
Systemsicherheit

Goal of IT Security Reduction of Operational Risks of IT Systems

• Reliability & Correctness
• Real Time & Scalability
• Openness
• Conditio sine qua non: Provability of information properties
• non-repudiability (”nicht-abstreitbar”)

Specific Security Goals (Terms)

• Confidentiality the property of information to be available only
to anauthorized user group

• Integrity the property of information to be protected against
unauthorized modification

• Availability the property of information to be available in an
reasonable time frame

• Authenticity the property to be able to identify the author of
an information

• Non-repudiability the combination of integrity and authenticity
• Safety To protect environment against hazards caused by system

failures

– Technical failures: power failure, ageing, dirt
– Human errors: stupidity, lacking education, carelessness
– Force majeure: fire, lightning, earth quakes

• Security To protect IT systems against hazards caused by
malicious attacks

– Industrial espionage, fraud, blackmailing
– Terrorism, vandalism

Security Goals in Practice

• ... are diverse and complex to achieve
• ... require multiple stakeholders to cooperate
• ... involve cross-domain expertise

Security Engineering

• Is a methodology that tries to tackle this complexity.
• Goal: Engineering IT systems that are secure by design.
• Approach: Stepwise increase of guarantees

Steps in Security Engineering

Security Requirements
Goal of Requirements Engineering: Methodology for identifying and
specifying the desired security properties of an IT system.
Result:

• Security requirements, which define what security properties a
system should have.

• These again are the basis of a security policy: Defines how these
properties are achieved

Influencing Factors

• Codes and acts (depending on applicable law)

– EU General Data Protection Regulation (GDPR)
– US Sarbanes-Oxley Act (SarbOx)

• Contracts with customers
• Certification

– For information security management systems (ISO 27001)
– Subject to German Digital Signature Act (Signaturgesetz)

• Criteria
• Company-specific guidelines and regulations

– Access to critical data
– Permission assignment

• Company-specific infrastructure and technical requirements

– System architecture
– Application systems (OSs, Database Information Systems)

General Methodology: How to Come up with Security Requirements
Specialized steps in regular software requirements engineering:

1. Identify and classifyvulnerabilities.
2. Identify and classifythreats.
3. Match both, where relevant, to yieldrisks.
4. Analyze and decide which risks should bedealt with.

→ Fine-grained Security Requirements

Vulnerability Analysis
Goal: Identification of

• technical
• organizational
• human

vulnerabilities of IT systems.

Vulnerability Feature of hardware and software constituting, an organi-
zation running, or a human operating an IT system, which is a necessary
precondition for any attack in that system, with the goal to compromise
one of its security properties. Set of all vulnerabilities = a system’sattack
surface.

Human Vulnerabilities
• Laziness

– Passwords on Post-It
– Fast-clicking exercise: Windows UAC pop-up boxes

• Social Engineering

– Pressure from your boss
– A favor for your friend
– Blackmailing: The poisoned daughter, ...

• Lack of knowledge

– Importing and executing malware
– Indirect, hidden information flowin access control systems

Social Engineering Influencing people into acting against their own in-
terest or the interest of an organisation is often a simpler solution than
resorting to malware or hacking.

Indirect Information Flow in Access Control Systems

Security Requirement No internal information about a project, which
is not approved by the project manager, should ever go into the product
flyer.

Forbidden Information Flow Internal information about ProjectX goes
into the product flyer!

Problem Analysis:

• Limited knowledge of users

– limited horizon: knowledge about the rest of a system
– limited problem awareness: see ”lack of knowledge”
– limited skills

• Problem complexity → effects of individual permission
assignments by users to system-wide security properties

• Limited configuration options and granularity: archaic and inapt
security mechanisms in system and application software

– no isolation of non-trusted software
– no enforcement of global security policies

• → Effectiveness of discretionary access control (DAC)

Organizational Vulnerabilities

• Access to rooms (servers!)
• Assignment of permission on organizational level, e. g.

– 4-eyes principle
– need-to-know principle
– definition of roles and hierarchies

• Management of cryptographic keys

Technical Vulnerabilities
The Problem: Complexity of IT Systems

• ... will in foreseeable time not be
• Completely, consistently, unambiguously, correctly specified →

contain specification errors
• Correctly implemented → contain programming errors
• Re-designed on a daily basis → contain conceptual weaknesses

and vulnerabilities

1/12

Systemsicherheit

Buffer Overflow Attacks
Privileged software can be tricked into executing attacker’s code.
Approach: Cleverly forged parameters overwrite procedure activation
frames in memory

• → exploitation of missing length checks on input buffers
• → buffer overflow

What an Attacker Needs to Know

• Source code of the target program, obtained by disassembling
• Better: symbol table, as with an executable
• Even better: most precise knowledge about the compiler used

– how call conventions affect the stack layout
– degree to which stack layout is deterministic

Sketch of the Attack Approach (Observations during program execution)

• Stack grows towards the small addresses
• in each procedure frame: address of the next instruction to call

after the current procedure returns (ReturnIP)
• after storing the ReturnIP, compilers reserve stack space for local

variables → these occupy lower addresses

Result

• Attacker makes victim program overwrite runtime-critical parts of
its stack

– by counting up to the length of msg
– at the same time writing back over previously save runtime

information → ReturnIP

• After finish: victim program executes code at address of ReturnIP
(=address of a forged call to execute arbitrary programs)

• Additional parameter: file system location of a shell

Security Breach The attacker can remotely communicate, upload, dow-
nload, and execute anything- with cooperation of the OS, since all of this
runs with the original privileges of the victim program!

Summary - Vulnerabilities
• Human

– Laziness
– Social engineering
– Lack of knowledge (e.g. malware execution)

• Organizational

– Key management
– Physical access to rooms, hardware

• Technical

– Weak security paradigms
– Specification and implementation errors

Threat Analysis
Goal: Identification of

• Attack objectives and attackers
• Attack methods and practices (Tactics, Techniques)
• → know your enemy

Approach: Compilation of a threat catalog, content:

• identified attack objectives
• identified potential attackers
• identified attack methods & techniques
• damage potential of attacks

Attack Objectives and Attackers
• Economic Espionage and political power

– Victims: high tech industry
– Attackers:

∗ Competitors, governments, professional organizations
∗ Insiders
∗ regular, often privileged users of IT systems

– often indirect → social engineering
– statistical profile: age 30-40, executive function
– weapons: technical and organisational insider knowledge
– damage potential: Loss of control over critical knowledge →

loss of economical or political power

• Personal Profit

– Objective: becoming rich(er)
– Attackers: Competitors, Insiders
– damage potential: Economical damage (loss of profit)

• Wreak Havoc

– Objective: damaging or destroying things or lives,
blackmailing,...

– Attackers:
∗ Terrorists: motivated by faith and philosophy, paid by

organisations and governments
∗ Avengers: see insiders
∗ Psychos: all ages, all types, personality disorder
∗ → No regular access to IT systems, no insider

knowledge, but skills and tools.
– damage potential: Loss of critical infrastructures

• Meet a challenge (Hackers both good or evil)

Attack Methods
Exploitation of Vulnerabilities

Scenario 1: Insider Attack
• Social Engineering
• Exploitation of conceptual vulnerabilities (DAC)
• Professionally tailored malware

Scenario 2: Malware (a family heirloom ...)

• Trojan horses: Executable code with hidden functionality
• Viruses: Code for self-modification and self-duplication
• Logical bombs: Code that is activated by some event recognizable

from the host (e. g. time, date, temperature, ...).
• Backdoors: Code that is activated through undocumented

interfaces (mostly remote).
• Ransomware: Code for encrypting possibly all user data found on

the host, used for blackmailing the victims
• Worms and worm segments: Autonomous, self-duplicating

programs

Scenario 3: Outsider Attack
• Attack Method: Buffer Overflow
• Exploitation of implementation errors

Scenario 4: High-end Malware (Root Kits)

• Invisible, total, sustainable takeover of a complete IT system
• Method: Comprehensive tool kit for fully automated attacks

1. automatic analysis of technical vulnerabilities
2. automated attack execution
3. automated installation of backdoors
4. automated installation and activation of stealth

mechanisms

• Target: Attacks on all levels of the software stack:

– firmware & bootloader
– operating system (e. g. file system, network interface)
– system applications (e. g. file and process managers)
– user applications (e. g. web servers, email, office)

• tailored to specific software and software versions found there!

Root Kits
Step 1: Vulnerability Analysis

• Tools look for vulnerabilities in

– Active privileged services and demons (from inside a
network :nmap, from outside: by port scans)

– Configuration files → Discover weak passwords, open ports
– Operating systems → Discover kernel and system tool

versions with known implementation errors

• built-in knowledge base: automatable vulnerability database
• Result: System-specific collection of vulnerabilities → choice of

attack method and tools to execute

Step 2: Attack Execution

• Fabrication of tailored software to exploit vulnerabilities in

– Server processes or system tool processes (demons)
– OS kernel to execute code of attacker with root privileges

• This code

– First installs smoke-bombs for obscuring attack
– replaces original system software by pre-fabricated modules

servers, utilities, libraries, OS modules
– containing backdoors or smoke bombs for future attacks

• Results:

– Backdoors allow for high-privilege access in short time
– System modified with attacker’s servers, demons, utilities...
– Obfuscation of modifications and future access

Step 3: Attack Sustainability

• Backdoors for any further control & command in Servers, ...
• Modifications of utilities and OS to prevent

– Killing root kit processes and connections (kill,signal)
– Removal of root kit files (rm,unlink)

• Results: Unnoticed access for attacker anytime, highly privileged,
extremely fast, virtually unpreventable

Step 4: Stealth Mechanisms (Smoke Bombs)

• Clean logfiles (entries for root kit processes, network
connections), e.g. syslog,kern.log,user.log,daemon.log,auth.log, ...

• Modify system admin utilities

– Process management(hide running root kit processes)
– File system (hide root kit files)
– Network (hide active root kit connections)

• Substitute OS kernel modules and drivers (hide root kit processes,
files, network connections), e.g. /proc/...,stat,fstat,pstat

• Result:Processes, files and communication of root kit become
invisible

Risk and Damage Potential:

• Likeliness of success: extremely highin today’s commodity OSs
(High number of vulnerabilities, Speed, Refined methodology,
Fully automated)

• Fighting the dark arts: extremely difficult (Number and cause of
vulnerabilities, weak security mechanisms, Speed, Smoke bombs)

• Prospects for recovering the system after successful attack: near
zero

Countermeasures - Options:

• Reactive: even your OS might have become your enemy
• Preventive: Counter with same tools for vulnerability analysis
• Preventive: Write correct software

2/12

Systemsicherheit

Security Engineering
• New paradigms: policy-controlled systems → powerful software

platforms
• New provable guarantees: formal security models → reducing spe-

cification errors and faults by design
• New security architectures → limiting bad effects of implementa-

tion errors and faults

Risk Analysis
Identification and Classification of scenario-specific risks

• Risks ⊆ Vulnerabilities × Threats
• Correlation of vulnerabilities and threats → Risk catalogue
• Classification of risks → Complexity reduction
• → Risk matrix
• n Vulnerabilities, m Threats → x Risks
• Correlation of Vulnerabilities and Threats → Risk catalogue
n : m correlation

• max(n,m) << x ≤ nm → quite large risk catalogue!

Risk Classification: Qualitative risk matrix/dimensions

Assessment
Damage Potential Assessment

• Cloud computing → loss of confidence/reputation
• Industrial plant control → damage or destruction of facility
• Critical public infrastructure → interrupted services, possible

impact on public safety
• Traffic management → maximum credible accident

Occurrence Probability Assessment

• Cloud computing → depending on client data sensitivity
• Industrial plant control → depending on plant sensitivity
• Critical public infrastructure → depending on terroristic threat

level
• Traffic management → depending on terroristic threat level

Damage potential & Occurrence probability is highly scenario-
specific

Depends on diverse, mostly non-technical side conditions → advisory
board needed for assessment

Advisory Board Output Example
Object Risk (Loss of...) Dmg.

Pot.
Rationale

PD Confidentiality med Data protection acts
PD Confidentiality med Certified software
PD Integrity low Errors fast and easily detectable

and correctable
PD Integrity low Certified software, small incenti-

ve
PD Availability med Certified software
PD Availability low Failures up to one week can be

tolerated by manual procedures
TCD Confidentiality high Huge financial gain by competi-

tors
TCD Confidentiality high Loss of market leadership
TCD Integrity high Production downtime
TCD Integrity med Medium gain by competitors or

terroristic attackers
TCD Availability low Minimal production delay, since

backups are available
TCD Availability low Small gain by competitors or ter-

roristic attackers
PD = Personal Data; TCD = Technical Control Data

Resulting Risk Matrix Identify 3 Regions

Form Risks to Security Requirements

• avoid: Intolerable risk, no reasonable proportionality of costs and
benefits → Don’t implement such functionality!

• bear: Acceptable risk → Reduce economical damage (insurance)
• deal with: Risks that yield security requirements → Prevent or

control by system-enforced security policies.

Additional Criteria:

• Again, non-technical side conditions may apply:

– Expenses for human resources and IT
– Feasibility from organizational and technological viewpoints

• → Cost-benefit ratio:management and business experts involved

Security Policies and Models
• protect against collisions → Security Mechanisms
• → Competent & coordinated operation of mechanisms →

Security Policies
• → Effectiveness of mechanisms and enforcement of security

policies → Security Architecture

Security Policies: a preliminary Definition

• We have risks: Malware attack → violation of confidentiality and
integrity of patient’s medical records

• We infer security requirements: Valid information flows
• We design a security policy: Rules for controlling information

flows

Security Policy a set of rules designed to meet a set of security objectives

Security Objective a statement of intent to counter a given threat or to
enforce a given security policy

Policy representations:

• informal (natural language) text
• formal model
• functional software specification
• executable code

How to Implement Security Policies

• (A) Integrated in systems software (Operating, Database)
• (B) Integrated in application systems

Implementation Alternative A
The security policy is handled an OS abstractionon its own →

implemented inside the kernel
Policy Enforcement in SELinux

• Security Server Policy runtime environment
• Interceptors Total control of critical interactions
• Policy Compiler Translates human-readable policy modules in

kernel-readable binary modules
• Security Server Manages and evaluates these modules

Implementation Alternative B

• Application-embedded Policy The security policy is only
known and enforced by oneuser program → implemented in a
user-space application

• Application-level Security Architecture The security policy
is known and enforced by several collaborating user programs in
an application systems → implemented in a local, user-space
security architecture

• Policy Server Embedded in Middleware The security policy
is communicated and enforced by several collaborating user
programs in a distributed application systems → implemented in
a distributed, user-space security architecture

Security Models

Goal of Formal Security Models

• Complete, unambiguous representation of security policies for
• analyzing and explaining its behavior
• enabling its correct implementation

How We Use Formal Models: Model-based Methodology

• Abstraction from (usually too complex) reality → get rid of
insignificant details

• Precisionin describing what is significant → Model analysis and
implementation

Security Model A security model is a precise, generally formal represen-
tation of a security policy.

Model Spectrum

• Models for access control policies:

– identity-based access control (IBAC)
– role-based access control (RBAC)
– attribute-based access control (ABAC)

• Models for information flow policies → multilevel security (MLS)
• Models for non-interference/domain isolation policies →

non-interference (NI)
• In Practice: Most often hybrid models

3/12

Systemsicherheit

Access Control Models
Formal representations of permissions to execute operations on objects
Security policies describe access rules → security models formalize them
Taxonomy

Identity-based access control models (IBAC) Rules based on the
identity of individual subjects (users, apps, processes, ...) or objects (files,
directories, database tables, ...)

Role-based access control models (RBAC) Rules based on roles of
subjects in an organization

Attribute-based access control models (ABAC) Rules based on at-
tributes of subjects and objects

Discretionary Access Control (DAC) Individual users specify access
rules to objects within their area of responsibility (at their discretion).

Consequence: Individual users

• granting access permissions as individually needed
• need to collectively enforce their organization’s security policy

– competency problem
– responsibility problem
– malware problem

Mandatory Access Control (MAC) System designers and adminis-
trators specify system-wide rules, that apply for all users and cannot be
sidestepped.

Consequence:

• Limited individual freedom
• Enforced by central instance:

– clearly identified
– competent (security experts)
– responsible (organizationally & legally)

DAC vs. MAC In Real-world Scenarios: Mostly hybrid models
enforced by both discretionary and mandatory components

• DAC locally within a project, team members individually define
permissions w. r. t. documents inside this closed scope

• MAC globally for the organization, such that e. g. only
documents approved for release by organizational policy rules
may be accessed from outside a project’s scope

Identity-based Access Control Models (IBAC) To
precisely specify the rights of individual, acting entities.

There are

• Subjects, i.e. active and identifiable entities, that execute
• Operations on
• passive and identifiable Objects, requiring
• Rights (also: permissions, privileges) which

– control (restrict) execution of operations,
– are checked against identity of subjects and objects.

Access Control Functions [Lampson, 1974]

• A really basic model to define access rights:

– Who (subject) is allowed to do what (operation) on which
object

– Fundamental to OS access control since 1965
– Formal paradigms: sets and functions

• Access Control Function (ACF)

– f : S ×O ×OP → {true, false} where
– S is a set of subjects (e. g. users, processes),
– O is a set of objects(e. g. files, sockets),
– OP is a finite set of operations(e. g. read, write, delete)

• Interpretation: Rights to execute operations are modeled by ACF

– any s ∈ S represents an authenticated active entity which
potentially executes operations on objects

– any o ∈ O represents an authenticated passive entity on
which operations are executed

– for any s ∈ S,o ∈ O,op ∈ OP :s is allowed to execute op on
o iff f(s, o, op) = true.

– Model making: finding a tuple〈S,O,OP, f〉

Access Control Matrix Lampson [1974] addresses the
questions how to ...

• store in a well-structured way,
• efficiently evaluate and
• completely analyze an ACF

Access Control Matrix (ACM) An ACM is a matrix m : S×O → 2OP ,
such that ∀s ∈ S, ∀o ∈ O : op ∈ m(s, o)⇔ f(s, o, op).

An ACM is a rewriting of the definition of an ACF: nothing is added,
nothing is left out (”⇔”). Despite a purely theoretical model: paved the
way for practically implementing AC meta-information as tables,
2-dimensional lists, distributed arrays and lists.
Example

• S = {s1, ..., sn}
• O = {o1, ..., ok}
• OP = {read, write}
• 2OP = {∅, {read}, {write}, {read, write}}2

Implementation Notes

• ACMs are implemented in most OS, DB, Middlewear
• whose security mechanisms use one of two implementations

Access Control Lists (ACLs)

• Columns of the ACM: char ∗ o3[N] = {′−′,′−′,′ rw′, ...};
• Found in I-Nodes of Unix(oids), Windows, Mac OS

Capability Lists

• Rows of the ACM: char ∗ s1[K] = {′−′,′ r′,′−′, ...};
• Found in distributed OSs, middleware, Kerberos

What we actually Model:

Protection State A fixed-time snapshot of all active entities, passive en-
tities, and any meta-information used for making access decisions is called
theprotection state of an access control system.

Goal of ACF/ACM is to precisely specify a protection state of an AC
system.

The Harrison-Ruzzo-Ullman Model (HRU)
Privilege escalation question: ”Can it ever happen that in a given state,
some specific subject obtains a specific permission?”∅⇒ {r, w}

• ACM models a single state 〈S,O,OP,m〉
• ACM does not tell anything about what might happen in future
• Behavior prediction → proliferation of rights → HRU safety

We need a model which allows statements about

• Dynamic behavior of right assignments
• Complexity of such an analysis

Idea [Harrison et al., 1976]: A (more complex) security model combining

• Lampson’s ACM → for modeling single protection state
(snapshots) of an AC system

• Deterministic automata (state machines) → for modeling runtime
changes of a protection state

This idea was pretty awesome. We need to understand automata, since
from then on they were used for most security models.

Deterministic Automata Mealy Automat (Q,
∑
,Ω, δ, λ, q0)

• Q is a finite set of states, e. g. Q = {q0, q1, q2}
•
∑

is a finite set of input words, e. g.
∑

= {a, b}
• Ω is a finite set of output words, e. g. Ω = {yes, no}
• δ : Q×

∑
→ Q is the state transition function

• λ : Q×
∑
→ Ω is the output function

• q0 ∈ Q is the initial state
• δ(q, σ) = q′ and λ(q, σ) = ω can be expressed through the state

diagram

HRU Security Model How we use Deterministic Automata

• Snapshot of an ACM is the automaton’s state
• Changes of the ACM during system usage are modeled by state

transitions of the automaton
• Effects of operations that cause such transitions are described by

the state transition function
• Analyses of right proliferation (→ privilege escalation) are

enabled by state reachability analysis methods

An HRU model is a deterministic automaton 〈Q,
∑
, δ, q0, R〉 where

• Q = 2S × 2O ×M is the state space where

– S is a (not necessarily finite) set of subjects,
– O is a (not necessarily finite) set of objects,

– M = {m|m : S ×O → 2R} is a set of possible ACMs,

•
∑

= OP ×X is the (finite) input alphabet where

– OP is a set of operations,

– X = (S ∪O)k is a set of k-dimensional vectors of
arguments (subjects or objects) of these operations,

• σ : Q×
∑
→ Q is the state transition function,

• q0 ∈ Q is the initial state,
• R is a (finite) set of access rights.

Interpretation

• Each q = Sq, Oq,mq ∈ Q models a system’s protection state:

– current subjects set Sq ⊆ S
– current objects set Oq ⊆ O
– current ACM mq ∈M where mq : Sq ×Oq → 2R

• State transitions modeled by δ based on

4/12

Systemsicherheit

– the current automaton state
– an input word 〈op, (x1, ..., xk)〉 ∈

∑
where op

– may modify Sq (create a user xi),
– may modify Oq (create/delete a file xi),
– may modify the contents of a matrix cell mq(xi, xj) (enter

or remove rights) where 1 ≤ i, j ≤ k.
– → We also call δ the state transition scheme (STS) of a

model.
– Historically: äuthorization scheme”[Harrison et al., 1976].

State Transition Scheme (STS) Using the STS,

σ : Q×
∑
→ Q is defined by a set of specifications in the normalized

form σ(q, 〈op, (x1, ..., xk)〉)=if
r1 ∈ mq(xs1, xo1) ∧ ... ∧ rm ∈ mq(xsm, xom) then p1 ◦ ... ◦ pn where

• q = {Sq, Oq,mq} ∈ Q, op ∈ OP
• r1...rm ∈ R
• xs1, ..., xsm ∈ Sq and xo1, ..., xom ∈ Oq where si and oi,

1 ≤ i ≤ m, are vector indices of the input arguments:
1 ≤ si, oi ≤ k

• p1, ..., pn are HRU primitives
• ◦ is the function composition operator: (f ◦ g)(x) = g(f(x))

Conditions: Expressions that need to evaluate ”true”for state q as a
necessary precondition for command op to be executable (= can be
successfully called).
Primitives: Short, formal macros that describe differences between q and
a successor state q′ = σ(q, 〈op, (x1, ..., xk)〉) that result from a complete
execution of op:

• enter r into m(xs, xo)
• delete r from m(xs, xo)
• create subject xs
• create object xo
• destroy subject xs
• destroy object xo
• Each above with semantics for manipulating Sq, Oq or mq .

Note the atomic semantics: the HRU model assumes that each command
successfully called is always completely executed!
How to Design an HRU Security Model:

1. Model Sets: Subjects, objects, operations, rights → define the
basic sets S,O,OP,R

2. STS: Semantics of operations (e. g. the future API of the system
to model) that modify the protection state → define σ using the
normalized form/programming syntax of the STS

3. Initialization: Define a well-known initial stateq 0 = 〈S0, O0,m0〉
of the system to model

1. Model Sets

• Subjects, objects, operations, rights:

– Subjects: An unlimited number of possible students: S ∼= N
– Objects: An unlimited number of possible solutions: O ∼= N
– Operations:

∗ (a) Submit writeSolution(sstudent, osolution)
∗ (b) Download readSample(sstudent, osample)
∗ → OP = {writeSolution, readSample}

– Rights: Exactly one allows to execute each operation

∗ R ∼= OP → R = {write, read}

2. State Transition Scheme: Effects of operations on protection state

command writeSolution(s,o) ::= if write in m(s,o)
then

enter read into m(s,o);
fi

command readSample(s,o) ::= if read in m(s,o)
then

delete write from m(s,o);
fi

3. Initialization

• By model definition: q0 = 〈S0, O0,m0〉
• For a course with (initially) three students:

– S0 = {sAnn, sBob, sChris}
– O0 = {oAnn, oBob, oChris}
– m0:

∗ m0(sAnn, oAnn) = {write}
∗ m0(sBob, oBob) = {write}
∗ m0(sChris, oChris) = {write}
∗ m0(s, o) = ∅⇔ s 6= o

– Interpretation: ”There is a course with three students, each
of whom has their own workspace to which she is allowed
to submit (write) a solution.”

Model Behavior

• Initial Protection State at beginning

m oAnn oBob oChris
sAnn write ∅ ∅
sBob ∅ write ∅
sChris ∅ ∅ write

• After writeSolution(sChris, oChris)

m oAnn oBob oChris
sAnn write ∅ ∅
sBob ∅ write ∅
sChris ∅ ∅ write, read

• After readSample(sChris, oChris)

m oAnn oBob oChris
sAnn write ∅ ∅
sBob ∅ write ∅
sChris ∅ ∅ read

Summary: Model Behavior

• The model’s input is a sequence of actions from OP together with
their respective arguments.

• The automaton changes its state according to the STS and the
semantics of HRU primitives.

• In the initial state, each student may (repeatedly) submit her
respective solution.

Tricks in this Example

• The sample solution is not represented by a separate object → no
separate column in the ACM.

• Instead, we smuggled the read right for it into the cell of each
student’s solution ...

HRU Model Analysis Analysis of Right Proliferation → The
HRU safety problem.
InputSequences

• ,,What is the effect of an input in a given state?” → a single state
transition as defined by δ

• ,,What is the effect of an input sequence in a given state?” → a
composition of sequential state transitions as defined by δ∗

Transitive State Transition Function δ∗: Let σσ ∈
∑∗ be a se-

quence of inputs consisting of a single input σ ∈
∑
∪{ε} followed by

a sequence σ ∈
∑∗, where ε denotes an empty input sequence. Then,

δ∗ : Q×
∑∗ → Q is defined by

• δ∗(q, σσ∗) = δ∗(δ(q, σ), σ∗)
• δ∗(q, ε) = q.

HRU Safety (also simple-safety) A state q of an HRU model is called
HRU safe with respect to a right r ∈ R iff, beginning with q, there is no
sequence of commands that enters r in an ACM cell where it did not exist
in q.

According to Tripunitara and Li, simple-safety is defined as:

HRU Safety For a state q = {Sq, Oq,mq} ∈ Q and a right r ∈ R
of an HRU model 〈Q,

∑
, δ, q0, R〉, the predicate safe(q, r) holds iff

∀q′ = Sq′ , Oq′ ,mq′ ∈ {δ
∗(q, σ∗)|σ∗ ∈

∑∗}, ∀s ∈ Sq′ , ∀o ∈ Oq′ : r ∈
mq′ (s, o) ⇒ s ∈ Sq ∧ o ∈ Oq ∧ r ∈ mq(s, o). We say that an HRU model

is safe w.r.t. r iff safe(q0, r).

all states in {δ∗(q, σ∗)|σ∗ ∈
∑∗} validated except for q′

mq o1 o2 o3
s1 {r1, r3} {r1, r3} {r2}
s2 {r1} {r1} {r2}
s3 ∅ ∅ {r2}
mq′ o1 o2 o3 o4
s1 {r1, r3} {r1} {r2} ∅
s2 {r1, r2} {r1} {r2} {r2}
s3 ∅ ∅ ∅ ∅

• r3 6∈ mq′ (s1, o2) ∧ r3 ∈ mq(s1, o1)⇒ safe(q, r3)

• r2 ∈ mq′ (s2, o1) ∧ r2 6∈ mq(s2, o1)⇒ ¬safe(q, r2)

• r2 ∈ mq′ (s2, o4) ∧ o4 6∈ Oq ⇒ ¬safe(q, r2)

showing that an HRU model is safe w.r.t. r means to

1. Search for any possible (reachable) successor state q′ of q0
2. Visit all cells in mq′ (∀s ∈ Sq′ , ∀o ∈ Oq′ : ...)

3. If r is found in one of these cells (r ∈ mq′ (s, o)), check if

• mq is defined for this very cell (s ∈ Sq ∧ o ∈ Oq),
• r was already contained in this very cell in mq (r ∈ mq...).

4. Recursiv. proceed with 2. for any possible successor state q′′ of q′

Safety Decidability

Theorem 1 [Harrison] Ingeneral, HRU safety is not decidable.

Theorem 2 [Harrison] For mono-operational models, HRU safety is de-
cidable.

• Insights into the operational principles modeled by HRU models
• Demonstrates a method to prove safety property for a particular,

given model
• → ,,Proofs teach us how to build things so nothing more needs to

be proven.” (W. E. Kühnhauser)

a mono-operational HRU model → exactly one primitive for each
operation in the STS

5/12

Systemsicherheit

Proof of Theorem - Proof Sketch

1. Find an upper bound for the length of all input sequences with
different effects on the protection state w.r.t. safety If such can be
found: ∃ a finite number of input sequences with different effects

2. All these inputs can be tested whether they violate safety. This
test terminates because:

• each input sequence is finite
• there is only a finite number of relevant sequences

3. → safety is decidable

Proof:

• construct finite sequences ...→
• Transform σ1...σn into shorter sequences

1. Remove all input operations that contain delete or destroy
primitives (no absence, only presence of rights is checked).

2. Prepend the sequence with an initial create subject sinit
operation.

3. Prune the last create subject s operation and substitute
each following reference to s with sinit. Repeat until all
create subject operations are removed, except from the
initial create subject sinit.

4. Same as steps 2 and 3 for objects.
5. Remove all redundant enter operations.

init 5.
... create subject sinit;
... create object oinit
create subject x2; -
create object x5; -
enter r1 into m(x2, x5); enter r1 into m(sinit, oinit);
enter r2 into m(x2, x5); enter r2 into m(sinit, oinit);
create subject x7; -
delete r1 from m(x2, x5); -
destroy subject x2; -
enter r1 into m(x7, x5); -

Conclusions from these Theorems (Dilemma)

• General (unrestricted) HRU models

– have strong expressiveness → can model a broad range of
AC policies

– are hard to analyze: algorithms and tools for safety analysis

• Mono-operational HRU models

– have weak expressiveness → goes as far as uselessness (only
create files)

– are efficient to analyze: algorithms and tools for safety
analysis

– → are always guaranteed to terminate
– → are straight-forward to design

(A) Restricted Model Variants Static HRU Models

• Static: no create primitives allowed
• safe(q,r) decidable, but NP-complete problem
• Applications: (static) real-time systems, closed embedded systems

Monotonous Mono-conditional HRU Models

• Monotonous (MHRU): no delete or destroy primitives
• Mono-conditional: at most one clause in conditions part
• safe(q,r) efficiently decidable
• Applications: Archiving/logging systems (nothing is ever deleted)

Finite Subject Set

• ∀q ∈ Q, ∃n ∈ N : |Sq| ≤ n
• safe(q, r) decidable, but high computational complexity

Fixed STS

• All STS commands are fixed, match particular application
domain (e.g. OS access control) → no model reusability

• For Lipton and Snyder [1977]: safe(q, r) decidable in linear time

Strong Type System

• Special model to generalize HRU: Typed Access Matrix (TAM)
• safe(q, r) decidable in polynomial time for ternary, acyclic,

monotonous variants
• high, though not unrestricted expressiveness in practice

(B) Heuristic Analysis Methods

• Restricted model variants often too weak for real-world apps
• General HRU models: safety property cannot be guaranteed
• → get a piece from both: Heuristically guided safety estimation

Idea:

• State-space exploration by model simulation
• Task of heuristic: generating input sequences (,,educated

guessing”)

Outline: Two-phase-algorithm to analyze safe(q0, r):

1. Static phase: knowledge from model to make ”good”decisions

• → Runtime: polynomial in model size (q0 + STS)

2. Simulation phase: The automaton is implemented and, starting
with q0, fed with inputs σ =< op, x >

• → For each σ, the heuristic has to decide:
• which operation op to use
• which vector of arguments x to pass
• which qi to use from the states in Q known so far
• Termination: As soon as σ(qi, σ) violates safe(q0, r).

Goal: Iteratively build up the Q for a model to falsify safety by example
(finding a violating but possible protection state).

• Termination: only a semi-decidable problem here. It can be
guaranteed that a model is unsafe if we terminate. We cannot
ever prove the opposite → safety undecidability

• Performance: Model size 10 000 000 ≈ 417s

Achievements

• Find typical errors in security policies: Guide designers, who
might know there’s something wrong w. r. t. right proliferation,
but not what and why!

• Increase our understanding of unsafety origins: By building clever
heuristics, we started to understand how we might design
specialized HRU models (→ fixed STS, type system) that are
safety-decidable yet practically (re-) usable

Summary HRU Models Goal

• Analysis of right proliferation in AC models
• Assessing the computational complexity of such analyses

Method

• Combining ACMs and deterministic automata
• Defining safe(q, r) based on this formalism

Conclusions

• Potential right proliferation: Generally undecidable problem
• → HRU model family, consisting of application-tailored,

safety-decidable variants
• → Heuristic analysis methods for practical error-finding

The Typed-Access-Matrix Model (TAM)

• AC model, similar expressiveness to HRU
• → directly mapped to implementations of an ACM (DB table)
• Better suited for safety analyses: precisely statemodel properties

for decidable safety

Idea

• Adopted from HRU: subjects, objects, ACM, automaton
• New: leverage the principle of strong typing (like programming)
• → safety decidability properties relate to type-based restrictions

How it Works:

• Foundation of a TAM model is an HRU model 〈Q,
∑
, δ, q0, R〉,

where Q = 2S × 2O ×M
• However: S ⊆ O, i. e.:

– all subjects can also act as objects (=targets of an access)
– useful for modeling e.g. delegation
– objects in O\S: pure objects

• Each o ∈ O has a type from a type set T assigned through a
mapping type : O → T

• An HRU model is a special case of a TAM model:

– T = {tSubject, tObject}
– ∀s ∈ S : type(s) = tSubject; ∀o ∈ O\S : type(o) = tObject

TAM Security Model A TAM model is a deterministic automaton
〈Q,

∑
, δ, q0, T, R〉 where

• Q = 2S × 2O × TY PE × M is the state space where S and
O are subjects set and objects set as in HRU, where S ⊆ O,
TY PE = {type|type : O → T} is a set of possible type functi-
ons, M is the set of possible ACMs as in HRU,

•
∑

= OP × X is the (finite) input alphabet where OP is a set of

operations as in HRU, X = Ok is a set of k-dimensional vectors of
arguments (objects) of these operations,

• δ : Q×
∑
→ Q is the state transition function,

• q0 ∈ Q is the initial state,
• T is a static (finite) set of types,
• R is a (finite) set of access rights.

State Transition Scheme (STS) δ : Q×
∑
→ Q is defined by a set of

specifications:

where

• q = (Sq, Oq, typeq,mq) ∈ Q, op ∈ OP
• r1, ..., rm ∈ R
• xs1, ..., xsm ∈ Sq, xo1, ..., xom ∈ Oq\Sq , and t1, ..., tk ∈ T where
si and oi, 1 ≤ i ≤ m , are vector indices of the input arguments:
1 ≤ si, oi ≤ k

• p1, ..., pn are TAM primitives

Convenience Notation where

6/12

Systemsicherheit

• q ∈ Q is implicit
• op, r1, ..., rm, s1, ..., sm, o1, ..., om as before
• t1, ..., tk are argument types
• p1, ..., pn are TAM-specific primitives

TAM-specific

• Implicit Add-on:Type Checking
• where ti are the types of the arguments xi, 1 ≤ i ≤ k.

TAM-specific

• Primitives:

– enter r into m(xs,xo)
– delete r from m(xs,xo)
– create subject xs of type ts
– create object xo of type to
– destroy subject xs
– destroy object xo

• Observation: S and O are dynamic (as in HRU), thus
type : O → T must be dynamic too (cf. definition of Q in TAM).

TAM Example: The ORCON Policy

• Creator/owner of a document should permanently retain
controlover its accesses

• Neither direct nor indirect (by copying) right proliferation
• Application scenarios: Digital rights management, confidential

sharing
• Solution with TAM: A confined subject type that can never

execute any operation other than reading

Model Behavior (STS): The State Transition Scheme

• createOrconObject(s1 : s, o1 : co)
• grantCRead(s1 : s, s2 : s, o1 : co)
• useCRead(s1 : s, o1 : co, s2 : cs)
• revokeCRead(s1 : s, s2 : s, o1 : co)
• destroyOrconObject(s1 : s, o1 : co) (destroy conf. object)
• revokeRead(s1 : s, s2 : cs, o1 : co) (destroy conf. subject)
• finishOrconRead(s1 : s, s2 : cs) (destroy conf. subject)

• Owner retains full control over
• Use of her confined objects by third parties → transitive right

revocation
• Subjects using these objects → destruction of these subjects
• Subjects using such objects are confined: cannot forward read

information

TAM Safety Decidability

• General TAM models → safety not decidable
• MTAM: monotonous TAM models; STS without delete or destroy

primitives → safety decidable if mono-conditional only
• AMTAM: acyclic MTAM models → safety decidable but not

efficiently (NP-hard problem)
• TAMTAM: ternary AMTAM models; each STS command requires

max. 3 arguments → provably same computational power and
thus expressive power as AMTAM; safety decidable in polynomial
time

Acyclic TAM Models Auxiliary analysis tools:

Parent- and Child-Types For any operation op with arguments
〈x1, t1〉, ..., 〈xk, tk〉 in an STS of a TAM model, it holds that ti, 1 ≤ i ≤ k

• is a child type in op if one of its primitives creates a subject or
object xi of type ti,

• is a parent type in op if none of its primitives creates a subject or
object xi of type ti.

Type Creation Graph The type creation graph TCG = 〈T,E = T ×T 〉
for the STS of a TAM model is a directed graph with vertex set T and an
edge〈u, v〉 ∈ E iff ∃op ∈ OP : u is a parent type in op ∧ v is a child type
in op.

Note: In bar,u is both a parent type (because of s1) and a child type
(because of s2) → hence the loop edge.
Safety Decidability: We call a TAM model acyclic, iff its TCG is acyclic.

Theorem 5 Safety of a ternary, acyclic, monotonous TAM model
(TAMTAM) is decidable in polynomial time in the size of m0.

Crucial property acyclic, intuitively:

• Evolution of the system (protection state transitions) checks both
rights in the ACM as well as argument types

• TCG is acyclic ⇒ ∃ a finite sequence of possible state transitions
after which no input tuple with argument types, that were not
already considered before, can be found

• One may prove that an algorithm, which tries to expandall
possible different follow-up states from q0, may terminate after
this finite sequence

Expressive Power of TAMTAM

• MTAM: obviously same expressive power as monotonic HRU

– no transfer of rights: ”take r ... in turn grant r to ...”
– no countdown rights: ”r can only be used n times”

• ORCON: allow to ignore non-monotonic command s from STS
since they only remove rights and are reversible

• AMTAM: most MTAM STS may be re-written as acyclic
• TAMTAM: expressive power equivalent to AMTAM

IBAC Model Comparison: family of IBAC models to describe different
ranges of security policies they are able to express

IBAC Summary

• Model identity-based AC policies (IBAC)
• Analyze them w.r.t. basic security properties (right proliferation)

• → Minimize specification errors
• → Minimize implementation errors
• Approach

– Unambiguous policy representation through formal notation
– Prediction and/or verification of mission-critical properties
– Derivation of implementation concepts

• Model Range - Static models:

– Access control function: f : S ×O ×OP → {true, false}
– Access control matrix (ACM): m : S ×O → 2OP

– Static analysis: Which rights are assigned to whom, which
(indirect) information flows are possible

– Implementation: Access control lists (ACLs)

• Model Range - Dynamic models:

– ACM plus deterministic automaton → Analysis of dynamic
behavior: HRU safety

– generally undecidable
– decidable under specific restrictions: monotonous

mono-conditional, static, typed, etc.
– identifying and explaining safety-violations, in case such

(are assumed to) exists: heuristic analysis algorithms

• Limitations

– IBAC models are fundamental: KISS
– IBAC models provide basic expressiveness only

• For more application-oriented policy semantics:

– Large information systems: many users, many databases,
files, ... → Scalability problem

– Access decisions not just based on subjects, objects, and
operations → Abstraction problem

Roles-based Access Control Models (RBAC)
Solving Scalability and Abstraction results in smaller modeling effort
results in smaller chance of human errors made in the process

• Improved scalability and manageability
• application-oriented semantic: roles ≈ functions in organizations
• Models include smart abstraction: roles
• AC rules are specified based on roles instead of identities
• Users, roles, and rights for executing operations
• Access rules are based onrolesof users → on assignments

Basic RBAC model ,,RBAC0” An RBAC0 model is a tuple
〈U,R, P, S, UA, PA, user, roles〉 where

• U is a set of user identifiers,
• R is a set of role identifiers,
• P is a set of permission identifiers,
• S is a set of session identifiers,
• UA ⊆ U × R is a many-to-many user-role-relation,
• PA ⊆ P × R is a many-to-many permission-role-relation,
• user : S → U is a total function mapping sessions to users,

• roles : S → 2R is a total function mapping sessions to sets of roles
such that ∀s ∈ S : r ∈ roles(s)⇒ 〈user(s), r〉 ∈ UA.

Interpretation

• Users U model people: actual humans that operate the AC system
• Roles R model functions, that originate from the workflows and

areas of responsibility in organizations
• Permissions P model rights for any particular access to a

particular document
• user-role-relation UA ⊆ U ×R defines which roles are available to

users at any given time → must be assumed during runtime first
before they are usable!

• permission-role-relation PA ⊆ P × R defines which permissions
are associate with roles

• UA and PA describe static policy rules: Roles available to a user
are not considered to possibly change, same with permissions
associated with a role.

7/12

Systemsicherheit

• Sessions S describe dynamic assignments of roles → a session
s ∈ S models when a user is logged in(where she may use some
role(s) available to her as per UA):

– The session-user-mapping user: S → U associates a session
with its (öwning”) user

– The session-roles-mapping roles: S → 2R associates a
session with the set of roles currently assumed by that user
(active roles)

RBAC Access Control Function
• access rules have to be defined for operations on objects
• implicitly defined through P → made explicit: P ⊆ O ×OP is a

set of permission tuples 〈o, op〉 where

– o ∈ O is an object from a set of object identifiers,
– op ∈ OP is an operation from a set of operation identifiers.

• We may now define the ACF for RBAC0

RBAC0 ACF fRBAC0
: U ×O ×OP → {true, false} where

fRBAC0
(u, o, op) =

{
true, ∃r ∈ R, s ∈ S : u = user(s) ∧ r ∈ roles(s) ∧ 〈〈o, op〉, r〉 ∈ PA
false, otherwise

RBAC96 Model Family In practice, organizations have more
requirements that need to be expressed in their security policy

• Roles are often hierarchical → RBAC1 = RBAC0 + hierarchies
• Role association and activation are often constrained →
RBAC2 = RBAC0 + constraints

• Both may be needed → RBAC3 = consolidation:
RBAC0 + RBAC1 + RBAC2

RBAC 1: Role Hierarchies Roles often overlap

1. disjoint permissions for roles proManager and proDev → any
proManager user must always have proDev assigned and activated
for any of her workflows → role assignment redundancy

2. overlapping permissions:
∀p ∈ P : 〈p, proDev〉 ∈ PA⇒ 〈p, proManager〉 ∈ PA→ any
permission for project developers must be assigned to two
different roles → role definition redundancy

3. Two types of redundancy → undermines scalability goal of RBAC

Solution: Role hierarchy → Eliminates role definition redundancy
through permissions inheritance
Modeling Role Hierarchies

• Lattice here: 〈R,≤〉
• Hierarchy expressed through dominance relation: r1 ≤ r2 ⇔ r2

inherits any permissions from r1
• Interpretation

– Reflexivity: any role consists of (̈ınherits”) its own
permissions

– Antisymmetry: no two different roles may mutually inherit
their respective permissions

– Transitivity: permissions may be inherited indirectly

RBAC1 Security Model An RBAC1 model is a tuple
〈U,R, P, S, UA, PA, user, roles, RH〉 where

• U,R, P, S, UA, PA and user are defined as for RBAC0,
• RH ⊆ R × R is a partial order that represents a role hierarchy

where 〈r, r′〉 ∈ RH ⇔ r ≤ r′ such that 〈R,≤〉 is a lattice,
• roles is defined as for RBAC0, while additionally holds: ∀r, r′ ∈
R, ∃s ∈ S : r ≤ r′ ∧ r′ ∈ roles(s)⇒ r ∈ roles(s).

RBAC 2 : Constraints Assuming and activating roles in
organizations is often more restricted:

• Certain roles may not be active at the same time (same session)
for any user

• Certain roles may not be together assigned to any user
• → separation of duty (SoD)
• While SoD constraints are a more fine-grained type of security

requirements to avoid mission-critical risks, there are other types
represented by RBAC constraints.

Constraint Types

• Separation of duty: mutually exclusive roles
• Quantitative constraints: maximum number of roles per user
• Temporal constraints: time/date/week/... of role activation
• Factual constraints: assigning or activating roles for specific

permissions causally depends on any roles for a certain, other
permissions

Modeling Constraints Idea

• RBAC2 : 〈U,R, P, S, UA, PA, user, roles, RE〉
• RBAC3 : 〈U,R, P, S, UA, PA, user, roles, RH,RE〉
• where RE is a set of logical expressions over the other model

components (such as UA,PA, user, roles)

RBAC Summary

• Scalability
• Application-oriented model abstractions
• Standardization (RBAC96) → tool-support for:

– role engineering (identifying and modeling roles)
– model engineering (specifying/validating a model config.)
– static model checking (verifying consistency and

plausibility of a model configuration)

• Still weak OS-support

– → application-level integrations
– → middleware integrations

• Limited dynamic analyses w.r.t. automaton-based models

Attribute-based Access Control Models
• Scalability and manageability
• Application-oriented model abstractions
• Model semantics meet functional requirements of open systems:

– user IDs, INode IDs, ... only available locally
– roles limited to specific organizational structure; only

assignable to users

• → Consider application-specific context of an access: attributes of
subjects and objects(e. g. age, location, trust level, ...)

Idea: Generalizing the principle of indirection already known from RBAC

• IBAC: no indirection between subjects and objects
• RBAC: indirection via roles assigned to subjects
• ABAC: indirection via arbitrary attributes assigned to subjects or

objects
• Attributes model application-specific properties of the system

entities involved in any access

– Age, location, trustworthiness of a application/user/...
– Size, creation time, access classification of resource/...
– Risk quantification involved with these subjects and objects

ABAC Access Control Function
• fIBAC : S ×O ×OP → {true, false}
• fRBAC : U ×O ×OP → {true, false}
• fABAC : S ×O ×OP → {true, false}
• → Evaluates attribute values for 〈s, o, op〉

ABAC Security Model

• Note: There is no such thing (yet) like a standard ABAC model
• Instead: Many highly specialized, application-specific models.
• Here: minimal common formalism, based on Servos and Osborn

ABAC Security Model An ABAC security model is a tuple
〈S,O,AS,AO, attS, attO,OP,AAR〉 where

• S is a set of subject identifiers and O is a set of object identifiers,
• AS = V 1

S × ...×V
n
S is a set of subject attributes, where each attri-

bute is an n-tuple of values from arbitrary domains V i
S , 1 ≤ i ≤ n,

• AO = V 1
O × ... × V

m
O is a corresponding set of object attributes,

based on values from arbitrary domains V j
O, 1 ≤ j ≤ m,

• attS : S → AS is the subject attribute assignment function,
• attO : O → AO is the object attribute assignment function,
• OP is a set of operation identifiers,
• AAR ⊆ Φ×OP is the authorization relation.

Interpretation

• Active and passive entities are modeled by S and O, respectively
• Attributes in AS,AO are index-referenced tuples of values, which

are specific to some property of subjects V i
S (e.g. age) or of

objects V j
O (e. g. PEGI rating)

• Attributes are assigned to subjects and objects via attS , attO
• Access control rules w.r.t. the execution of operations in OP are

modeled by the AAR relation → determines ACF!
• AAR is based on a set of first-order logic predicates Φ:

Φ = {φ1(xs1, xo1), φ2(xs2, xo2), ...}. Each φi ∈ Φ is a binary
predicate, where xsi is a subject variable and xoi is an object
variable.

ABAC Access Control Function (ACF)
• fABAC : S ×O ×OP → {true, false} where

• fABAC(s, o, op) =
{
true, ∃〈φ, op〉 ∈ AAR : φ(s, o) = true
false, otherwise .

• We call φ an authorization predicate for op.

ABAC Summary

• Scalability
• Application-oriented model abstractions
• Universality: ABAC can conveniently express IBAC, RBAC, MLS
• Still weak OS-support → application-level integrations
• Attribute semantics highly diverse, not normalizable → no

common ,,standard ABAC”
• Limited dynamic analyses w.r.t. automaton-based models

8/12

Systemsicherheit

Information Flow Models
Abstraction Level of AC Models: rules about subjects accessing objects.
Adequate for

• Workflow systems
• Document/information management systems

Goal of Information Flow (IF) Models: Problem-oriented definition of
policy rules for scenarios based on information flows(rather than access
rights)
Lattices (refreshment)

• infC : ,,systemlow”
• supC : ,,systemhigh”
• has a source: deg−(infC) = 0

• has a sink: deg+(supC) = 0

Implementation of Information Flow Models

• Information flows and read/write operations are isomorphic

– s has read permission o ⇔ information may flow from o to s
– s has write permission o ⇔ information may flow from s to

o

• → Implementation by standard AC mechanisms!

Analysis of Information Flow Models

• IF Transitivity → goal: covert information flows
• IF Antisymmetry → goal: redundancy

Denning Security Model A Denning information flow model is a tuple
〈S,O,L, cl,

⊕
〉 where

• S is a set of subjects,
• O is a set of objects,
• L = 〈C,≤〉 is a lattice where

– C is a set of classes,
– ≤ is a dominance relation where c ≤ d ⇔ information may

flow from c to d,

• cl : S ∪O → C is a classification function, and
•
⊕

: C × C → C is a reclassification function.

Interpretation

• Subject set S models active entities, which information flows
originate from

• Object set O models passive entities, which may receive
information flows

• Classes set C used to label entities with identical information flow
properties

• Classification function cl assigns a class to each entity
• Reclassification function

⊕
determines which class an entity is

assigned after receiving certain a information flow

We can now ...

• precisely define all information flows valid for a given policy
• define analysis goals for an IF model w.r.t.

– Correctness: ∃ covert information flows? (transitivity of ≤,
automation: graph analysis tools)

– Redundancy: ∃ sets of subjects and objects with
(transitively) equivalent information contents?
(antisymmetry of ≤, automation: graph analysis tools)

• implement a model: through an automatically generated,
isomorphic ACM(using already-present ACLs!)

Multilevel Security (MLS)

• Introducing a hierarchy of information flow classes: levels of trust
• Subjects and objects are classified:

– Subjects w.r.t. their trust worthiness
– Objects w.r.t. their criticality

• Within this hierarchy, information may flow only in one direction
→ ,,secure” according to these levels!

• → ∃ MLS models for different security goals!

Modeling Confidentiality Levels

• Class set: levels of confidentiality e.g. C = {public, conf, secret}
• Dominance relation: hierarchy between confidentiality levels e.g.
{public ≤ confidential, confidential ≤ secret}

• Classification of subjects and objects: cl : S ∪O → C e.g.
cl(BulletinBoard) = public, cl(Timetable) = confidential

• In contrast due Denning ≤ in MLS models is a total order

The Bell-LaPadula Model MLS-Model for Preserving
Information Confidentiality. Incorporates impacts on model design ...

• from the application domain: hierarchy of trust
• from the Denning model: information flow and lattices
• from the MLS models: information flow hierarchy
• from the HRU model:

– Modeling dynamic behavior: state machine and STS
– Model implementation: ACM

• → application-oriented model engineering by composition of
known abstractions

Idea:

• entity sets S,O
• lattice〈C,≤〉 defines information flows by

– C: classification/clearance levels
– ≤: hierarchy of trust

• classification function cl assigns

– clearance level from C to subjects
– classification level from C to objects

• Model’s runtime behavior is specified by a deterministic
automaton

BLP Security Model A BLP model is a deterministic automaton
〈S,O,L,Q,

∑
, σ, q0, R〉 where

• S and O are (static) subject and object sets,
• L = 〈C,≤〉 is a (static) lattice consisting of

– the classes set C,
– the dominance relation ≤,

• Q = M × CL is the state space where

– M = {m|m : S ×O → 2R} is the set of possible ACMs,
– CL = {cl|cl : S ∪ O → C} is a set of functions that classify

entities in S ∪O,

•
∑

is the input alphabet,
• σ : Q×

∑
→ Q is the state transition function,

• q0 ∈ Q is the initial state,
• R = {read, write} is the set of access rights.

Interpretation

• S,O,M,
∑
, σ, q0, R: same as HRU

• L: models confidentiality hierarchy
• cl: models classification meta-information about subjects and

objects

• Q = M × CL models dynamic protection states; includes

– rights in the ACM,
– classification of subjects/objects,
– not: S and O (different to HRU)

• Commands in the STS may therefore

– change rights in the ACM,
– reclassify subjects and objects.

• L is an application-oriented abstraction

– Supports convenient for model specification
– Supports easy model correctness analysis
– → easy to specify and to analyze

• m can be directly implemented by standard OS/DBIS access
control mechanisms (ACLs, Capabilities) → easy to implement

• m is determined (= restricted) by L and cl, not vice-versa
• L and cl control m
• m provides an easy specification for model implementation

BLP Security

Read-Security Rule A BLP model state 〈m, cl〉 is called read-secure iff
∀s ∈ S, o ∈ O : read ∈ m(s, o)⇒ cl(o) ≤ cl(s).

Write-Security Rule A BLP model state 〈m, cl〉 is called write-secure
iff ∀s ∈ S, o ∈ O : write ∈ m(s, o)⇒ cl(s) ≤ cl(o).

State Security A BLP model state is called secure iff it is both read-
and write-secure.

Model Security A BLP model with initial state q0 is called secure iff
1. q0 is secure and
2. each state reachable from q0 by a finite input sequence is secure.

Auxiliary Definition: The Basic Security Theorem for BLP (BLP BST)

• A convenient tool for proving BLP security
• Idea: let’s look at properties of the finite and small model

components → σ → STS

The BLP Basic Security Theorem A BLP model
〈S,O,L,Q,

∑
, σ, q0, R〉 is secure iff both of the following holds:

1. q0 is secure
2. σ is build such that for each state q reachable from q0 by a finite

input sequence, where q = 〈m, cl〉 and q′ = σ(q, δ) = m′, cl′, ∀s ∈
S, o ∈ O, δ ∈

∑
the following holds:

• Read-security conformity:

– read 6∈ m(s, o) ∧ read ∈ m′(s, o)⇒ cl′(o) ≤ cl′(s)
– read ∈ m(s, o) ∧ ¬(cl′(o) ≤ cl′(s))⇒ read 6∈ m′(s, o)

• Write-security conformity:

– write 6∈ m(s, o) ∧ write ∈ m′(s, o)⇒ cl′(s) ≤ cl′(o)
– write ∈ m(s, o) ∧ ¬(cl′(s) ≤ cl′(o))⇒ write 6∈ m′(s, o)

Proof of Read Security

• Let q = σ ∗ (q0, σ
+), σ+ ∈ σ+, q′ = δ(q, σ), σ ∈ σ, s ∈ S, o ∈ O.

With q = 〈m, cl〉 and q′ = m′, cl′, the BLP BST for read-security

9/12

Systemsicherheit

– (a1) read 6∈ m(s, o) ∧ read ∈ m′(s, o)⇒ cl′(o) ≤ cl′(s)
– (a2) read ∈ m(s, o) ∧ ¬(cl′(o) ≤ cl′(s))⇒ read 6∈ m′(s, o)
– Let’s first introduce some convenient abbreviations for this:

∗ R := read ∈ m(s, o)
∗ R′ := read ∈ m′(s, o)
∗ C′ := cl′(o) ≤ cl′(s)
∗ σ+ is the set of finite, non-empty input sequences.

– Proposition: (a1) ∧ (a2) ≡ read− security
– Proof:

(a1) ∧ (a2) = R′ ⇒ C′ ≡ read ∈ m′(s, o)⇒ cl′(o) ≤ cl′(s),
which exactly matches the definition of read-security for q′.

– Write-security: Same steps for (b1) ∧ (b2).

Idea: Encode an additional, more fine-grained type of access restriction
in the ACM → compartments

• Comp: set of compartments

• co : S ∪O → 2Comp: assigns a set of compartments to an entity
as an (additional) attribute

• Refined state security rules:

– 〈m, cl, co〉 is read-secure ⇔ ∀s ∈ S, o ∈ O : read ∈
m(s, o)⇒ cl(o) ≤ cl(s) ∧ co(o) ⊆ co(s)

– 〈m, cl, co〉 is write-secure ⇔ ∀s ∈ S, o ∈ O : write ∈
m(s, o)⇒ cl(s) ≤ cl(o) ∧ co(o) ⊆ co(s)

• old BLP: 〈S,O,L,Q, σ, δ, q0〉
• With compartments: 〈S,O,L,Comp,Qco, σ, δ, q0〉 where

Qco = M × CL× CO and CO = {co|co : S ∪O → 2Comp}

Example

• Let co(o) = secret, co(o) = airforce
• s1 where cl(s1) = public, co(s1) = {airforce, navy} can write o
• s2 where cl(s2) = secret, co(s2) = {airforce, navy} read/write o
• s3 where cl(s3) = secret, co(s3) = {navy} can do neither

BLP Model Summary

• Application-oriented modeling → hierarchical information flow
• Scalability → attributes: trust levels
• Modeling dynamic behavior → automaton with STS
• Correctness guarantees (analysis of)

– consistency: BLP security, BST
– completeness of IF: IFG path finding
– presence of unintended IF: IFG path finding
– unwanted redundancy: IF cycles
– safety properties: decidable

• Implementation

– ACM is a standard AC mechanism in contemporary
implementation platforms (cf. prev. slide)

– Contemporary standard OSs need this: do not support
mechanisms for entity classification, arbitrary STSs

– new platforms: SELinux, TrustedBSD, PostgreSQL, ...

• Is an example of a hybrid model: IF + AC + ABAC

learn from BLP for designing and using security models

• Model composition from known model abstractions

– Denning: IF modeling
– ABAC: IF classes and compartments as attributes
– MSL: modeling trust as a linear hierarchy
– HRU: modeling dynamic behavior
– ACM: implementing application-oriented policy semantics

• Consistency is an important property of composed models
• BLP is further extensible and refinable

The Biba Model
BLP upside down

• BLP → preserves confidentiality
• Biba → preserves integrity

OS Example

• Integrity: Protect system files from malicious user/software
• Class hierarchy (system, high, medium, low)
• every file/process/... created is classified → cannot violate

integrity of objects
• Manual user involvement: resolving intended exceptions, e.g.

install trusted application

Non-interference Models
Problems: Covert Channels & Damage Range (Attack Perimeter)

Covert Channel Channels not intended for information transfer at all,
such as the service program’s effect on the system load.

• AC policies (ACM, HRU, TAM, RBAC, ABAC): colluding
malware agents, escalation of common privileges

– Process 1: only read permissions on user files
– Process 2: only permission to create an internet socket
– both: communication via covert channel

• MLS policies (Denning, BLP, Biba): indirect information flow
exploitation (can never prohibitany possible transitive IF ...)

– Test for existence of a file
– Volume control on smartphones
– Timing channels from server response times

Idea of NI models

• higher level of abstraction
• Policy semantics: which domains should be isolated based on

their mutual impact

Consequences

• Easier policy modeling
• More difficult policy implementation → higher degree of

abstraction

Example

• Fields: Smart Cards, Server System
• Different services, different providers, different levels of trust
• Shared resources
• Needed: isolation of services, restricted cross-domain interactions
• → Guarantee of total/limited non-interference between domains

NI Security Policies Specify

• Security domains
• Cross-domain (inter)actions → interference

From convert channels to domain interference:

Non-Interference Two domains do not interfere with each other iff no
action in one domain can be observed by the other.

NI Security Model An NI model is a det. automaton
〈Q, σ, δ, λ, q0, D,A, dom,≈NI , Out〉 where

• Q is the set of (abstract) states,
• σ = A is the input alphabet where A is the set of (abstract) actions,
• δ : Q× σ → Q is the state transition function,
• λ : Q× σ → Out is the output function,
• q0 ∈ Q is the initial state,
• D is a set of domains,

• dom : A→ 2D is adomain function that completely defines the set
of domains affected by an action,

• ≈NI⊆ D ×D is a non-interference relation,
• Out is a set of (abstract) outputs.

NI Security Model is also called Goguen/Meseguer-Model.

BLP written as an NI Model

• BLP Rules:

– write in class public may affect public and confidential
– write in class confidential may only affect confidential

• NI Model:

– D = {dpub, dconf}
– write in dconf does not affect dpub, so dconf ≈NI dpub

– A = {writeInPub, writeInConf}
– dom(writeInPub) = {dpub, dconf}
– dom(writeInConf) = {dconf}

NI Model Analysis Goals

• AC models: privilege escalation (→ HRU safety)
• BLP models: model consistency (→ BLP security)
• NI models: Non-interference between domains

Purge Function Let aa∗ ∈ A∗ be a sequence of actions consisting of a
single action a ∈ A∪{ε} followed by a sequence a∗ ∈ A∗, where ε denotes

an empty sequence. Let D′ ∈ 2D be any set of domains. Then, purge:

A∗ × 2D → A∗ computes a subsequence of aa∗ by removing such actions
without an observable effect on any element of D′ :

• purge(aa∗, D′) =

{
a ◦ purge(a∗, D′), ∃da ∈ dom(a), d′ ∈ D′ : da ≈I d

′

purge(a∗, D′), otherwise

• purge(ε,D′) = ε

where ≈I is the complement of ≈NI : d1 ≈I d2 ⇔ ¬(d1 ≈NI d2).

NI Security For a state q ∈ Q of an NI model
〈Q, σ, δ, λ, q0, D,A, dom,≈NI , Out〉, the predicate ni-secure (q) holds
iff ∀a ∈ A, ∀a∗ ∈ A∗ : λ(δ∗(q, a∗), a) = λ(δ∗(q, purge(a∗, dom(a))), a).

Interpretation

1. Running an NI model on 〈q, a∗〉 yields q′ = δ∗(q, a∗).
2. Running the model on the purged input sequence so that it

contains only actions that, according to ≈NI , actually have
impact on dom(a) yields q′clean = δ∗(q, purge(a∗, dom(a)))

3. If ∀a ∈ A : λ(q′, a) = λ(q′clean, a), than the model is called
NI-secure w.r.t. q(ni− secure(q)).

Comparison to HRU and IF Models

• HRU Models

– Policies describe rules that control subjects accessing
objects

– Analysis goal: right proliferation
– Covert channels analysis: only based on model

implementation

10/12

Systemsicherheit

• IF Models

– Policies describe rules about legal information flows
– Analysis goals: indirect IFs, redundancy, inner consistency
– Covert channel analysis: same as HRU

• NI Models

– Rules about mutual interference between domains
– Analysis goal: consistency of ≈NI and dom
– Implementation needs rigorous domain isolation (e.g.

object encryption is not sufficient) → expensive
– State of the Art w.r.t. isolation completeness

Hybrid Models

Chinese-Wall Policies for consulting companies

• Clients of any such company

– Companies, including their business data
– Often: mutual competitors

• Employees of consulting companies

– Are assigned to clients they consult
– Work for many clients → gather insider information

• Policy goal: No flow of (insider) information between competing
clients

Why look at specifically these policies? Modeling

• Composition of

– Discretionary IBAC components
– Mandatory ABAC components

• Driven by real-world demands: iterative refinements of a model
over time

– Brewer-Nash model
– Information flow model
– Attribute-based model

• Application areas: consulting, cloud computing

The Brewer-Nash Model Explicitly tailored towards
Chinese Wall (CW) policies
Model Abstractions

• Consultants represented by subjects
• Client companies represented by objects, which comprise a

company’s business data
• Modeling of competition by conflict classes: two different clients

are competitors ⇔ their objects belong to the same class
• No information flow between competing objects → a ,,wall”

separating any two objects from the same conflict class
• Additional ACM for refined management settings of access

permissions

Representation of Conflict Classes

• Client company data: object set O
• Competition: conflict relation C ⊆ O ×O : 〈o, o′〉 ∈ C ⇔ o and o′

belong to competing companies (non-reflexive, symmetric,
generally not transitive)

• In terms of ABAC:object attribute attO : O → 2O, such that
attO(o) = {o′ ∈ O|〈o, o′〉 ∈ C}.

Representation of a Consultant’s History

• Consultants: subject set S
• History relation H ⊆ S ×O : 〈s, o〉 ∈ H ⇔ s has previously

consulted o
• In terms of ABAC: subject attribute attS : S → 2O, such that
attS(s) = {o ∈ O|〈s, o〉 ∈ H}.

Brewer-Nash Security Model The Brewer-Nash model of the CW po-
licy is a det. automaton〈S,O,Q, σ, δ, q0, R〉 where

• S and O are sets of subjects (consultants) and (company data)
objects,

• Q = M × 2C × 2H is the state space where

– M = {m|m : S ×O → 2R} is the set of possible ACMs,
– C ⊆ O × O is the conflict relation: 〈o, o′〉 ∈ C ⇔ o and o′

are competitors,
– H ⊆ S × O is the history relation: 〈s, o〉 ∈ H ⇔ s has

previously consulted o,

• σ = OP ×X is the input alphabet where

– OP = {read, write} is a set of operations,
– X = S ×O is the set of arguments of these operations,

• δ : Q× σ → Q is the state transition function,
• q0 ∈ Q is the initial state,
• R = {read, write} is the set of access rights.

Brewer-Nash STS

• Read (similar to HRU notation) command read(s,o)::=if read ∈
m(s,o) ∧∀〈o′, o〉 ∈ C : 〈s, o′〉 6∈ H then H := H ∪ {〈s, o〉} fi

• Write command write(s,o)::=if write ∈ m(s,o)
∧∀o′ ∈ O : o′ 6= o⇒ 〈s, o′〉 6∈ H then H := H ∪ {〈s, o〉} fi

Not shown: Discretionary policy portion → modifications in m to enable
fine-grained rights management.
Restrictiveness

• Write Command: s is allowed to write
o⇔ write ∈ m(s, o) ∧ ∀o′ ∈ O : o′ 6= o⇒ 〈s, o′〉 6∈ H

• Why so restrictive? → No transitive information flow!
• → s must never have previously consulted any other client!
• any consultant is stuck with her client on first read access

Brewer-Nash Model

• Initial State q0

– m0: consultant assignments to clients, issued by
management

– C0: according to real-life competition
– H0 = ∅

Secure State ∀o, o′ ∈ O, s ∈ S : 〈s, o〉 ∈ Hq ∧〈s, o′〉 ∈ Hq ⇒ 〈o, o′〉 6∈ Cq

Corollary: ∀o, o′ ∈ O, s ∈ S : 〈o, o′〉 ∈ Cq ∧ 〈s, o〉 ∈ Hq ⇒ 〈s, o′〉 6∈ Hq

Secure Brewer-Nash Model Similar to ,,secure BLP model”.

Summary Brewer-Nash What’s remarkable with this model?

• Composes DAC and MAC components
• Simple model paradigms

– Sets (subjects, objects)
– ACM (DAC)
– Relations (company conflicts, consultants history)
– Simple ,,read” and ,,write” rule
– → easy to implement

• Analysis goals

– MAC: Model security
– DAC: safety properties

• Drawback: Restrictive write-rule

Professionalization

• Remember the difference: trusting humans (consultants) vs.
trusting software agents (subjects)

– Consultants are assumed to be trusted
– Systems (processes, sessions, ...) may fail

• → Write-rule applied not to humans, but to software agents
• → Subject set S models consultant’s subjects (e.g. processes) in a

group model

– All processes of one consultant form a group
– Group members

∗ have the same rights in m
∗ have individual histories
∗ are strictly isolated w.r.t. IF

The Least-Restrictive-CW Model Restrictiveness of
Brewer-Nash Model:

• If 〈oi, ok〉 ∈ C: no transitive information flow oi → oj → ok, i.e.
consultant(s) of oi must never write to any oj 6= oi

• This is actually more restrictive than necessary: oj → ok and
afterwards oi → oj would be fine

• Criticality of an IF depends on existence of earlier flows.

Idea LR-CW: Include time as a model abstraction!

• ∀s ∈ S, o ∈ O: remember, which information has flown to entity
• → subject-/object-specific history, ≈attributes (,,lables”)

LR-CW Model The Least-Restrictive model of the CW policy is a de-
terministic automaton〈S,O, F, ζ,Q, σ, δ, q0〉 where

• S and O are sets of subjects (consultants) and data objects,
• F is the set of client companies,
• ζ : O → F (,,zeta”) function mapping each object to its company,

• Q = 2C × 2H is the state space where

– C ⊆ F × F is the conflict relation: 〈f, f ′〉 ∈ C ⇔ f and f ′

are competitors,
– H = {Ze ⊆ F |e ∈ S ∪ O} is the history set: f ∈ Ze ⇔ e

contains information about f(Ze is the ,,history label” of e),

• σ = OP ×X is the input alphabet where

– OP = {read, write} is the set of operations,
– X = S ×O is the set of arguments of these operations,

• δ : Q× σ → Q is the state transition function,
• q0 ∈ Q is the initial state

Inside the STS

• a reading operation: requires that no conflicting information is
accumulated in the subject potentially increases the amount of
information in the subject

• a writing operation: requires that no conflicting information is
accumulated in the object potentially increases the amount of
information in the object

Model Achievements

• Applicability: more writes allowed in comparison to Brewer-Nash
• Paid for with

– Need to store individual attributes of all entities (history
labels)

– Dependency of write permissions on earlier actions of other
subjects

• More extensions:

– Operations to modify conflict relation
– Operations to create/destroy entities

11/12

Systemsicherheit

An MLS Model for Chinese-Wall Policies
Conflict relation is

• non-reflexive: no company is a competitor of itself
• symmetric: competition is always mutual
• not necessarily transitive: any company might belong to more

than one conflict class → Cannot be modeled by a lattice

Idea: Labeling of entities

• Class of an entity (subject or object) reflects information it carries
• Consultant reclassified whenever a company data object is read
• → Classes and labels:
• Class set of a lattice C = {DB,Citi, Shell, Esso}
• Entity label: vector of information already present in each

business branch
• In example, a vector consists of 2 elements ∈ C resulting in labels

as:

– [ε, ε] (exclusively for infC)
– [DB, ε] (for DB-objects or -consultants)
– [DB,Shell] (for subjects or objects containing information

from both DB and Shell)

Why is the ,,Chinese Wall” policy interesting?

• One policy, multiple models:
• Brewer-Nash model demonstrates hybrid

DAC-/MAC-/IFC-approach
• Least-Restrictive CW model demonstrates a more practical

professionalization
• MLS-CW model demonstrates applicability of lattice-based IF

modeling → semantically cleaner approach
• Applications: Far beyond traditional consulting scenarios...→

current problems in cloud computing!

Summary - Security Models
• Formalize informal security policies for the sake of

– objectification by unambiguous calculi
– explanation and proof of security properties by formal

analysis techniques
– foundation for correct implementations

• Are composed of simple building blocks (e.g. ACMs, sets,
relations, functions, lattices, state machines) that are combined
and interrelated to form more complex models

Practical Security Engineering
Goal: Design of new, application-specific models

• Identify common components → generic model core
• Core specialization
• Core extension
• Glue between model components

Model Engineering
Model Engineering Principles

• Core model
• Core specialization
• Core extension
• Component glue

Core Model (Common Model Core)

• HRU: 〈Q,
∑
, δ, q0, 6 R〉

• DRBAC0 : 〈Q,
∑
, δ, q0, 6 R, 6 P, 6 PA〉

• DABAC: 〈6 A,Q,
∑
, δ, q0〉

• TAM: 〈Q,
∑
, δ, q0, 6 T, 6 R〉

• BLP: 〈6 S, 6 O, 6 L,Q,
∑
, δ, q0, 6 R〉

• NI: 〈Q,
∑
, δ, 6 λ, q0, 6 D, 6 A, 6 dom, 6=NI , 6 Out〉

• → 〈Q,
∑
, δ, q0〉

Core Specialization

• HRU: 〈Q,
∑
, δ, q0, R〉 ⇒ Q = 2S × 2O ×M

• DRBAC0 :
〈Q,

∑
, δ, q0, R, P, PA〉 ⇒ Q = 2U × 2UA × 2S ×USER×ROLES

• DABAC: 〈A,Q,
∑
, δ, q0〉 ⇒ Q = 2S × 2O ×M × ATT

• TAM: 〈Q,
∑
, δ, q0, T, R〉 ⇒ Q = 2S × 2O × TY PE ×M

• BLP: 〈S,O,L,Q,
∑
, δ, q0, R〉 ⇒ Q = M × CL

• NI: 〈Q,
∑
, δ, λ, q0, D,A, dom,=NI , Out〉

Core Extensions

• HRU: 〈Q,
∑
, δ, q0, R〉 ⇒ R

• DRBAC0 : 〈Q,
∑
, δ, q0, R, P, PA〉 ⇒ R,P, PA

• DABAC: 〈A,Q,
∑
, δ, q0〉 ⇒ A

• TAM: 〈Q,
∑
, δ, q0, T, R〉 ⇒ T,R

• BLP: 〈S,O,L,Q,
∑
, δ, q0, R〉 ⇒ S,O,L,R

• NI:
〈Q,

∑
, δ, λ, q0, D,A, dom,=NI , Out〉 ⇒ λ,D,A, dom,=NI , Out

• → R,P, PA,A, T, S,O, L,D, dom,=NI , ...

Glue

• E.g. TAM: State transition scheme (types)
• E.g. DABAC: State transition scheme (matrix and predicates)
• E.g. Brewer/Nash Chinese Wall model: ,,∧” (simple, because
H + C 6= m)

• E.g. BLP (much more complex, because rules restrict m by L and
cl)

– BLP read rule
– BLP write rule
– BST

Model Specification
Policy Implementation

• We want: A system controlled by a security policy
• We have: A (satisfying) formal model of this policy
• How to convert a formal model into an executable policy? →

Policy specification languages
• How to enforce an executable policy in a system? → security

mechanisms and architectures

Role of Specification Languages: Same as in software engineering

• To bridge the gap between

– Abstractions of security models (sets, relations, ...)
– Abstractions of implementation platforms (security

mechanisms such as ACLs, krypto-algorithms,...)

• Foundation for Code verification or even more convenient:
Automated code generation

Approach

• Abstraction level: Step stone between model and security
mechanisms

• → More concrete than models
• → More abstract than programming languages (,,what” instead

of ,,how”)
• Expressive power: Domain-specific, for representing security

models only
• → Necessary: adequate language paradigms
• → Sufficient: not more than necessary (no dead weight)

Domains

• Model domain, e.g. AC/IF/NI models (TAM, RBAC, ABAC)
• Implementation domain (OS, Middleware, Applications)

Model Specification
CorPS
SELinux Policy Language

Summary

Security Mechanisms
Authorization
Access Control Lists
Capability Lists

Interceptors

Summary

Cryptographic Mechanisms
Encryption

Symmetric

Asymmetric

Cryptographic Hashing

Digital Signatures

Cryptographic Attacks

Identification and Authentication
Passwords
Biometrics
Cryptographic Protocols

SmartCards

Authentication Protocols
Summary

Security Architectures
Design Principles
Operating Systems Architectures
Nizza
SELinux
Distributed Systems Architectures
CORBA
Web Services
Kerberos
Summary

12/12

	Security Requirements
	Vulnerability Analysis
	Human Vulnerabilities
	Indirect Information Flow in Access Control Systems
	Organizational Vulnerabilities
	Technical Vulnerabilities
	Buffer Overflow Attacks
	Summary - Vulnerabilities

	Threat Analysis
	Attack Objectives and Attackers
	Attack Methods
	Root Kits

	Risk Analysis
	Assessment

	Security Policies and Models
	Implementation Alternative A
	Implementation Alternative B

	Security Models
	Access Control Models
	Roles-based Access Control Models (RBAC)
	Attribute-based Access Control Models
	Information Flow Models
	BLP Security
	The Biba Model
	Non-interference Models
	Hybrid Models
	An MLS Model for Chinese-Wall Policies

	Summary - Security Models

	Practical Security Engineering
	Model Engineering
	Model Specification
	Model Specification
	CorPS
	SELinux Policy Language

	Summary

	Security Mechanisms
	Authorization
	Access Control Lists
	Capability Lists
	Interceptors
	Summary

	Cryptographic Mechanisms
	Encryption
	Cryptographic Hashing
	Digital Signatures
	Cryptographic Attacks

	Identification and Authentication
	Passwords
	Biometrics
	Cryptographic Protocols

	Summary

	Security Architectures
	Design Principles
	Operating Systems Architectures
	Nizza
	SELinux

	Distributed Systems Architectures
	CORBA
	Web Services
	Kerberos

	Summary

