Disclaimer

Aufgaben aus dieser Vorlage stammen aus der Vorlesung Algorithmen, Sprachen und Komplexität und wurden zu Übungszwecken verändert oder anders formuliert! Für die Korrektheit der Lösungen wird keine Gewähr gegeben.

- 1. Definitionen der Automatentheorie. Vervollständige die folgenden Definitionen:
 - (a) Eine Regel $(l \to r)$ einer Grammatik $G = (V, \sum, P, S)$ heißt rechtslinear, falls ...

Solution: immer das an der am weitesten rechts stehende Nicht-Terminal in ein Terminal umgewandelt wird. Dazu muss $l \in V$ und $r \in \sum V \cup \epsilon$.

(b) Die Menge $Reg(\sum)$ der regulären Ausdrücke über dem Alphabet ist...

Solution: ist die kleinste Menge mit folgenden Eigenschaften:

- $\varnothing \in Reg(\Sigma), \lambda \in Reg(\Sigma), \Sigma \subseteq Reg(\Sigma)$
- Wenn $\alpha, \beta \in Reg(\sum)$, dann auch $(\alpha * \beta), (\alpha + \beta), (\alpha^*) \in Reg(\sum)$
- (c) Ein NFA ist ein Tupel M = (...)

Solution: ein nichtdeterministischer endlicher Automat M ist ein 5-Tupel $M=(Z,\sum,S,\delta,E)$ mit

- $\bullet \;\; Z$ ist eine endliche Menge von Zuständen
- \sum ist das Eingabealphabet
- $S \subseteq Z$ die Menge der Startzustände (können mehrere sein)
- $\delta: Z \times \sum \to P(Z)$ ist die (Menge der) Überführungs/Übergangsfunktion
- $\bullet \ E \subseteq Z$ die Menge der Endzustände
- (d) Die von einem NFA $M=(Z,\sum,S,\delta,E)$ akzeptierte Sprache ist L(M)=... (ohne Definition der Mehr-Schritt Übergangsfunktion δ)

Solution: $L(M) = w \in \sum^* |\hat{\delta}(S, w) \cap E \neq \emptyset$

(Das Wort wird akzeptiert wenn es mindestens einen Pfad vom Anfangs in den Endzustand gibt)

(e) Die von einem PDA $M=(Z, \sum, \Gamma, \delta, z_0, \#)$ akzeptierten Sprache ist L(M)=...

Solution: $L(M) = \{x \in \sum^* | \text{ es gibt } z \in Z \text{ mit } (z_0, x, \#)[...]^*(z, \epsilon, \epsilon)\}$

(f) Sei L eine Sprache. Für $x,y\in\sum^*$ gilt xR_Ly genau dann, wenn ... $(R_L$ ist die Myhill-Nerode-Äquivalenz zu L)

Solution: wenn $\forall z \in \sum^* : (xy \in L \leftrightarrow yz \in L)$ gilt

(g) Sei $M=(Z, \sum, z_0, \delta, E)$ ein DFA. Die Zustände $z, z' \in Z$ heißen erkennungsäquivalent, wenn

Solution: Zwei Zustände $z, z' \in Z$ heißen erkennungsäquivalent $(z \equiv z')$ wenn für jedes Wort $w \in \sum^*$ gilt: $\hat{\sigma}(z, w) \in E \leftrightarrow \hat{\sigma}(z', w) \in E$.

- 2. Sätze und Lemmas aus der Automatentheorie. Vervollständige die folgenden Aussagen:
 - (a) Sei $L \supseteq \sum^*$ eine Sprache. Dann sind äquivalent: 1) L ist regulär (d.h. wird von einem DFA akzeptiert), 2)..., 3)...

Solution:

- 1. L ist regulär (d.h. von einem DFA akzeptiert)
- 2. L wird von einem NFA akzeptiert
- 3. L ist rechtslinear (d.h. von einer Typ-3 Grammatik erzeugt)
- (b) Die Klasse der regulären Sprachen ist unter anderem abgeschlossen unter folgenden drei Operationen:

Solution:

- Vereinigung $L = L_0 \cup L_1$
- Verkettung $L = L_0 L_1$
- Abschluss $L = L_0^*$

(c) Sei \sum ein Alphabet. Die Anzahl der Grammatiken über \sum ist ... und die Anzahl der Sprachen über \sum ist

Solution:

(d) Unter anderem sind folgende (mind. drei) Probleme für kontextfreie Sprachen entscheidbar:

Solution:

(e) Die Klasse der Kontextfreien Sprachen ist abgeschlossen unter den Operationen 1)... und 2)... . Sie ist aber nicht abgeschlossen unter 3)... und 4)... .

Solution:

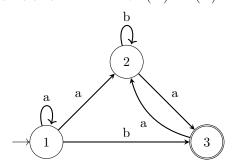
(f) Der Satz von Myhill-Nerode besagt,...

Solution: Sei L eine Sprache. L ist regulär $\leftrightarrow index(R_L) < \infty$ (d.h. nur wenn die Myhill-Nerode-Äquivalenz endliche Klassen hat).

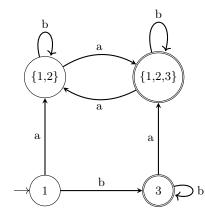
(g) Das Pumping-Lemma für kontextfreie Sprachen ...

Solution: Man versucht auszunutzen, daß eine kontextfreie Sprache von einer Grammatik mit endlich vielen Nichtterminalen erzeugt werden muss. Das bedeutet auch: wenn ein Ableitungsbaum ausreichend tief ist, so gibt es einen Ast, der ein Nichtterminal mehrfach enthält. Die durch diese zwei Vorkommen bestimmten Teilbäume werden "gepumpt". Wenn L eine kontextfreie Sprache ist, dann gibt es n >= 1 derart, dass für alle z in L mit |z| >= n gilt: es gibt Wörter u, v, w, x, y in SUM mit

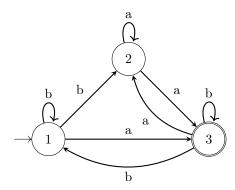
- 1. z = uvwxy,
- 2. |vwx| <= n,
- 3. |vx| >= 1 und
- 4. $uv^iwx^iy \in L$ für alle i >= 0
- 3. Konstruktionen der Automatentheorie
 - (a) Betrachte den folgenden NFA X. Berechne einen DFA Y mit L(X) = L(Y).

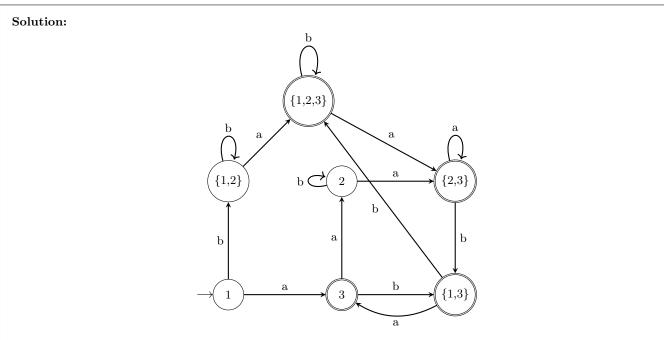


Solution:

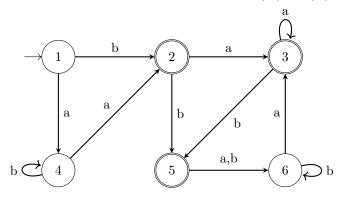


(b) Betrachte den folgenden NFA X. Berechne einen DFA Y mit L(X) = L(Y).





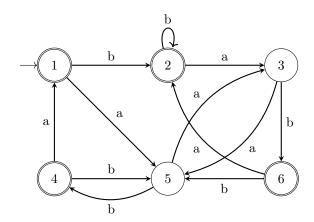
(c) Betrachte den folgenden DFA X. Berechne den minimalen DFA Y mit L(X) = L(Y).



Solution: * erster Schritt: Paare mit mind. einem Endzustand markieren, (*) zweiter Schritt: leere Paare die in Endzustandspaar überführen markieren, dritter Schritt: unmarkierte Paare verschmelzen

Keine unmarkierten Paare \rightarrow nicht minimierbar bzw
 schon minimal

(d) Betrachte den folgenden DFA X. Berechne den minimalen DFA Y mit L(X) = L(Y).



4. Algorithmen für reguläre Sprachen. Sei $\sum = \{a, b, c\}$. Gebe einen Algorithmus an, der bei Eingabe eines NFA X entscheidet, ob alle Wörter $\omega \in L(X)$ ungerade Länge besitzen und abc als Infix enthalten.

Solution:

- 5. Kontextfreie Sprachen: Sei $\sum = \{a, b, c\}$. Betrachte die Sprache $K = \{a^k b^l c^m | k \leq l \text{ oder } k \leq m\}$.
 - (a) Zeige, dass K eine kontextfreie Sprache ist.

Solution:

(b) Zeige, dass $L = \sum^* \backslash K$ (Komplement von L) nicht kontextfrei ist.

Solution:

(c) Begründe warum K deterministisch kontextfrei ist oder warum nicht.

Solution:

- 6. Kontextfreie Grammatiken: Sei $\sum = \{a,b,c,\}$
 - (a) Sei G die kontextfreie Grammatik mit Startsymbol S und der Regelmenge $S \to AB, A \to aBS|a$ und $B \to bBa|b|\epsilon$. Überführe G in eine äquivalente Grammatik in Chomsky Normalform.

Solution: Chomsky Normalform hat auf rechter Ableitungsseite nur ein Terminal oder zwei Nicht-Terminale

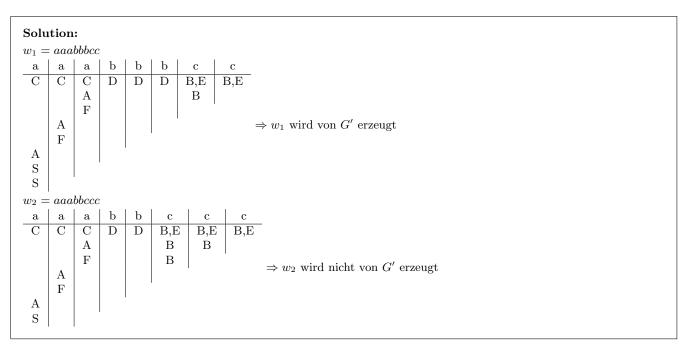
1. Startzustand

 $S \to AB,\, A \to aBS|a,\, B \to bBa|b|\epsilon$

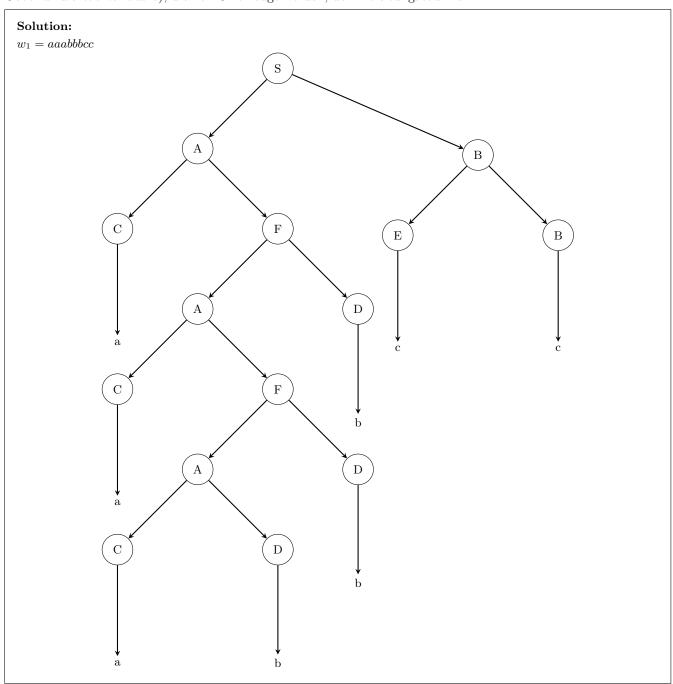
- 2. ϵ -Regel: Menge $M=\{B\}$ der epsilon Terminal-Überführungen kompensieren; $S\to AB|A,\,A\to aBS|a|aS,\,B\to bBa|b|ba$
- 3. Kettenregel: Menge $M = \{(S,A), (S,S), (A,A), (B,B)\}$ von Ketten (Ableitungen auf ein Nicht-Terminal) $S \to AB|aBS|a|aS, A \to aBS|a|aS, B \to bBa|b|ba$
- 4. Terminale und Nicht-Terminal trennen: $S \to AB|CBS|C|CS, A \to CBS|C|CS, B \to DBC|b|DC, C \to a, D \to b$
- 5. Längen verkürzen: $S \to AB|CX|C|CS$, $A \to CX|C|CS$, $B \to DY|b|DC$, $C \to a$, $D \to b$, $X \to BS$, $Y \to BC$
- (b) Sei G' die kontextfreie Grammatik mit Startsymbol S und der Regelmenge

 $S \to AB, A \to CD|CF, F \to AD, B \to c|EB, C \to a, D \to b, E \to c$

Entscheide mit dem CYK-Algorithmus, ob die Wörter $w_1 = aaabbbcc$ oder $w_2 = aaabbccc$ von G' erzeugt werden.



(c) Gebe für die Wörter aus b), die von G^\prime erzeugt werden, den Ableitungsbaum an.



- 7. Definitionen der Berechnbarkeitstheorie. Verfollständige die Definitionen
 - (a) Ein While Programm ist von der Form...

Solution:

- $x_i = c, x_i = x_j + c, x_i = x_j c$ mit $c \in \{0, 1\}$ und $i, j \ge 1$ (Wertzuweisung) oder
- P_1, P_2 , wobei P_1 und P_2 bereits While Programme sind (sequentielle Komposition) oder
- while $x_i \neq 0$ do P end, wobei P ein While Programm ist und $i \geq 1$.
- (b) Ein Loop-Programm ist von der Form

Solution:

- $x_i := c, x_i := x_j + c, x_i := x_j \div c \text{ mit } c \in \{0,1\} \text{ und } i,j \text{ (Wertzuweisung) oder}$
- $P_1; P_2$, wobei P_1 und P_2 Loop-Programme sind (sequentielle Komposition) oder
- loop x_i do P end, wobei P ein Loop-Programm ist und i_1 .
- (c) Eine Turingmaschine ist ein 7-Tupel $M = (Z, \sum, \Gamma, \delta, z_0, \square, E)$, wobei...

Solution:

- 7-Tupel $M = (Z, \sum, \Phi, \delta, z_o, \Box, E)$
- $\bullet~\sum$ das Eingabealphabet
- Φ mit $\Phi \supseteq \sum$ und $\Phi \cap Z \neq 0$ das Arbeits- oder Bandalphabet,
- $z_0 \in Z$ der Startzustand,
- $\delta: Z \times \Phi \to (Z \times \Phi \times \{L, N, R\})$ die Überführungsfunktion
- $\square \in \Phi / \sum$ das Leerzeichen oder Blank und
- $E \subseteq Z$ die Menge der Endzustände ist
- (d) Die von einer Turingmaschine M akzeptierte Sprache ist L(M) = ...

Solution: $L(M) = \{ w \in \sum^* | \text{es gibt akzeptierte Haltekonfiguration mit } z_0 w \square \vdash_M^* k \}.$

(e) Seien $A\subseteq \sum^*$ und B⊆ $\Gamma^*.$ Eine Reduktion von A auf B ist ...

Solution: Eine Reduktion von A auf B ist eine totale und berechenbare Funktion $f: \sum^* \to \Gamma^*$, so dass für alle $w \in \sum^*$ gilt: $w \in A \leftrightarrow f(x) \in B$. A heißt auf B reduzierbar (in Zeichen $A \leq B$), falls es eine Reduktion von A auf B gibt.

(f) Eine Sprache L heißt rekursiv aufzählbar, falls ...

Solution:

- L ist semi-entscheidbar
- L wird von einer Turing-Maschine akzeptiert
- L ist vom Typ 0 (d.h. von Grammatik erzeugt)
- L ist Bild berechenbarer partiellen Funktion $\sum^* \to \sum^*$
- L ist Bild berechenbarer totalen Funktion $\sum^* \to \sum^*$
- L ist Definitionsbereich einer berechenbaren partiellen Funktion $\sum^* \to \sum^*$
- (g) Sei $f:N\to N$ eine monotone Funktion. Die Klasse TIME(f) besteht aus allen Sprachen L, für die es eine Turingmaschine M gibt mit ...

Solution:

- M berechnet die charakteristische Funktion von L.
- Für jede Eingabe $w \in \sum^*$ erreicht M von der Startkonfiguration $z_0w\square$ aus nach höchstens f(|w|) Rechenschritten eine akzeptierende Haltekonfiguration (und gibt 0 oder 1 aus, je nachdem ob $w \notin L$ oder $w \in L$ gilt).
- 8. Sätze der Berechnbarkeitstheorie: Vervollständige die folgenden Aussagen
 - (a) Zu jeder Mehrband-Turingmaschine M gibt es ...

Solution: eine Turingmaschine M' die diesselbe Funktion löst

- Simulation mittels Einband-Turingmaschine durch Erweiterung des Alphabets: Wir fassen die übereinanderliegenden Bandeinträge zu einem Feld zusammen und markieren die Kopfpositionen auf jedem Band durch *.
- Alphabetsymbol der Form $(a, *, b, \diamond, c, *, ...) \in (\Phi \times \{*, \diamond\})^k$ bedeutet: 1. und 3. Kopf anwesend (* Kopf anwesend, \diamond Kopf nicht anwesend)
- (b) Sei $f: N^k \to \mathbb{N}$ eine Funktion für ein $k \in \mathbb{N}$. Die folgenden Aussagen sind äquivalent: 1) f ist Turing-berechenbar, 2)..., 3)..., 4)...

Solution:

(c) Sei $L \subseteq \sum^*$ eine Sprache. Sind L und $\sum^* \backslash L$ semi-entscheidbar, dann...

Solution:

(d) Der Satz von Rice lautet...

Solution: dass es unmöglich ist, eine beliebige nicht-triviale Eigenschaft der erzeugten Funktion einer Turing-Maschine (oder eines Algorithmus in einem anderen Berechenbarkeitsmodell) algorithmisch zu entscheiden.

Es sei \mathcal{P} die Menge aller partiellen Turing-berechenbaren Funktionen und $\mathcal{S} \subsetneq \mathcal{P}$ eine nicht-leere, echte Teilmenge davon. Außerdem sei eine effektive Nummerierung vorausgesetzt, die einer natürlichen Zahl $n \in \mathbb{N}$ die dadurch codierte Turing-Maschine M_n zuordnet. Dann ist die Menge $\mathcal{C}(\mathcal{S}) = \{n \mid \text{die von } M_n \text{ berechnete Funktion liegt in } \mathcal{S} \}$ nicht entscheidbar. "Sei U eine nicht-triviale Eigenschaft der partiellen berechenbaren Funktionen, dann ist die Sprache $L_U = \{ < M > | \}$

9. Berechnungsmodelle

(a) Gebe ein Loop-Programm an, das die Funktion $n \to n^2 - n$ berechnet

M berechnet $f \in U$ } nicht entscheidbar."

```
Solution:
    h= 1
    for (i= 0; i < 2; i++) do {
        h= h * n
    }
    h= h - 1;
    return h</pre>
```

(b) Gebe ein Loop Programm an, das die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n_1, n_2) = 2n_1n_2$ berechnet. Verwende nur elementare Anweisungen und keine Abkürzungen.

```
Solution:
    h= 1
    for (i=0; i < 2; i++) do {
        h = h * n_i
    }
    h = 2 * h
    return h</pre>
```

(c) Gebe ein GoTo Programm an, das die Funktion $g: \mathbb{N} \to \mathbb{N}$ mit $g(n_1, n_2) = |n_1 - n_2|$ berechnet. Verwende nur elementare Anweisungen und keine Abkürzungen.

(d) Gebe eine deterministische Turingmaschine M für das Eingabealphabet $\{0,1\}$ an, das folgende Funktion berechnet: Für Eingabe $a_1a_2...a_{n-1}a_n$ berechnet M die Ausgabe $a_na_1...a_{n-1}$ (letzte Symbol der Eingabe an erste Stelle).

```
Solution: \sum = \{0, 1\}

z_0 Zahlenende finden: \delta(z_0, 0) = (z_0, 0, R), \delta(z_0, 1) = (z_0, 1, R), \delta(z_0, \square) = (z_1, \square, L)

z_1 letzte Zahl löschen: \delta(z_1, 0) = (z_2, \square, L), \delta(z_1, 1) = (z_3, \square, L), \delta(z_1, \square) = (z_2, \square, N)

z_2 zurück zum Anfang bei a_n = 0: \delta(z_2, 0) = (z_2, 0, L), \delta(z_2, 1) = (z_2, 1, L), \delta(z_2, \square) = (z_4, \square, R)

z_3 zurück zum Anfang bei a_n = 1: \delta(z_2, 0) = (z_2, 0, L), \delta(z_2, 1) = (z_2, 1, L), \delta(z_2, \square) = (z_5, \square, N)

z_4 a_n = 0 an Anfang schreiben: \delta(z_4, \square) = (z_e, 0, N)

z_5 a_n = 1 an Anfang schreiben: \delta(z_4, \square) = (z_e, 1, N)

z_e Endzustand: \delta(z_e, 0) = (z_e, 0, N), \delta(z_e, 1) = (z_e, 1, N), \delta(z_e, \square)?(z_e, \square, N)
```

- 10. Reduktionen
 - (a) Seien $A, L \subseteq \sum^*$ nichtleere Sprachen und A entscheidbar. Gebe eine Reduktion von $L \cup A$ auf L an.

Solution:

(b) Gebe eine Bedingung für A an, sodass $L \cup A \leq_p L$ für alle nichtleeren Sprachen $L \subseteq \sum^*$ gilt. Begründe.

Solution:

- 11. Komplexitätsklassen. Ergänze zu den Paaren von Komplexitätsklassen das Relationssymbol zur Teilmengenbeziehung.
 - (a) EXPSPACE ? EXPTIME

Solution: $EXPSPACE \ge EXPTIME$

(b) NP?P

Solution: $NP \ge P$

(c) NP ? NPSPACE

Solution: $NP \leq NPSPACE$

(d) NPSPACE ? PSPACE

Solution: NPSPACE = PSPACE

12. Unentscheidbare Probleme: Gebe (mind vier) unterscheidbare Probleme an (als Menge oder als Eingabe-Frage-Paar).

Solution:

das spezielle Halteproblem

das allgemeine Halteproblem

das Halteproblem auf leerem Band

das allgemeine Wortproblem $A = \{(G,w)| \text{ G ist Grammatik mit } w \in L(G)\}$

Posts Korrespondenzproblem

das Schnitt- und verwandte Probleme über kontextfreie Sprachen

13. NP-vollständiges Problem: Gebe (mind. zwei) NP-vollständige Probleme an (als Menge oder Eingabe-Frage-Paar).

Solution:

Hamilton Kreis

- Eingabe: Graph(V,E)
- Frage: Kann der Graph so durchlaufen werden, dass jeder Knoten genau ein mal besucht/abgelaufen wird?
- 14. Polynomialzeitreduktion: Betrachte das Problem 4C, also die Menge der ungerichteten Graphen die sich mit vier Farben färben lassen.
 - (a) Gebe eine Polynomialzeitreduktion von 3C auf 4C an.

C_{-1}	lutions	

(b) Zeige, dass wenn $4C \in P,$ dann gilt P = NP.

Solution: