically guided
safety estimation [Amthor et al., 2013]

Idea:

• State-space exploration by model simulation
• Task of heuristic: generating input sequences (ëducated guessing”)

Outline: Two-phase-algorithm to analyze safe(q0, r): 1. Static phase:
Infer knowledge from the model that helps heuristic to make
”good”decisions.

• → Runtime: polynomial in model size (q0 + STS) 2. Simulation
phase: The automaton is implemented and, starting with q0, fed
with inputs σ = <op, x>

– → For each σ, the heuristic has to decide:

∗ which operation op to use
∗ which vector of arguments x to pass
∗ which qi to use from the states in Q known so far

– Termination: As soon as σ(qi, σ) violates safe(q0, r).

Goal: Iteratively build up the (possibly infinite!) Q for a model to falsify
safety by example (finding a violating, but possible protection state).
Results:

• Termination: Well ... we only have a semi-decidable problem here:
It can be guaranteed that a model is unsafe if we terminate. We
cannot ever prove the opposite, however! (→ safety
undecidability)

• Performance: A few results

– 2013:Model size 10 000 ≈ 2215 s
– 2018:Model size 10 000 ≈ 0, 36 s
– 2018:Model size 10 000 000 ≈ 417 s

Achievements:

• Find typical errors in security policies: Guide their designers, who
might know there’s something wrong w. r. t. right proliferation,
but not what and why!

• Increase our understanding of unsafety origins: By building clever
heuristics, we started to understand how we might design
specialized HRU models (→ fixed STS, type system) that are
safety-decidable yet practically (re-) usable [Amthor and Rabe,
2020].

Summary HRU Models Goal

• Analysis of right proliferation in AC models
• Assessing the computational complexity of such analyses

Method

• Combining ACMs and deterministic automata
• Defining safe(q, r) based on this formalism

Conclusions

• Potential right proliferation (privilege escalation): Generally
undecidable problem

• → HRUmodel family, consisting of application-tailored,
safety-decidable variants

• → Heuristic analysis methods for practical error-finding

8/17

Systemsicherheit

The Typed-Access-Matrix Model (TAM) Goal

• AC model, similar expressiveness to HRU
• → can be directly mapped to implementations of an ACM: OS

ACLs, DB permission assignment tables
• Better suited for safety analyses: precisely statemodel properties

for decidable safety

Idea [Sandhu, 1992]

• Adopted from HRU: subjects, objects, ACM, automaton
• New:leverage the principle of strong typing known from

programming
• → safety decidability properties relate to type-based restrictions

How it Works:

• Foundation of a TAM model is an HRU model <Q,
∑
, δ, q0, R>,

where Q = 2S × 2O ×M
• However: S ⊆ O, i. e.:

– all subjects can also act as objects (=targets of an access)
– → useful for modeling e. g. delegation (ß has the right to

grant s’ her read-right”)
– objects in O\S: pure objects

• Each o ∈ O has a type from a type set T assigned through a
mapping type : O → T

• An HRU model is a special case of a TAM model:

– T = {tSubject, tObject}
– ∀s ∈ S : type(s) = tSubject; ∀o ∈ O\S : type(o) = tObject

¿ TAM Security Model ¿ ¿ A TAM model is a deterministic automaton
<Q,

∑
, δ, q0, T, R> where

• Q = 2S × 2O × TY PE ×M is the state space where S and O are
subjects set and objects set as in HRU, where S ⊆ O,
TY PE = {type|type : O → T} is a set of possible type functions,
M is the set of possible ACMs as in HRU,

•
∑

= OP ×X is the (finite) input alphabet where OP is a set of

operations as in HRU, X = Ok is a set of k-dimensional vectors
of arguments (objects) of these operations,

• δ : Q×
∑
→ Q is the state transition function,

• q0 ∈ Q is the initial state,
• T is a static (finite) set of types,
• R is a (finite) set of access rights.

State Transition Scheme (STS) δ : Q×
∑
→ Q is defined by a set of

specifications: where

• q = (Sq, Oq, typeq,mq) ∈ Q, op ∈ OP
• r1, ..., rm ∈ R
• xs1, ..., xsm ∈ Sq, xo1, ..., xom ∈ Oq\Sq , and t1, ..., tk ∈ T where
si and oi, 1 ≤ i ≤ m , are vector indices of the input arguments:
1 ≤ si, oi ≤ k

• p1, ..., pn are TAM primitives

Convenience Notation where

•
• q ∈ Q is implicit
• op, r1, ..., rm, s1, ..., sm, o1, ..., om as before
• t1, ..., tk are argument types
• p1, ..., pn are TAM-specific primitives

TAM-specific

• Implicit Add-on:Type Checking
•
• where ti are the types of the arguments xi, 1 ≤ i ≤ k.

TAM-specific

• Primitives:

– enter r into m(xs,xo)
– delete r from m(xs,xo)
– create subject xs of type ts
– create object xo of type to
– destroy subject xs
– destroy object xo

• Observation: S and O are dynamic (as in HRU), thus
type : O → T must be dynamic too (cf. definition of Q in TAM).

TAM Example: The ORCON Policy

• Example Scenario: Originator Controlled Access Rights (ORCON
Policy)

• Goal: To illustrate usefulness/convenience of type system

– ORCON describes sub-problem of larger policies
– Information flow confinement required by ORCON is tricky

to do in HRU (”This information may not flow beyond ...”)

• The Problem

– Creator/owner of a document shouldpermanently retain
controlover its accesses

– Neither direct nor indirect (by copying) right proliferation
– Application scenarios: Digital rights management,

confidential sharing (online social networks!)
–

• Solution with TAM

– Idea: A confined subject type that can never execute any
operation other than reading

– Model Initialization:
∗ Subjects: S0 = {ann, bob, chris}
∗ Objects: O0 = S0 ∪ {projectX}
∗ Operations: → next ...
∗ Rights: R = {read, write, cread, own, parent}
∗ Types: T = {s, cs, co} (regular subject,confined

subject/object)
∗ type0:

· type0(ann) = s
· type0(bob) = s
· type0(projectX) = co

• Model Behavior (Example)

– ann creates ORCON object projectX (STS command
createOrconObject)

– ann grants cread (”confined read”) right for projectX to
bob (STS command grantCRead)

– bob uses cread to create confined subject chris with
permission to read projectX (STS command useCRead)

m ann:s bob:s projectX:co chris:cs
ann:s ∅ ∅ {own, read, write} ∅
bob:s ∅ ∅ {cread} {parent}
chris:cs ∅ ∅ {read} ∅

Model Behavior (STS): The State Transition Scheme

• createOrconObject

command createOrconObject(s_1:s, o_1:co) ::=
if true
then

create object o_1 of type co;
enter own into m(s_1 ,o_1);
enter read into m(s_1 ,o_1);
enter write into m(s_1 ,o_1);

fi

• grantCRead

command grantCRead(s 1 :s,s 2 :s,o 1 :co) ::=
if own in m(s_1 ,o_1)
then

enter cread into m(s_2 ,o_1);
fi

• useCRead

command useCRead(s_1:s, o_1:co, s_2:cs) ::=
if cread in m(s_1 ,o_1)
then

create subject s_2 of type cs;
enter parent into m(s_1 ,s_2);
enter readinto m(s_2 ,o_1);

fi

• Enable ann to revoke cread from bob:

command revokeCRead(s_1:s, s_2:s, o_1:co) ::=
if own in m(s_1 , o_1)
then

delete cread from m(s_2 , o_1);
fi

• Enable ann to destroy conf. object projectX:

command destroyOrconObject(s_1:s, o_1:co) ::=
if own in m(s_1 ,o_1)
then

destroy object o_1;
fi

• Enable ann to destroy conf. subject chris:

command revokeRead(s_1:s, s_2:cs , o_1:co) ::=
if own in m(s_1 ,o_1) and read in m(s_2 ,o_1)
then

destroy subject s_2;
fi

• Enable bob to destroy conf. subject chris:

command finishOrconRead(s_1:s, s_2:cs) ::=
if parent in m(s_1 , s_2)
then

destroy subject s_2;
fi

• Commands 1.-3.:

– Authorize the steps in the example above
– Are monotonic

• Commands 4.-7.:

– Will control right revocation→ essence of originator control
– Are not monotonic (consequences ...)

• Summary

– Contributions of ORCON Example
– Owner (öriginator”) retains full control over
– Use of her confined objects by third parties → transitive

right revocation
– Subjects using (or misusing) these objects → destruction of

these subjects
– Subjects using such objects are confined: cannot forward

read information

TAM Safety Decidability Why all this?

• General TAM models (cf. previous definition) → safety not
decidable (no surprise, since generalization of HRU)

• MTAM:monotonous TAM models; STS without delete or destroy
primitives → safety decidable if mono-conditional only

• AMTAM:acyclic MTAM models → safety decidable, but (most
likely) not efficiently: NP-hardproblem

• TAMTAM: ternaryAMTAM models; each STS command requires
max. 3 arguments → provably same computational power and
thus expressive power as AMTAM; safety decidable in polynomial
time

9/17

Systemsicherheit

Acyclic TAM Models Auxiliary analysis tools for TAM
models:
¿ Parent- and Child-Types ¿ ¿ For any operation op with arguments
<x1, t1>,<x2, t2>, ..., <xk, tk> in an STS of a TAM model, it holds
that ti, 1 ≤ i ≤ k

• is a child type in op if one of its primitives creates a subject or
object xi of type ti,

• is a parent type in op if none of its primitives creates a subject or
object xi of type ti.

¿ Type Creation Graph ¿ ¿ The type creation graph
TCG = <T,E = T × T> for the STS of a TAM model is a directed
graph with vertex set T and an edge<u, v> ∈ E iff ∃op ∈ OP : u is a
parent type in op ∧ v is a child type in op.
Example STS:

command foo(s_1:u, o_1:w, o_2:v) ::=
if r_1 \in m(s_1 ,o_1)
then

create object o_2 of type v;
fi

command bar(s_1:u, s_2:u, s_3:v, o_1:w) ::=
if r_2 \in m(s_1 ,o_1)
then

create subject s_2 of type u;
create subject s_3 of type v;

fi

Note:In bar,u is both a parent type (because of s1) and a child type
(because of s2) → hence the loop edge.
Safety Decidability: We call a TAM model acyclic, iff its TCG is acyclic.
¿ Theorem [Sandhu, 1992, Theorem 5] ¿ ¿ Safety of a ternary, acyclic,
monotonous TAM model (TAMTAM) is decidable in polynomial time in
the size of m0.

• Crucial property acyclic, intuitively:

– Evolution of the system (protection state transitions)
checks both rights in the ACMas well as argument types

– TCG is acyclic ⇒ ∃ a finite sequence of possible state
transitions after which no input tuple with argument types,
that were not already considered before, can be found

– One may prove that an algorithm, which tries to expandall
possible different follow-up states from q0, may terminate
after this finite sequence

– Proof details: SeeSandhu [1992].

Expressive Power of TAMTAM

• MTAM: obviously same expressive power as monotonic HRU
(MHRU) → cannot model:

– transfer of rights: ”take r from ... and in turn grant r to ...”
– countdown rights: ”r can only be used n times”

• ORCON example (and many others): allow to ignore
non-monotonic command s from STS, e.g. 4.-7., since they

– only remove rights
– are reversible (e. g.: undo 4. by 2.; compensate 7. by 3.

where the new subject takes roles of the destroyed one)

• AMTAM: most MTAM STS may be re-written as acyclic(cf.
ORCON example)

• TAMTAM: expressive power equivalent to AMTAM

IBAC Model Comparison

• So far: family of IBAC models to describe different ranges of
security policies they are able to express(depicted as an Euler
diagram):

• x

IBAC Summary

• We May Now

– Model identity-based AC policies (IBAC)
– Analyze them w. r. t. basic security properties (right

proliferation)
– → Minimize specification errors
– → Minimize implementation errors

• Approach

– Unambiguous policy representation through formal notation
– Prediction and/or verification of mission-critical properties
– Derivation of implementation concepts

• Model Range

– Static models:
∗ Access control function (ACF):
f : S ×O ×OP → {true, false}

∗ Access control matrix (ACM): m : S ×O → 2OP

∗ → Static analysis: Which rights are assigned to
whom, which (indirect) information flows are possible

∗ → Implementation: Access control lists (ACLs), e.g.
in OS, (DB)IS

– Dynamic models:

∗ ACM plus deterministic automaton → Analysis of
dynamic behavior: HRU safety

· generally undecidable
· decidable under specific restrictions: monotonous

mono-conditional, static, typed, etc.
· identifying and explaining safety-violations, in

case such (are assumed to) exists: heuristic
analysis algorithms

• Limitations

– IBAC models are fundamental: KISS
– IBAC models provide basic expressiveness only:

∗ Comparable to ässembler programs for writing AC
policies”

∗ Imagine writing a sophisticated end-user application
in assembler:

· reserve and keep track of memory layout and
addresses ≈ create and maintain individual rights
for thousands of subjects, billions of objects

· display comfortable GUI by writing to the video
card framebuffer ≈ specify sophisticated
workflows through an HRU STS

– For more application-oriented policy semantics:

∗ Large information systems: many users, many
databases, files, ... → Scalability problem

∗ Access decisions not just based on subjects, objects,
and operations → Abstraction problem

→ ”New”paradigm (early-mid 90s): Role-based Access Control

Roles-based Access Control Models (RBAC)
Problems of IBAC Models:

• Scalability w.r.t. the number of controlled entities
• Level of abstraction: System-oriented policy semantics (processes,

files, databases, ...) instead of problem-oriented (management
levels, user accounts, quota, ...)

Goals of RBAC:

• Solving these problems results in smaller modeling effort results
in smaller chance of human errors made in the process:

– Improved scalability and manageability
– Improved, application-oriented semantics: roles≈functions

in organizations

RBAC Application Domains

• Public health care systems

– Roles: Patient, physician, therapist, pharmacist, insurer,
legislator, ...

• Financial services

– Roles: Client, consultant, analyst, product manager, ...

• Operating systems

– Roles: System admin, webserver admin, database admin,
key account user, user, ...

RBAC Idea

• Models include smart abstraction: roles
• Access control rules are specified based on roles instead of

identities:

– Äll ward physiciansare allowed to read EPRs.”
– Ällnursesare allowed to log body temperature.”

• Compared to IBAC

– IBAC Semantics:
∗ Subjects, objects, and rights for executing operations
∗ Access rules are based onidentity of individualsubjects

and objects

– RBAC Semantics:
∗ Users, roles, and rights for executing operations
∗ Access rules are based onrolesof users → on

assignments:

RBAC Security Model Definition ¿ Basic RBAC model:
”RBAC0”[Sandhu, 1994]: ¿ ¿ An RBAC 0 model is a tuple
<U,R, P, S, UA, PA, user, roles> where

• U is a set of user identifiers,
• R is a set of role identifiers,
• P is a set of permission identifiers,
• S is a set of session identifiers,
• UA ⊆ U × R is a many-to-many user-role-relation,
• PA ⊆ P × R is a many-to-many permission-role-relation,
• user : S → U is a total function mapping sessions to users,

• roles : S → 2R is a total function mapping sessions to sets of
roles such that ∀s ∈ S : r ∈ roles(s)⇒ <user(s), r> ∈ UA.

Interpretation

• Users U model people: actual humans that operate the AC system
• Roles R model functions (accumulations of tasks), that originate

from the workflows and areas of responsibility in organizations
• Permissions P model rights for any particular access to a

particular document (e. g. read project documentation, transfer
money, write into EPR, ...)

• The user-role-relation UA ⊆ U × R defines which roles are
available to users at any given time → must be assumed during
runtime first, before they are usable!

• The permission-role-relation PA ⊆ P × R defines which
permissions are associate with roles

• UA and PA describe static policy rules: Roles available to a user
are not considered to possibly change, same with permissions
associated with a role. Examples:

– ”Bob may assume the role of a developer; Ann may assume
the role of a developer or a project manager; ...”

– Ä developer may read and write the project
documentation; a project manager may create branches of
a source code repository; ...”

• Sessions S describe dynamic assignments of roles → a session
s ∈ S models when a user is logged in(where she may use some
role(s) available to her as per UA):

– The session-user-mapping user: S → U associates a session
with its (öwning”) user

10/17

Systemsicherheit

– The session-roles-mapping roles: S → 2R associates a
session with the set of roles currently assumed by that user
(active roles)

Remark: Note the difference between users in RBAC and subjects in
IBAC: the latter usually represent a technical abstraction, such as an OS
process, while RBAC users always model an organizational abstraction,
such as an employee, a patient, etc.!

RBAC Access Control Function

• Authorization in practice: access rules have to be defined for
operations on objects (cf. IBAC)

• IBAC approach: access control function
f : S ×O ×OP → {true, false}

• RBAC approach: implicitly defined through P → made explicit:
P ⊆ O ×OP is a set of permission tuples <o, op> where

– o ∈ O is an object from a set of object identifiers,
– op ∈ OP is an operation from a set of operation identifiers.

• We may now define the ACF for RBAC0:

¿ RBAC0 ACF ¿ ¿ fRBAC0
: U ×O ×OP → {true, false} where ¿

fRBAC0
(u, o, op) ={

true, ∃r ∈ R, s ∈ S : u = user(s) ∧ r ∈ roles(s) ∧<<o, op>, r> ∈ PA
false, otherwise .

RBAC96 Model Family Sandhu et al. [1996]
In practice, organizations have more requirements that need to be
expressed in their security policy:

• Roles are often hierarchical: Äny project manager is also a
developer, any medical director is also a doctor,
...”→ RBAC1 = RBAC0 + hierarchies

• Role association and activation are often constrained: ”No
purchasing manager may be head of internal auditing, no product
manager may be logged in as a project manager for more than
one project at a time, ...”→ RBAC2 = RBAC0 + constraints

• Both may be needed: → RBAC3 = consolidation:
RBAC0 + RBAC1 + RBAC2

RBAC 1 : Role Hierarchies

• Observation: Roles in organizations often overlap:

– Users in different roles havecommon permissions: Äny
project manager must have the same permissions as any
developer in the same project.”

– Approach 1: disjoint permissions for roles proManager and
proDev → any proManager user must always have proDev
assigned and activated for any of her workflows → role
assignment redundancy

– Approach 2: overlapping permissions: ∀p ∈ P :
<p, proDev> ∈ PA⇒ <p, proManager> ∈ PA→ any
permission for project developers must be assigned to two
different roles → role definition redundancy

– Two types of redundancy → undermines scalability goal of
RBAC!

• Solution

– Role hierarchy: Eliminates role definition redundancy
through permissions inheritance

• Modeling Role Hierarchies

– Lattice here: <R,≤ >
– Hierarchy expressed through dominance relation:
r1 ≤ r2 ⇔ r2 inherits any permissions from r1

– Interpretation

∗ Reflexivity: any role consists of (̈ınherits”) its own
permissions ∀r ∈ R : r ≤ r

∗ Antisymmetry: no two different roles may mutually
inherit their respective permissions
∀r1, r2 ∈ R : r1 ≤ r2 ∧ r2 ≤ r1 ⇒ r1 = r2

∗ Transitivity: permissions may be inherited indirectly
∀r1, r2, r3 ∈ R : r1 ≤ r2 ∧ r2 ≤ r3 ⇒ r1 ≤ r3

¿ RBAC1 Security Model ¿ ¿ An RBAC1 model is a tuple
<U,R, P, S, UA, PA, user, roles, RH> where

• U,R, P, S, UA, PA and user are defined as for RBAC0,
• RH ⊆ R× R is a partial order that represents a role hierarchy

where <r, r′> ∈ RH ⇔ r ≤ r′ such that <R,≤ > is a lattice,
• roles is defined as for RBAC0, while additionally holds:
∀r, r′ ∈ R, ∃s ∈ S : r ≤ r′ ∧ r′ ∈ roles(s)⇒ r ∈ roles(s).

In prose: When activating any role that inherits permissions from
another role, this other role isautomatically(by definition) active as well.

• → no role assignment redundancy in defining the STS
• → no role definition redundancy in defining PA

RBAC 2 : Constraints

• Observation: Assuming and activating roles in organizations is
often more restricted:

– Certain roles may not beactive at the same time(same

session)for any user: Ä payment initiator may not be a
payment authorizer at the same time (in the same
session).”

– Certain roles may not be together assigned to any user:
Ä purchasing manager never be the same person as the
head of internal auditing.”

– → separation of duty (SoD)
– While SoD constraints are a more fine-grained type of

security requirements to avoid mission-critical risks, there
are other types represented by RBAC constraints.

• Constraint Types

– Separation of duty: mutually exclusive roles
– Quantitative constraints: maximum number of roles per

user
– Temporal constraints: time/date/week/... of role activation

(advanced RBAC models, e.g. Bertino et al. [2001])
– Factual constraints: assigning or activating roles for specific

permissions causally depends on any roles for a certain,
other permissions (e.g. only allow user u to activate
auditingDelegator role if audit payments permission is
usable by u)

• Modeling Constraints:(idea only)

– RBAC2 : <U,R, P, S, UA, PA, user, roles, RE>
– RBAC3 : <U,R, P, S, UA, PA, user, roles, RH,RE>
– where RE is aset of logical expressions over the other

model components (such as UA,PA, user, roles).

RBAC Summary

• Scalability
• Application-oriented model abstractions
• Standardization (RBAC96) → tool-support for:

– role engineering (identifying and modeling roles)
– model engineering (specifying and validating a model

configuration)
– static model checking (verifying consistency and

plausibility of a model configuration)

• Still weak OS-support

– → application-level integrations (e. g. hospital IS, DBIS,
ERP systems)

– → middleware integrations (e. g. XACML, NGAC[Ferraiolo
et al., 2016])

• Limited dynamic analyses w.r.t. automaton-based models

– cf. HRU:safety properties?
– solution approach: automaton-based RBAC96 model
– → DRBAC 0 ... 3 [Schlegel and Amthor, 2020]

Attribute-based Access Control Models Goals of
ABAC:

• Providing a more versatile solution than RBAC for these
problems, especially for open and distributed systems.

– Scalability and manageability
– Application-oriented model abstractions
– Model semantics meet functional requirements of open

systems:

∗ user IDs, INode IDs, ... only available locally, scaling
bad

∗ roles that gather permissions model functions limited
to specific organizational structure; only assignable to
users

– → Consider application-specific context of an access:
attributes of subjects and objects(e. g. age, location, trust
level, ...)

Idea: Generalizing the principle of indirection already known from RBAC

• IBAC: no indirection between subjects and objects
• RBAC: indirection via roles assigned to subjects
• ABAC: indirection via arbitrary attributes assigned to subjects or

objects
• Attributes model application-specific properties of the system

entities involved in any access, e. g.:

– Age, location, trustworthiness of a
application/user/device/...

– Size, creation time, premium-access classification of web
resource/multimedia content/document/...

– Risk quantification involved with these subjects and
objects (e. g. access from an IP address/proxy domain
reportedly belonging to a TOR network)

ABAC Access Control Function

• fIBAC : S ×O ×OP → {true, false}
• fRBAC : U ×O ×OP → {true, false}
• fABAC : S ×O ×OP → {true, false}
• → Evaluates attribute values for <s, o, op>, e. g.:
fABAC(user, game, download) = game.pegi ≤ user.age

ABAC Security Model

• Note: There is no such thing (yet) like a standard ABAC model
(such as RBAC96).

• Instead: Many highly specialized, application-specific models.
• Here: minimal common formalism, based on Servos and Osborn

[2017]

¿ ABAC Security Model ¿ ¿ An ABAC security model is a tuple
<S,O,AS,AO, attS, attO,OP,AAR> where

• S is a set of subject identifiers and O is a set of object identifiers,
• AS = V 1

S × ...× V
n
S is a set of subject attributes, where each

attribute is an n-tuple of values from arbitrary domains V i
S ,

1 ≤ i ≤ n,
• AO = V 1

O × ...× V
m
O is a corresponding set of object attributes,

based on values from arbitrary domains V j
O, 1 ≤ j ≤ m,

• attS : S → AS is the subject attribute assignment function,
• attO : O → AO is the object attribute assignment function,
• OP is a set of operation identifiers,
• AAR ⊆ Φ×OP is the authorization relation.

Interpretation

• Active and passive entities are modeled by S and O, respectively

11/17

Systemsicherheit

• Attributes in AS,AO are index-referenced tuples of values, which
are specific to some property of subjects V i

S (e.g. age) or of

objects V j
O (e. g. PEGI rating)

• Attributes are assigned to subjects and objects via attS , attO
• Access control rules w.r.t. the execution of operations in OP are

modeled by the AAR relation → determines ACF!
• AAR is based on aset of first-order logic predicates Φ:

Φ = {φ1(xs1, xo1), φ2(xs2, xo2), ...}. Each φi ∈ Φ is a binary
predicate (a logical statement with two arguments), where xsi is
a subject variable and xoi is an object variable.

ABAC Access Control Function With conditions from Φ
for executing operations in OP,AAR determines the ACF of the model:
¿ ABAC ACF ¿ ¿ fABAC : S ×O ×OP → {true, false} where ¿

fABAC(s, o, op) =
{
true, ∃<φ, op> ∈ AAR : φ(s, o) = true
false, otherwise . ¿ We

call φ an authorization predicate for op.
Example 1: Online Game Store

• Policy goal: Enforce PEGI age restrictions for video game access
• S: set of client IDs
• O: set of video game titles
• AS = N(where n = 1): one subject attribute (age)
• AO = {0, 3, 7, 12, 14, 18}(where m = 1): one object attribute

(PEGI rating)
• attS : S → AS : assigns age attribute to clients
• attO : O → AO: assigns PEGI rating attribute to games
• OP = {download}: sole operation
• One simpleauthorization rule:
AAR = {<attO(o) ≤ attS(s), download>}

Example 2: Document Management System

• Policy goal: Enforce document confidentiality
• S: set of user IDs
• O: set of document IDs
• AS = N(where n = 1): subject attribute (trustworthiness value)
• AO = N(where m = 1): object attribute (confidentiality level)
• attS : S → AS : assigns trustworthiness value to user (e. g. based

on management level)
• attO : O → AO: assigns confidentiality level to documents
• OP = {read, write, append, ...}: operations
• Authorization rules: AAR = {<attO(o) ≤
attS(s), read>,<attS(s) ≤ attO(o), write>, ...}

ABAC Summary

• Scalability
• Application-oriented model abstractions
• Universality: ABAC can conveniently express

– IBAC (attributes: IDs)
– RBAC (attributes: roles)
– MLS (attributes: sensitivity levels → next topic)

• Still weak OS-support → application-level integrations
(increasingly replacing RBAC)

• Attribute semantics highly diverse, not normalizable → no
common ßtandard ABAC”to expect (all too soon ...)

• Limited dynamic analyses w.r.t. automaton-based models

– cf. HRU:safety properties?
– solution approach: automaton-based ABAC model ...

Information Flow Models
Abstraction Level of AC Models: rules about subjects accessing objects
Adequate for

• Workflow systems
• Document/information management systems
• ... that’s it.

Goal of Information Flow (IF) Models: Problem-oriented definition of
policy rules for scenarios based on information flows(rather than access
rights)
Lattices (refreshment)

• Terms:

– infC : ßystemlow”
– supC : ßystemhigh”

• → notably, a graph described by a lattice
• is connected
• has a source: deg−(infC) = 0

• has a sink: deg+(supC) = 0

Implementation of Information Flow Models

• Background: Information flows and read/write operations are
isomorphic

– s has read permission w.r.t. o ⇔ information may flow from
o to s

– s has write permission w.r.t. o ⇔ information may flow
from s to o

• → Implementation by standard AC mechanisms!

Analysis of Information Flow Models

• IF Transitivity → analysis goal: covert information flows

– Question: Ïs there a possible, sequential usage of read
– and write-permissions that ultimately leads to an

unintended information flow?”

• IF Antisymmetry → analysis goal: redundancy

– Question: ”Which subjects/object share the same possible
information flows and are therefore redundant?”

The Denning Model On of the first information flow models
[Denning, 1976]:
¿ Denning Security Model ¿ ¿ A Denning information flow model is a
tuple <S,O,L, cl,

⊕
> where

• S is a set of subjects,
• O is a set of objects,
• L = <C,≤ > is a lattice where

– C is a set of classes,
– ≤ is a dominance relation wherec ≤ d⇔ information may

flow from c to d,

• cl : S ∪O → C is a classification function, and
•
⊕

: C × C → C is a reclassification function.

Interpretation

• Subject set S models active entities, which information flows
originate from

• Object set O models passive entities, which may receive
information flows (e.g. documents)

• Classes set C used to label entities with identical information flow
properties, e.g. C = {Physician, Patient}

• Classification function cl assigns a class to each entity, e.g.
cl(cox) = Physician

• Reclassification function
⊕

determines which class an entity is
assigned after receiving certain a information flow; e.g. for
Physician to Patient:⊕

(Physician, Patient) = sup{Physician,Patient}

Example <S,O,L, cl,
⊕
> mit L = <C,≤ >:

• S = O = {cox, kelso, carla, ...}
• C = {Physician,Anamnesis, Pharmacy,Medication, ...}

• dominance relation ≤:

– rule ı̈nformation may flow from any ward physician to an
anamnesis record”⇔ Physician ≤ Anamnesis

– rule ı̈nformation may flow from a medication record to the
pharmacy”⇔ Medication ≤ Pharmacy

• classification cl:

– cox = Physician
– carla = Medication

We can now ...

• precisely define all information flows valid for a given policy
• define analysis goals for an IF model w.r.t.

– Correctness: ∃ covert information flows? (transitivity of ≤,
automation: graph analysis tools)

– Redundancy: ∃ sets of subjects and objects with
(transitively) equivalent information contents?
(antisymmetry of ≤, automation: graph analysis tools)

• implement a model: through an automatically generated,
isomorphic ACM(using already-present ACLs!)

Multilevel Security (MLS) Motivation

• Introducing a hierarchy of information flow classes: levels of trust
• Subjects and objects are classified:

– Subjects w.r.t. their trust worthiness
– Objects w.r.t. their criticality

• Within this hierarchy, information may flow only in one direction
→ ßecureäccording to these levels!

• → ∃ MLS models for different security goals!

Modeling Confidentiality Levels

• Class set: levels of confidentiality e.g.
C = {public, confidential, secret}

• Dominance relation: hierarchy between confidentiality levels e.g.
{public ≤ confidential, confidential ≤ secret}

• Classification of subjects and objects: cl : S ∪O → C e.g.
cl(BulletinBoard) = public, cl(Timetable) = confidential

• Note: In contrast du Denning, ≤ in MLS models is a total order.

Example

• Lattice <{public, confidential, secret},≤ > where
≤= {<public, confidential>,<confidential, secret>}

• Objects O = {ProjectXFiles, T imetable, BulletinBoard}
• Subjects S = {Ann,Bob}
• Classification of objects (classification level):

– cl(ProjectXFiles) = secret
– cl(Timetable) = confidential
– cl(BulletinBoard) = pulic

• Classification of subjects (clearance level):

– cl(Ann) = confidential
– cl(Bob) = public

• Neither Ann nor Bob can readProjectXFiles
• Ann can

– write to ProjectXFiles and Timetable
– read from Timetable and BulletinBoard

• Bob can

– write to all objects
– read from BulletinBoard

12/17

Systemsicherheit

The Bell-LaPadula Model Goal: MLS-Model for Preserving
Information Confidentiality
Incorporates impacts on model design ...

• from the application domain: hierarchy of trust
• from the Denning model: information flow and lattices
• from the MLS models: information flow hierarchy
• from the HRU model:

– Modeling dynamic behavior: state machine and STS
– Model implementation: ACM

• → application-oriented model engineering by composition of
known abstractions

Idea:

• entity sets S,O
• lattice<C,≤ > defines information flows by

– C: classification/clearance levels
– ≤: hierarchy of trust

• classification function cl assigns

– clearance level from C to subjects
– classification level from C to objects

• Model’s runtime behavior is specified by a deterministic
automaton

¿ BLP Security Model ¿ ¿ A BLP model is a deterministic automaton
<S,O,L,Q,

∑
, σ, q0, R> where

• S and O are (static) subject and object sets,
• L = <C,≤ > is a (static) lattice consisting of

– the classes set C,
– the dominance relation ≤,

• Q = M × CL is the state space where

– M = {m|m : S ×O → 2R} is the set ofpossible ACMs,
– CL = {cl|cl : S ∪O → C} is a set offunctions that classify

entities in S ∪O,

•
∑

is the input alphabet,
• σ : Q×

∑
→ Q is the state transition function,

• q0 ∈ Q is the initial state,
• R = {read, write} is the set of access rights.

Interpretation

• S,O,M,
∑
, σ, q0, R: same as HRU

• L: models confidentiality hierarchy
• cl: models classification meta-information about subjects and

objects
• Q = M × CL models dynamic protection states; includes

– rights in the ACM,
– classification of subjects/objects,
– not: S and O (different to HRU → consequences for safety

analysis?)

• Commands in the STS may therefore

– change rights in the ACM,
– reclassify subjects and objects.

Lattice vs. ACM Given an exemplary BLP model where

• S = {s1, s2}, O = {o1, o2}
• C = {public, confidential}
• ≤= {<public, confidential>}
• cl(s1) = cl(o1) = public, cl(s2) = cl(o2) = confidential
•
• Observation: L and m are isomorphic → redundancy?

• → So, why do we need both model components?

Rationale

• L is an application-oriented abstraction

– Supports convenient for model specification
– Supports easy model correctness analysis (→ reachability

analyses in graphs)
– → easy to specify and to analyze

• m can be directly implemented by standard OS/DBIS access
control mechanisms (ACLs, Capabilities) → easy to implement

• m is determined (= restricted) by L and cl, not vice-versa!

¿ Rationale for L and m

• L and cl control m
• m provides an easy specification for model implementation

Consistency of L,cl, and m We know: IF rules specificed by
L and cl are implemented by an ACM m...
So: What are the conditions for m to be a correct representation of L
and cl?
Intuition: An ACM m is a correct representation of a lattice L iff
information flows granted by m do not exceed those defined by L and cl.
→ BLP security property
Consequence: If we can prove this property for a given model, then its
implementation (by m) is consistent with the rules given by L and cl.

BLP Security Help Definitions ¿ Read-Security Rule ¿ A BLP
model state <m, cl> is called read-secure iff
∀s ∈ S, o ∈ O : read ∈ m(s, o)⇒ cl(o) ≤ cl(s).
¿ Write-Security Rule ¿ A BLP model state <m, cl> is called
write-secure iff ∀s ∈ S, o ∈ O : write ∈ m(s, o)⇒ cl(s) ≤ cl(o).
Note: In some literature, read-security is called ßimple security”, while
write-security is called ”∗-property”. Reasons are obscure-historical.
¿ State Security ¿ A BLP model state is called secure iff it is both read-
and write-secure.
¿ Model Security ¿ A BLP model with initial state q0 is called secure iff
¿ 1. q0 is secure and ¿ 2. each state reachable from q0 by a finite input
sequence is secure.
The above definition is

• intuitive
• difficult to verify: state reachability...

Auxiliary Definition: The Basic Security Theorem for BLP (BLP BST)

• A convenient tool for proving BLP security
• Idea: let’s look at properties of the finite and small model

components → σ → STS

¿ The BLP Basic Security Theorem ¿ ¿ A BLP model
<S,O,L,Q,

∑
, σ, q0, R> is secure iff both of the following holds: ¿ 1. q0

is secure ¿ 2. σ is build such that for each state q reachable from q0 by a
finite input sequence, where q = <m, cl> and
q′ = σ(q, δ) = m′, cl′, ∀s ∈ S, o ∈ O, δ ∈

∑
the following holds:

• Read-security conformity:

– read 6∈ m(s, o) ∧ read ∈ m′(s, o)⇒ cl′(o) ≤ cl′(s)
– read ∈ m(s, o) ∧ ¬(cl′(o) ≤ cl′(s))⇒ read 6∈ m′(s, o)

• Write-security conformity:

– write 6∈ m(s, o) ∧ write ∈ m′(s, o)⇒ cl′(s) ≤ cl′(o)
– write ∈ m(s, o) ∧ ¬(cl′(s) ≤ cl′(o))⇒ write 6∈ m′(s, o)

Proof of Read Security

• Technique: Term rewriting

• Let q = σ ∗ (q0, σ
+), σ+ ∈ σ+, q′ = δ(q, σ), σ ∈ σ, s ∈ S, o ∈ O.

With q = <m, cl> and q′ = m′, cl′, the BLP BST for
read-security is

– (a1) read 6∈ m(s, o) ∧ read ∈ m′(s, o)⇒ cl′(o) ≤ cl′(s)
– (a2) read ∈ m(s, o) ∧ ¬(cl′(o) ≤ cl′(s))⇒ read 6∈ m′(s, o)
– Let’s first introduce some convenient abbreviations for this:

∗ R := read ∈ m(s, o)
∗ R′ := read ∈ m′(s, o)
∗ C′ := cl′(o) ≤ cl′(s)
∗ σ+ is the set of finite, non-empty input sequences.

– Proposition: (a1) ∧ (a2) ≡ read− security
– Proof:

(a1) ∧ (a2) = R′ ⇒ C′ ≡ read ∈ m′(s, o)⇒ cl′(o) ≤ cl′(s),
which exactly matches the definition of read-security for q′.

– Write-security: Same steps for (b1) ∧ (b2).

Where Do We Stand?

• Precision: necessary and sufficient conditions for BLP security
property

• Analytical power: statements about dynamic model behavior
based on static analysis of the (finite and generally small) STS →
tool support

• Insights: shows that BLP security is an inductive property

Problem: Larger systems: only source of access rules is the trust
hierarchy → too coarse-grained!
Idea: Encode an additional, more fine-grained type of access restriction
in the ACM → compartments

• Comp: set of compartments

• co : S ∪O → 2Comp: assigns a set of compartments to an entity
as an (additional) attribute

• Refined state security rules:

– <m, cl, co> is read-secure ⇔ ∀s ∈ S, o ∈ O : read ∈
m(s, o)⇒ cl(o) ≤ cl(s) ∧ co(o) ⊆ co(s)

– <m, cl, co> is write-secure ⇔ ∀s ∈ S, o ∈ O : write ∈
m(s, o)⇒ cl(s) ≤ cl(o) ∧ co(o) ⊆ co(s)

– Good ol’ BLP: <S,O,L,Q, σ, δ, q0>
– With compartments: <S,O,L,Comp,Qco, σ, δ, q0> where

Qco = M × CL× CO and CO = {co|co : S ∪O → 2Comp}

Example

• Let co(o) = secret, co(o) = airforce
• s1 where cl(s1) = public, co(s1) = {airforce, navy} can write o
• s2 where cl(s2) = secret, co(s2) = {airforce, navy} can read and

write o
• s3 where cl(s3) = secret, co(s3) = {navy} can do neither
•

BLP Model Summary Model Achievements

• Application-oriented modeling → hierarchical information flow
(goal: preserve confidentiality)

• Scalability → attributes: trust levels
• Modeling dynamic behavior → automaton with STS
• Correctness guarantees

– Of model specification: analysis of

∗ consistency: BLP security, BST
∗ completeness of IF: IFG path finding
∗ presence of unintended, transitive IF: IFG path

finding
∗ unwanted redundancy: IF cycles → information

equivalence classes
∗ safety properties:decidable!
∗ → tool-supportpossible!

13/17

Systemsicherheit

– Of model implementation: good ol’ ACM → ACLs,
capabilities

• Implementation

– ACM is a standard AC mechanism in contemporary
implementation platforms (cf. prev. slide)

– Contemporary standard OSs need this: do not support
mechanisms for

∗ entity classification
∗ arbitrary STSs

– → newer platforms may do: SELinux, SEAndroid,
TrustedBSD, Solaris, Trusted Extensions, PostgreSQL

• Is an example of a hybrid model: IF + AC + ABAC

Lessons Learned - What we can learn from BLP for designing and using
security models:

• Model composition from known model abstractions

– Denning: IF modeling
– ABAC: IF classes and compartments as attributes
– MSL: modeling trust as a linear hierarchy
– HRU: modeling dynamic behavior
– ACM: implementing application-oriented policy semantics

• Consistency is an important property of composed models
• BLP is further extensible and refinable → starting point for later

models, e. g. Biba

The Biba Model BLP upside down [Biba, 1977]:

• BLP → preserves confidentiality
• Biba → preserves integrity

Applications Example: On-board Airplane Passenger Information
Systems

• Goal: Provide in-flight information in cabin network

– Flight instruments data
– Outboard camera video streams
– communication pilot - tower

• Integrity: no information flow from cabin to flight deck!
• As employed in Boeing 787: common network for cabin and flight

deck + software firewall + Biba implementation

Windows Vista UAC

• An application of the Biba model for OS access control:
• Integrity: Protect system files from malicious user (software)

tampering
• Class hierarchy:

– system: OS level objects
– high: services
– medium: user level objects
– low: untrusted processes e. g. web browser, setup

application, ...

• Consequence: every file, process, ... created by the web browser is
classified low → cannot violate integrity of system- and
user-objects

• Manual user involvement (→ DAC portion of the policy):resolving
intended exceptions, e. g. to install trusted application software

Non-interference Models
Problem No. 1: Covert Channels
¿ Covert Channel [Lampson, 1973] ¿ Channels [...] not intended for
information transfer at all, such as the service program’s effect on the
system load.

• AC policies (ACM, HRU, TAM, RBAC, ABAC): colluding
malware agents, escalation of common privileges

– Process 1: only read permissions on user files
– Process 2: only permission to create an internet socket
– both:communication via covert channel(e. g. swapping

behavior)

• MLS policies (Denning, BLP, Biba): indirect information flow
exploitation (Note: We can never prohibitany possible transitive
IF ...)

– Test for existence of a file
– Volume control on smartphones
– Timing channels from server response times

Problem No. 2: Damage Range How to substantiate a statement like:
”Corruption of privileged system software will never have any impact on
other system components.”→ Attack perimeter
Idea of NI models:

• Once more: higher level of abstraction
• Policy semantics: which domains should be isolated based on

their mutual impact

Consequences:

• Easier policy modeling
• More difficult policy implementation ...(→ higher degree of

abstraction!)

Example 1: Multi-application Smart Cards

• Different services, different providers, different levels of trust
• Shared resources: Runtime software, OS, hardware (processor,

memory, I/O interfaces, ...)
• Needed:Total isolation of services (program code, security-critical

information e. g. private keys)
• → Guarantee of total non-interference between domains

Example 2: Server System

• Different services: web hosting, mail service, file sharing
• Shared resources (see example 1)
• Needed:Precisely defined and restricted cross-domain interactions

(e. g. file up-/downloads, socket communication, shared memory
read/write, ...)

• → Guarantee of limited non-interferenc ebetween domains

NI Security Policies NI-Policies Specify

• Security domains
• Cross-domain (inter)actions → interference

From convert channels to domain interference: ¿ Non-Interference ¿ ¿
Two domains do not interfere with each other iff no action in one
domain can be observed by the other.
→ NI Model Abstractions:

• Set of domains D
• A non-interference relation ≈NI⊆ D ×D, such that
d1 ≈NI d2 ⇔ d1 does not interfere with d2

• Subjects executeactions a ∈ A
• Effects of actions on domains defined by a mapping

dom : A→ 2D

¿ NI Security Model ¿ An NI model is a det. automaton
<Q, σ, δ, λ, q0, D,A, dom,≈NI , Out> where

• Q is the set of (abstract) states,
• σ = A is the input alphabet where A is the set of (abstract)

actions,
• δ : Q× σ → Q is the state transition function,
• λ : Q× σ → Out is the output function,
• q0 ∈ Q is the initial state,

• D is a set of domains,

• dom : A→ 2D is adomain function that completely defines the
set of domains affected by an action,

• ≈NI⊆ D ×D is a non-interference relation,
• Out is a set of (abstract) outputs.

NI Security Model is also called Goguen/Meseguer-Model [Goguen and
Meseguer, 1982].
BLP written as an NI Model

• BLP Rules:

– write in class public may affect public and confidential
– write in class confidential may only affect confidential

• NI Model:

– D = {dpub, dconf}
– write in dconf does not affect dpub, so dconf ≈NI dpub

– A = {writeInPub, writeInConf}
– dom(writeInPub) = {dpub, dconf}
– dom(writeInConf) = {dconf}

NI Model Analysis Goal

• AC models: privilege escalation (→ HRU safety)
• BLP models:model consistency (→ BLP security)
• NI models:Non-interference between domains

Non-Interference Intuitively: Is there a sequence of actions a∗ ∈ A∗ that
violates ≈NI? → A model is called NI-secure iff there is no sequence of
actions that results in an illegal domain interference. Now what does this
meansprecisely...?
Before we define what NI-secure is, assume we could remove all actions
from an action sequence that have no effect on a given set of domains: ¿
Purge Function ¿ ¿ Let aa∗ ∈ A∗ be a sequence of actions consisting of a
single action a ∈ A ∪ {ε} followed by a sequence a∗ ∈ A∗, where ε

denotes an empty sequence. Let D′ ∈ 2D be any set of domains. Then,

purge: A∗ × 2D → A∗ computes a subsequence of aa∗ by removing such
actions without an observable effect on any element of D′ :

• purge(aa∗, D′) ={
a ◦ purge(a∗, D′), ∃da ∈ dom(a), d′ ∈ D′ : da ≈I d

′

purge(a∗, D′), otherwise

• purge(ε,D′) = ε

¿ where ≈I is the complement of ≈NI : d1 ≈I d2 ⇔ ¬(d1 ≈NI d2).
¿ NI Security ¿ ¿ For a state q ∈ Q of an NI model
<Q, σ, δ, λ, q0, D,A, dom,≈NI , Out>, the predicate ni-secure(q) holds iff
∀a ∈ A, ∀a∗ ∈ A∗ : λ(δ∗(q, a∗), a) = λ(δ∗(q, purge(a∗, dom(a))), a)
Interpretation 1. Running an NI model on <q, a∗> yields q′ = δ∗(q, a∗).
2. Running the model on the purged input sequence so that it contains
only actions that, according to ≈NI , actually have impact on dom(a)
yields q′clean = δ∗(q, purge(a∗, dom(a))) 3. If

∀a ∈ A : λ(q′, a) = λ(q′clean, a), than the model is called NI-secure w.r.t.
q(ni− secure(q)).

Comparison to HRU and IF Models

• HRU Models

– Policies describe rules that control subjects accessing
objects

– Analysis goal: right proliferation
– Covert channels analysis: only based on model

implementation

• IF Models

– Policies describe rules about legal information flows
– Analysis goals: indirect IFs, redundancy, inner consistency
– Covert channel analysis: same as HRU

14/17

Systemsicherheit

• NI Models

– Rules about mutual interference between domains
– Analysis goal: consistency of ≈NI and dom
– Implementation needs rigorous domain isolation (more

rigorous than MLS, e.g. object encryption is not sufficient!)
→ expensive

– State of the Art w.r.t. isolation completeness: VMs ¿ OS
domains (SELinux) ¿ Containers

Hybrid Models
Real-world Scenarios e.g. workflow modeling: IBAC plus RBAC plus IF
plus time... → Hybrid models by composing pure models

Chinese-Wall Policies Security policy family for consulting
companies

• Clients of any such company

– Companies, including their business data
– Often: mutual competitors

• Employees of consulting companies

– Are assigned to clients they consult (decided by
management)

– Work for many clients → gather insider information

• → Policy goal: No flow of (insider) information between
competing clients

Why look at specifically these policies?

• Modeling

– Composition of

∗ Discretionary IBAC components
∗ Mandatory ABAC components

– Driven by real-world demands: iterative refinements of a
model over time

∗ Brewer-Nash model [Brewer and Nash, 1989]
∗ Information flow model [Sandhu, 1992a]
∗ Attribute-based model [Sharifi and Tripunitara, 2013]

– Application areas: consulting, cloud computing

The Brewer-Nash Model Specialized model: Explicitly
tailored towards Chinese Wall (CW) policies
Model Abstractions

• Consultants represented by subjects
• Client companies represented by objects, which comprise a

company’s business data
• Modeling of competition by conflict classes: two different clients

are competitors ⇔ their objects belong to the same class
• No information flow between competing objects → a

”wallßeparating any two objects from the same conflict class
• Additional ACM for refined management settings of access

permissions

Example

• Consultancy clients

– Banks: HSBC, Deutsche Bank, Citigroup
– Oil companies: Shell, Exxon Mobil/Esso

• Conflicts: business-crucial information flows between banks and
oil companies

Representation of Conflict Classes

• Client company data: object set O
• Competition: conflict relation C ⊆ O ×O : <o, o′> ∈ C ⇔ o and
o′ belong to competing companies (non-reflexive, symmetric,
generally not transitive)

• In terms of ABAC:object attribute attO : O → 2O, such that
attO(o) = {o′ ∈ O|<o, o′> ∈ C}.

Representation of a Consultant’s History

• Consultants: subject set S
• History relation H ⊆ S ×O : <s, o> ∈ H ⇔ s has previously

consulted o
• In terms of ABAC: subject attribute attS : S → 2O, such that
attS(s) = {o ∈ O|<s, o> ∈ H}.

¿ Brewer-Nash Security Model ¿ ¿ The Brewer-Nash model of the CW
policy is a det. automaton<S,O,Q, σ, δ, q0, R> where

• S and O are sets of subjects (consultants) and (company data)
objects,

• Q = M × 2C × 2H is the state space where

– M = {m|m : S ×O → 2R} is the set ofpossible ACMs,
– C ⊆ O ×O is the conflict relation: <o, o′> ∈ C ⇔ o and o′

are competitors,
– H ⊆ S ×O is the history relation: <s, o> ∈ H ⇔ s has

previously consulted o,

• σ = OP ×X is the input alphabet where

– OP = {read, write} is a set of operations,
– X = S ×O is the set of arguments of these operations,

• δ : Q× σ → Q is the state transition function,
• q0 ∈ Q is the initial state,
• R = {read, write} is the set of access rights.

At the time depicted:

• Conflict relation: C =
{<HSBC,DB>,<HSBC,Citi>,<DB,Citi>,<Shell, Esso>}

• History relation:
H = {<Ann,DB>,<Bob, Citi>,<Bob,Esso>}

Brewer-Nash STS
• Read (here: similar to HRU notation) commandread(s, o) ::=
ifread ∈ m(s, o) ∧ ∀<o′, o> ∈ C : <s, o′> 6∈ H then
H := H ∪ {<s, o>} fi

• Write commandwrite(s, o) ::= ifwrite ∈ m(s, o) ∧ ∀o′ ∈ O : o′ 6=
o⇒ <s, o′> 6∈ H then H := H ∪ {<s, o>} fi

Not shown: Discretionary policy portion → modifications in m to enable
fine-grained rights management.
Restrictiveness

• Write Command: s is allowed to write
o⇔ write ∈ m(s, o) ∧ ∀o′ ∈ O : o′ 6= o⇒ <s, o′> 6∈ H

• Why so restrictive? → No transitive information flow!

– → s must never have previously consulted any other client!
– ⇒ any consultant is stuck with her client on first read

access
– ⇒ not (yet) a professional model!

Brewer-Nash Model Instantiation of a Model

• Initial State q0

– m0: consultant assignments to clients, issued by
management

– C0: according to real-life competition
– H0 = ∅

¿ Secure State ¿
∀o, o′ ∈ O, s ∈ S : <s, o> ∈ Hq ∧<s, o′> ∈ Hq ⇒ <o, o′> 6∈ Cq ¿
Corollary:
∀o, o′ ∈ O, s ∈ S : <o, o′> ∈ Cq ∧<s, o> ∈ Hq ⇒ <s, o′> 6∈ Hq

¿ Secure Brewer-Nash Model ¿ Similar to ßecure BLP model”.
In the exercises: STS, transformation into pure HRU calculus, dynamic
subject and object sets.

Summary Brewer-Nash What’s remarkable with this model?

• Composes DAC and MAC components
• Simple model paradigms

– Sets (subjects, objects)
– ACM (DAC)
– Relations (company conflicts, consultants history)
– Simple ”readänd ”write”rule
– → easy to implement

• Analysis goals

– MAC: Model security
– DAC: safety properties

• Drawback: Restrictive write-rule

Professionalization

• Remember the difference: trusting humans (consultants) vs.
trusting software agents (subjects)

– Consultants are assumed to be trusted
– Systems (processes, sessions, etc.) may fail, e. g. due to a

malware attack

• → Write-rule applied not to humans, but to (shorter-lived)
software agents → mitigating malware effectiveness

• → Subject set S models consultant’s subjects (e. g. processes) in
a group model:

– All processes of one consultant form a group
– Group members

∗ have the same rights in m
∗ have individual histories
∗ are strictly isolated w.r.t. IF

• Solution approach: as we already know → model refinement!

The Least-Restrictive-CW Model Restrictiveness of
Brewer-Nash Model:

• If <oi, ok> ∈ C: no transitive information flow oi → oj → ok, i.e.
consultant(s) of oi must never write to any oj 6= oi

• This is actually more restrictive than necessary: oj → ok and
afterwards oi → oj would be fine! (no information can actually
flow from oi to ok)

• In other words: Criticality of an IF depends on existence of earlier
flows.

Idea LR-CW[Sharifi and Tripunitara, 2013]: Include time as a model
abstraction!
Approach:

• ∀s ∈ S, o ∈ O: remember, which information has flown to an
entity

• → subject-/object-specific history, ≈attributes (”lables”)

¿ LR-CW Model ¿ ¿ The Least-Restrictive model of the CW policy is a
deterministic automaton<S,O, F, ζ,Q, σ, δ, q0> where

• S and O are sets of subjects (consultants) and data objects,
• F is the set of client companies,
• ζ : O → F (ßeta”) is a function mapping each object to its

company,

• Q = 2C × 2H is the state space where

– C ⊆ F × F is the conflict relation: <f, f ′> ∈ C ⇔ f and f ′

are competitors,
– H = {Ze ⊆ F |e ∈ S ∪O} is the history set: f ∈ Ze ⇔ e

contains information about f(Ze is the ”history labelöf e),

• σ = OP ×X is the input alphabet where

15/17

Systemsicherheit

– OP = {read, write} is the set of operations,
– X = S ×O is the set of arguments of these operations,

• δ : Q× σ → Q is the state transition function,
• q0 ∈ Q is the initial state

• At the time depicted (before the first write):

– Client companies: F = {HSBC,DB,Citi, Shell, Esso}
– History set: H = {ZAnn, ZBob, Zo1, ..., Zo|O|} with history

labels
∗ ZAnn = {DB}
∗ ZBob = {Citi, Esso},
∗ Zoi = {ζ(oi)}, 1 ≤ i ≤ |O|.

Inside the STS

• a reading operation

– requires that no conflicting information is accumulated in
the subject potentially increases the amount of information
in the subject

– command read(s,o) ::= if ∀f, f ′ ∈ Zs ∪ Zo : <f, f ′> 6∈ C
then Zs := Zs ∪ Zo fi

• a writing operation

– requires that no conflicting information is accumulated in
the object potentially increases the amount of information
in the object

– command write(s,o) ::= if ∀f, f ′ ∈ Zs ∪ Zo : <f, f ′> 6∈ C
then Zo := Zo ∪ Zs fi

Model Achievements

• Applicability: more writes allowed in comparison to Brewer-Nash
(note that this still complies with the general CW policy)

• Paid for with

– Need to store individual attributes of all entities (their
history labels Ze)

– Dependency of write permissions on earlier actions of other
subjects

• More extensions:

– Operations to modify conflict relation
– Operations to create/destroy entities

An MLS Model for Chinese-Wall Policies Problems

• Modeling of conflict relation
• Modeling of consultants history

Conflict relation is

• non-reflexive: no company is a competitor of itself
• symmetric: competition is always mutual
• not necessarily transitive: any company might belong to more

than one conflict class ⇒ if a competes with b and b competes
with c, then a and c might still be in different conflict classes (=
no competitors) → Cannot be modeled by a lattice!

Reminder:In a lattice<C,≤ >,≤ is a partial order: 1. reflexive
(∀a ∈ C : a ≤ a) 2. anti-symmetric (∀a, b ∈ C : a ≤ b ∧ b ≤ a⇒ a = b) 3.
transitive (a, b, c ∈ C : a ≤ b ∧ b ≤ c⇒ a ≤ c)
MLS-CW Example:

• Two conflict classes:
• Resulting valid information flows:
• Problem: How to express this more directly, by allowed

information flows rather than (forbidden) conflicts?

Idea: Labeling of entities

• Class of an entity (subject or object) reflects information it carries
• Consultant reclassified whenever a company data object is read
• → Classes and labels:
• Class set of a lattice C = {DB,Citi, Shell, Esso}
• Entity label: vector of information already present in each

business branch (formerly known as conflict classin Brewer-Nash!)
• In our example, a vector consists of 2 elements ∈ C; resulting in

labels such as:

– [ε, ε] (exclusively for infC)
– [DB, ε] (for DB-objects or -consultants)
– [DB,Shell] (for subjects or objects containing information

from both DB and Shell)
– [Esso, Shell] (illegal label!)
– ...

Summary CW Why is the ”Chinese Wall”policy interesting?

• One policy, multiple models:

– The Brewer-Nash model demonstrates hybrid
DAC-/MAC-/IFC-approach

– The Least-Restrictive CW model demonstrates a more
practical professionalization

– The MLS-CW model demonstrates applicability of
lattice-based IF modeling → semantically cleaner approach

• Applications: Far beyond traditional consulting scenarios...→
current problems in cloud computing!

Summary
Security Models

• Formalize informal security policies for the sake of

– objectification by unambiguous calculi
– explanation and (possibly) proof of security properties (e.g.

HRU safety, BLP security, NI security) by formal analysis
techniques

– foundation for correct implementations

• Are composed of simple building blocks

– E.g. ACMs, sets, relations, functions, lattices, state
machines

– ... that are combined and interrelated to form more
complex models

– → (D)RBAC, (D)ABAC, BLP, Brewer-Nash, LR-CW,
MLS-CW

Remember: Goals of Security Models

• Unambiguous policy formalization to 1. reason about policy
correctness 2. correctly implement a policy

Practical Security Engineering
Problem: Off-the-shelf models not always a perfect match for real-world
scenarios
Goal: Design of new, application-specific models

• Identify common components found in many models → generic
model core

• Core specialization
• Core extension
• Glue between model components

Model Engineering
Model Family
What we have
In Formal Words ...

• HRU: <Q,
∑
, δ, q0, R>

• DRBAC0 : <Q,
∑
, δ, q0, R, P, PA>

• DABAC: <A,Q,
∑
, δ, q0>

• TAM: <Q,
∑
, δ, q0, T, R>

• BLP: <S,O,L,Q,
∑
, δ, q0, R>

• NI: <Q,
∑
, δ, λ, q0, D,A, dom,=NI , Out>

Core Model (Common Model Core)

• HRU: <Q,
∑
, δ, q0, 6 R>

• DRBAC0 : <Q,
∑
, δ, q0, 6 R, 6 P, 6 PA>

• DABAC: < 6 A,Q,
∑
, δ, q0>

• TAM: <Q,
∑
, δ, q0, 6 T, 6 R>

• BLP: < 6 S, 6 O, 6 L,Q,
∑
, δ, q0, 6 R>

• NI: <Q,
∑
, δ, 6 λ, q0, 6 D, 6 A, 6 dom, 6=NI , 6 Out>

• → <Q,
∑
, δ, q0>

Core Specialization

• HRU: <Q,
∑
, δ, q0, R>⇒ Q = 2S × 2O ×M

• DRBAC0 :
<Q,

∑
, δ, q0, R, P, PA>⇒ Q = 2U×2UA×2S×USER×ROLES

• DABAC: <A,Q,
∑
, δ, q0>⇒ Q = 2S × 2O ×M × ATT

• TAM: <Q,
∑
, δ, q0, T, R>⇒ Q = 2S × 2O × TY PE ×M

• BLP: <S,O,L,Q,
∑
, δ, q0, R>⇒ Q = M × CL

• NI: <Q,
∑
, δ, λ, q0, D,A, dom,=NI , Out>

Core Extensions

• HRU: <Q,
∑
, δ, q0, R>⇒ R

• DRBAC0 : <Q,
∑
, δ, q0, R, P, PA>⇒ R,P, PA

• DABAC: <A,Q,
∑
, δ, q0>⇒ A

• TAM: <Q,
∑
, δ, q0, T, R>⇒ T,R

• BLP: <S,O,L,Q,
∑
, δ, q0, R>⇒ S,O,L,R

• NI:
<Q,

∑
, δ, λ, q0, D,A, dom,=NI , Out>⇒ λ,D,A, dom,=NI , Out

• → R,P, PA,A, T, S,O, L,D, dom,=NI , ...

Glue

• E.g. TAM: State transition scheme (types)
• E.g. DABAC: State transition scheme (matrix and predicates)
• E.g. Brewer/Nash Chinese Wall model: ”∧”(simple, because
H + C 6= m)

• E.g. BLP

– BLP read rule
– BLP write rule
– BST
– (much more complex, because rules restrict m by L and cl)

→ Model Engineering Principles

• Core model
• Core specialization, e.g.

– Q = 2S × 2O ×M (HRU)
– Q = M × CL (BLP)

• Core extension, e.g.

– e.g. L (BLP)
– T (TAM)
– D, dom,=NI (NI)

• Component glue, e.g.

– Chinese Wall: DAC ”∧”MAC in AS
– BLP: complex relation between ACM and lattice
– → BLP security, BLP BST

You should have mastered now: A basic tool set for model-based security
policy engineering

• A stock of basic security model abstractions

16/17

Systemsicherheit

– ACFs and ACMs
– Model states and transitions defined by an STS
– Attributes (roles, confidentiality classes, information

contents, location, ...)
– Information flows

• A stock of formal model building blocks

– Sets, functions, relations
– Deterministic automatons
– Graphs and lattices

• A stock of standard, off-the-shelf security models
• Methods and techniques

– for model-based proof of policy properties properties
– for combining basic model building blocks into new,

application-oriented security models

Model Specification
Policy Implementation

• We want: A system controlled by a security policy
• We have: A (satisfying) formal model of this policy

To Do

• How to convert a formal model into an executable policy?

– → Policy specification languages

• How to enforce an executable policy in a system?

– → security mechanisms and architectures (Chapters 5 and
6)

Role of Specification Languages: Same as in software engineering

• To bridge the gap between

– Abstractions of security models (sets, relations, ...)
– Abstractions of implementation platforms (security

mechanisms such as ACLs, krypto-algorithms, Security
Server ...)

• Foundation for

– Code verification
– Or even more convenient: Automated code generation

Approach

• Abstraction level:

– Step stone between model and security mechanisms
– → More concrete than models
– → More abstract than programming languages (“what”

instead of “how“)

• Expressive power:

– Domain-specific; for representing security models only
– → Necessary: adequate language paradigms
– → Sufficient: not more than necessary (no dead weight)

Domains

• Model domain

– e.g. AC models (TAM, RBAC, ABAC)
– e.g. IF models (MLS)
– e.g. NI models

• Implementation domain

– OS
– Middleware
– Applications

Model Specification
CorPS
SELinux Policy Language

Summary

Security Mechanisms
Authorization
Access Control Lists
Capability Lists

Interceptors

Summary

Cryptographic Mechanisms
Encryption

Symmetric

Asymmetric
Cryptographic Hashing

Digital Signatures

Cryptographic Attacks

Identification and Authentication
Passwords
Biometrics
Cryptographic Protocols

SmartCards
Authentication Protocols
Summary

Security Architectures
Design Principles
Operating Systems Architectures
Nizza
SELinux
Distributed Systems Architectures
CORBA
Web Services
Kerberos
Summary

17/17

	Introduction
	Security Goals
	Message

	Security Engineering
	Lecture Roadmap

	Security Requirements
	Motivation
	Vulnerability Analysis
	Human Vulnerabilities
	Organizational Vulnerabilities
	Technical Vulnerabilities
	Summary

	Threat Analysis
	Attack Objectives and Attackers
	Attack Methods
	Damage Potential
	Summary

	Risk Analysis
	Examples
	Risk Classification
	Risk Matrix

	Security Policies and Models
	Security Policies
	Terminology
	Implementation Alternative A
	Implementation Alternative B

	Security Models
	Access Control Models
	Information Flow Models
	Non-interference Models
	Hybrid Models

	Summary

	Practical Security Engineering
	Model Engineering
	Model Family

	Model Specification
	Model Specification
	CorPS
	SELinux Policy Language

	Summary

	Security Mechanisms
	Authorization
	Access Control Lists
	Capability Lists
	Interceptors
	Summary

	Cryptographic Mechanisms
	Encryption
	Cryptographic Hashing
	Digital Signatures
	Cryptographic Attacks

	Identification and Authentication
	Passwords
	Biometrics
	Cryptographic Protocols

	Summary

	Security Architectures
	Design Principles
	Operating Systems Architectures
	Nizza
	SELinux

	Distributed Systems Architectures
	CORBA
	Web Services
	Kerberos

	Summary

