Aussagen

Aussagen sind Sätze die wahr oder falsch sind, d.h. der Wahrheitswert ist wahr oder falsch.

Verknüpfungen von Aussagen Seien pund q Aussagen, dass sind folgende Sätze auch Aussagen - $p \land q$ ünd $p \lor q$ öder $\neg p$ "nicht $p \to q$ impliziert $p \leftrightarrow q$ "genau dann wenn"

Wahrheitswerteverlauf

_p	q	$p \wedge q$	$p \lor q$	$\neg q$	$p \rightarrow q$	$p \leftrightarrow q$
f	f	f	f	W	W	W
f	w	f	w	w	w	f
w	f	f	W	f	f	f
W	w	w	w	f	w	w

Aussagenlogische Variablen Variable die den Wert woder fannimmt

Aussagenlogische Formel Verknüpfung aussagenloser Variablen nach obigen Muster

Belegung Zuordnung von w/f an jede Variable einer aussagenlogischer Formel

Wahrheitswerteverlauf Wahrheitswert der Aussagenformel in Abhängigkeit von der Belegung der Variable

Tautologie Formel deren Wahrheitswerteverlauf konstant w ist **Kontradiktion** Formel deren Wahrheitswerteverlauf konstant f ist **Kontraposition** $(p \to q) \leftrightarrow (\neg q \to p)$ ist eine Tautologie

Modus Potens $(p \lor (p \to q)) \to q$ ist eine Tautologie

Äquivalenz Zwei Formeln p,q sind äquivalent (bzw logisch äquivalent) wenn $p \leftrightarrow$ Tautologie ist. Man schreibt $p \equiv q$. Die Formel p impliziert die Formel q, wenn $p \rightarrow q$ eine Tautologie ist

Regeln

- $p \wedge q \equiv q \wedge p$ (Kommutativ)
- $p \lor q \equiv q \lor p$ (Kommutativ)
- $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$ (Assoziativ)
- $p \lor (q \lor r) \equiv (p \lor q) \lor (Assoziativ)$
- $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ (Distributiv)
- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ (Distributiv)
- $\neg(\neg q) \equiv q$ (Doppelte Verneinung)
- $\neg(p \land q) \equiv (\neg p) \land (\neg q)$ (de Morgansche)

Aussagenformen in einer Variable x aus dem Universum U heißen Prädikate von U. Aussagenformen in n Variablen $x_1,...,x_n$ aus dem Universum U heißen "n-stellige Prädikate" von U. Seien p,q Prädikate über U

- $(\forall x : (p(x) \land q(x))) \leftrightarrow (\forall x : p(x) \land \forall x : q(x))$
- $\bullet \ \exists x: (p(x) \vee q(x)) \leftrightarrow (\exists x: p(x) \vee \exists x: q(x))$
- $\bullet \ \neg(\forall x:p(x)) \leftrightarrow \exists x:\neg p(x)$
- $\neg(\exists x : p(x)) \leftrightarrow \forall x : \neg p(x)$

Achtung: Verschiedenartige Quantoren dürfen nicht getauscht werden! gleichartige Quantoren dürfen getauscht werden

Mengen

Ëine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens- Cantor Von jedem Objekt steht fest, ob es zur Menge gehört oder nicht.

Wunsch 0 Es gibt eine Menge. Ist A irgendeine Menge, so ist $x \in A: \neg(x=x)$ eine Menge ohne Elemente, die sogenannte leere Menge \emptyset .

Wunsch 1 " $x \in y$ ßoll Aussagenform über dem Universum U aller Mengen sein. D.h. für je zwei Mengen x und y ist entweder x ein Element von y oder nicht. D.h. " $x \in y$ ïst ein 2-stelliges Prädikat über U.

Wunsch 2 Ist p(x) ein Prädikat über U, so soll es eine Menge geben, die aus genau denjenigen Mengen x besteht, für die p(x) wahr ist. Bezeichnung $\{x: p(x) \text{ ist } - wahr^{\circ}\}$. Danach gäbe es eine Menge M, die aus genau denjenigen Mengen x mit $x \notin x$ besteht: $M = \{x: x \notin x\}$.

Wunsch 2' Ist A eine Menge und p(x) ein Prädikat über U, dann gilt es eine Menge B die aus genau denjenigen Mengen x aus A besteht, für die p(x) wahr ist. Bezeichnung: $B = x \in A : p(x)wahr$. Folgerung: die Gesamtheit aller Mengen ist selbst keine Menge, sonst findet man einen Widerspruch wie oben.

Wunsch 3 Zwei Mengen x,y sind genau dann gleich wenn sie diesselben Elemente enthalten. D.h. $x=y:\leftrightarrow \forall z:(z\in x\leftrightarrow z\in y)$. Somit gilt für zwei Prädikate p(x), q(x) über U und jede Menge A: $x\in A:p(x)wahr=x\in A:q(x)wahr$ genau dann, wen q(x), p(x) den gleichen Wahrheitswert für jedes x aus A haben.

Wunsch 4 Zu jeder Menge A gibt es eine Menge B, die aus genau denjenigen Mengen besteht, die Teilmengen von A sind. Dabei ist x eine Teilmenge von $y:\leftrightarrow \forall z: (z\in x\to z\in y)[x\subseteq y]$ $B=x:x\subseteq A=\wp(A)$ B heißt Potentmenge von A

Teilmengen

A Teilmenge von B $\leftrightarrow \forall x: (x \in A \to x \in B) :\Rightarrow A \subseteq B$ A Obermenge von B $\leftrightarrow \forall x: (x \in B \to x \in A) :\Rightarrow A \supseteq B$ Folglich $A = B \leftrightarrow A \subseteq B \land B \subseteq A$ Schnittmenge von A und B: $A \cap B = x: x \in A \land x \in B$ Vereinigungsmenge von A und B: $A \cap B = x: x \in A \land x \in B$ Vereinigungsmenge von A und B: $A \cap B = x: x \in A \land x \in B$ Sei eine Menge (von Mengen) dann gibt es eine Menge die aus genau den Mengen besteht, die in jeder Menge von A enthalten sind (außer $A = \emptyset$). Ebenso gibt es Mengen die aus genau den Mengen besteht, die in wenigstens einer Menge aus A liegen. Die Existenz dieser Menge wird axiomatisch gefordert in ZFC: $UA = x: \exists z \in A: x \in z$ Seien A,B Mengen, dann sei $A/B:=x \in A: x \notin B = A \land B$ De Moorgansche Regel: $\overline{A \cup B} = \overline{A} \cap \overline{B}$ und $\overline{A} \cap \overline{B} = \overline{A} \cup \overline{B}$ Das geordnete Paar (x,y) von Mengen x,y ist definiert durch x,x,y:=x,y A und B Mengen: $AxB:=(x,y):x \in A \land y \in B$

Relationen

A=Peter, Paul, Marry und $B=C++, Basic, Lisp: R\subseteq AxB,$ etwa (Peter,c++),(Paul, C++), (Marry,Lisp). Seien A,B Mengen: Eine Relation von A nach B ist eine Teilmenge R von AxB. $(x,y)\in R: x$ steht in einer Relation R zu y; auch xRy Ist A=B, so heißt R auch binäre Relation auf A

binäre Relation

- All relation $R := AxA \subseteq AxA$
- Nullrelation $R := \emptyset \subseteq AxA$
- Gleichheitsrelation R := (x, y)...x = y
- A = R; $R := ((x, y) \in \mathbb{R}x\mathbb{R}, x < y)$
- $A = \mathbb{Z}$; $R := (x, y) \in \mathbb{Z} \times \mathbb{Z}$: x ist Teiler von y kurz: x—y

Eigenschaften von Relationen Sei $R \in AxA$ binäre Relation auf A

- Reflexiv \leftrightarrow xRx $\forall x \in A$
- symmetrisch $\leftrightarrow xRy \rightarrow yRx$
- Antisymmetrisch $\leftrightarrow xRy \land yRx \rightarrow x = y$
- Transitiv $\leftrightarrow xRy \land yRz \rightarrow xRz$
- totale Relation $\leftrightarrow xRy \lor yRx \forall x, y \in A$
- R heißt Äquivalenzrelation ↔ R reflexiv, symmetrisch und transitiv
- \bullet R heißt Ordnung \leftrightarrow R reflexiv, antisymmetrisch und transitiv
- $\bullet\,$ R heißt Totalordnung \leftrightarrow R Ordnung und total
- $\bullet\,$ R heißt Quasiordnung \leftrightarrow R reflexiv und transitiv

Äqivalenzrelation Sei A Menge, $C\wp(A)$ Menge von Teilmengen von A. C heißt Partition von A, falls gilt: 1. UC = A d.h. jedes $x \in A$ liegt in (wenigstens) einem $y \in C$ 2. $\emptyset \not\in C$ d.h. jedes $y \in C$ enthält (wenigstens) ein Element von A 3. $X \cap Y = \emptyset$ f.a. $X \not\in Y$ aus C

Zwei Mengen $X \cap Y = \emptyset$ heißten disjunkt. Satz: Sei \sim Äquivalenzrelation auf A. Für $x \in A$ betrachtet

 $[x]_{/\sim} := y \in A : y \sim x$. Dann ist $[x]_{/\sim} : x \in A = C_{/\sim}$ Partition von A. Die Elemente $[x]_{/\sim}$ von $C_{/\sim}$ heißen Äquivalenzklassen. Die Elemente von C heißten Teile, Klassen oder Partitionen.

Somit ist $\equiv (modm)$ eine Äquivalenz
relation. Ihre Äquivalenzklassen heißen Restklassen mod m

Ein Graph G=(V,E) ist ein Paar bestehend aus einer Menge V und $E\subseteq (x,y:x\neq y \text{ aus V}).$ Zu $a,b\in V$ heißt eine Folge $P=x_1,...,x_n$ von paarweise verschiedenen Ebenen mit

 $a=x_0,b=x_j; x_{j-1},x_i\in Ea*i\in b*j$ ein a,b-Weg der Länge l oder Weg a nach b. Durch $a\sim b$ gibt es einen a,b-Weg in G, wird eine Äquivalenzrelation auf V definiert, denn:

- " \sim reflexiv": es ist $x \sim x$, denn P = x ist ein x.x-Weg in G
- " ~ symmetrisch": aus $x \sim y$ folgt, es gibt einen x,y-Weg \to es gibt einen y,x-Weg $y \sim x$
- " \sim transitiv": aus $x \sim y$ und $y \sim x$ folgt, es gibt einen x,y-Weg und einen y,x-Weg

Die Äquivalenzklassen von \sim_G erzeugen die Zusammenhangskomponenten von G

Satz: Sei C eine Partition von A, dann wird durch $x \sim_G y \leftrightarrow$ es gibt ein $X \in C$ mit $x, y \in X$ eine Äquivalenzrelation auf A definiert.

(Halb) Ordnungen Sei also leq eine Ordnung auf X. Seo $A \subset X, b \in X$

- b minimal in $A \leftrightarrow b \in A$ und $(c \le b \to c = bf.a.c \in A)$
- b maximal in $A \leftrightarrow b \in A$ und $(b \le c \to b = cf.a.c \in A)$
- b kleinstes Element in A \leftrightarrow b \in A und (b < cf.a.c \in A)
- b größtes Element in $A \leftrightarrow b \in A$ und $(c \leq bf.a.c \in A)$
- b untere Schranke von A \leftrightarrow b < cf.a.c \in A
- \bullet b unitere behranke von $A \leftrightarrow b \leq cj.a.c \in A$
- b obere Schranke von A \leftrightarrow $c \leq bf.a.c \in A$
- b kleinste obere Schranke von A \leftrightarrow b ist kleinstes Element von ($b' \in X$: b' obere Schranke von A) auch Supremum von A: $\lor A = b$
- b größte untere Schranke von A \leftrightarrow b ist das größte Element von $(b' \in X : b'$ untere Schranke von A) auch Infinum von A; $\land A = b$

kleinstes und größtes Element sind jew. eindeutig bestimmt (falls existent)

Satz: Sei X Menge. \subseteq ist Ordnung auf $\wp(X)$. Ist $O \subseteq \wp(X)$, so ist $supO = \bigcup O \text{ und } infO = \bigcap O$

Satz: Die Teilbarkeitrelation — ist Ordnung auf den natürlichen Zahlen N. Es gibt sup(a, b) = kgV(a, b) (kleinstes gemeinsames Vielfaches) und in f(a,b) = qqT(a,b) (größtes gemeinsames Vielfaches)

Hesse Diagramm Darstellung einer Ordnung \subseteq auf X 1. Im Fall $x \subseteq y$ zeichne x ünterhalb" von y in die Ebene 2. Gilt $x \subseteq y(x \neq y)$ und folgt aus $x \subseteq z \subseteq y$ stets x = z oder y = z so wird x mit v "verbunden"

Zoonsche Lemma Zu jeder Menge und für jede Ordnung < auf X mit der Eigenschaft, dass jede nicht-leere Kette nach der beschränkt ist, gibt es ein maximales Element.

Wohlordnungssatz Jede Menge lässt sich durch eine Ordnung ⊂ so ordnen, dass jede nichtleere Teilmenge von X darin ein kleinstes Element ist

Induktion

X ist eine Menge, $X := X \vee X$ M Menge heißt induktiv $:\leftrightarrow \emptyset \in M \land \forall X \in M \ X^+ \in M.$

Ist O eine Menge von induktiven Mengen, $O \pm O$ dann ist auch $\bigcap O$ induktiv. Insbesondere ist der Durchschnitt zweier induktiver Mengen induktiv. Es gibt eine induktive Menge M:

 $M = \bigcap A \in \wp(M)$: Ainduktiv. Sei M' irgendeine (andere) induktive Menge $\to M \cap M'$ ist induktive Teilmenge von M. \mathbb{N}_M ist der Durchschnitt über alle induktiven Teilmengen von M $\mathbb{N}_M \subseteq M \cap M' \subseteq M'$. Folglich ist \mathbb{N}_m Teilmenge jeder induktiven Menge.

Satz I (Induktion I) Sei p(n) ein Prädikat über N. Gelte p(0) und $p(n) \to p(n^+)$ f.a. $n \in \mathbb{N}$ dann ist p(n) wahr f.a. $n \in \mathbb{N}$. Schreibe $x = y : \leftrightarrow x \in y \lor x = y$

Satz II (Induktion II) Sei p(n) ein Prädikat über N, gelte $(\forall x < n : p(x)) \to p(n)$ f.a. $n \in \mathbb{N}$. Damit ist p(n) wahr für alle $n \in \mathbb{N}$.

Funktionen

Seien A.B Mengen: Eine Relation $f \subseteq AxB$ heißt Funktion. A nach B (" $f: A \to B$ ") falls es zu jedem $x \in A$ genau ein $y \in B$ mit $(x,y) \in f$ gibt. Dieses y wird mit f(x) bezeichnet. Satz: $f: A \to B, g: A \to B$; dann gilt $f = g \leftrightarrow f(x) = g(x)$. Sei

 $f: A \to B$ Funktion

- f heißt injektiv \(\lefta\) jedes v aus B hat höchstens ein Urbild
- f heißt subjektiv \(\lefta\) jedes v aus B hat wenigstens ein Urbild
- f heißt bijektiv ↔ jedes v aus B hat genau ein Urbild

Ist $f:A\to B$ bijektive Funktion, dann ist auch $f^{-1}\subseteq BxA$ bijektiv von B nach A, die Umkehrfunktion von f. Man nennt f dann Injektion, Surjektion bzw Bijektion

- f injektiv \leftrightarrow $(f(x) = f(y) \rightarrow x = y)$ f.a. $x, y \in A$ oder $(x \neq y \rightarrow f(x) \neq f(y))$
- f surjektiv \leftrightarrow Zu jedem $x \in B$ existiert ein $x \in A$ mit f(x) = y
- f bijektiv ↔ f injektiv und surjektiv

Sind $f: A \to B$ und $g: B \to C$ Funktionen, so wird durch $(g \circ f)(x) := g(f(x))$ eine Funktion $g \circ f : A \to C$ definiert, die sog. Konkatenation/Hintereinanderschaltung/Verkettung/Verkopplung von f und g (gesprochen "g nach f").

Satz: $f: A \to B, g: B \to C$ sind Funktionen. Sind f,g bijektiv, so ist auch $g \circ f : A \to C$ bijektiv

Satz: ist $f: A \to B$ bijektiv, so ist f^{-1} eine Funktion B nach A. Mengen A.B. heißen gleichmächtig $(|A| = |B| \equiv A \cong B)$ falls Bijektion von A nach B. ≅ ist auf jeder Menge von Mengen eine Äquivalenzrelation

- "\cong \text{reflexiv}": $A \cong A$, denn $f: A \to A$, f(x) = X, ist Bijektion von A nach A
- " \cong symmetrisch": Aus $A \cong B$ folgt Bijektion von A nach B $\rightarrow B \cong A$
- "\simeq \text{transitiv}": Aus $A \cong B$ und $B \cong C$ folgt $A \cong C$

|A| = |A|: |A| ist die Kordinalität von A. d.h. die kleinste zu A gleichmächtige Ordinalzahl. Eine Ordinalzahl ist eine e-transitive Menge von e-transitiven Mengen. Eine Menge X heißt e-transitiv, wenn aus $a \in b$ und $b \in c$ stets $a \in c$ folgt. Sei $A := \mathbb{N}$ und $B=0,2,4,...=n\in\mathbb{N}:2|n,$ dann sind A und B gleichmächtig, denn $f: A \to B, f(x) = 2x$ ist Bijektion von A nach B. Eine Menge A heißt endlich, wenn sie gleichmächtig zu einer natürlichen Zahl ist; sonst heißt A unendlich. Eine Menge A heißt Deckend-unendlich, falls es eine Injektion $f: A \to B$ gibt die nicht surjektiv ist. Satz: A unendlich \leftrightarrow Å deckend-unendlich A.B sind Mengen. A heißt höchstens so mächtig wie B, falls es eine Injektion von A nach B gibt. $|A| \leq |B|$ bzw $A \leq B$. \leq ist Quasiordnung auf jeder Menge von Mengen.

- "≺ reflexiv": Injektion von A nach A
- "\(\preceq\) transitiv": $A \leq B$ und $B \leq C$ folgt Injektion $f: A \to B$ und $q: B \to C$. Verkopplung $q \circ f \to A \prec C$

Satz (Vergleichbarkeitssatz): Für zwei Mengen A,B gilt $|A| \leq |B|$

oder $|B| \leq |A|$. Eine Relation f von A nach B heißt partielle Bijektion (oder Matching), falls es Teilmengen $A' \subseteq A$ und $B' \subseteq B$ gibt sodass f eine Bijektion von A' nach B' gibt. Sei M die Menge aller Matchings von A nach B und wie jede Menge durch \subseteq geordnet. Sei $K \subseteq M$ eine Kette von Matchings. K besitzt eine obere Schranke ($\bigcup K$) in M. Seien (x,y); (x',y') zwei Zuordnungspfeile aus $\bigcup K$, zeige $x \neq x'$ und $y \neq y'$ dann folgt Matching. Jede Kette von Matchings benutzt eine obere Schranke, die ebenfalls ein Matching ist \rightarrow es gibt ein maximales Matching von A nach B, etwa h. Im Fall $(x \in A, y \in B \text{ mit } (x, y) \in h)$ ist h eine Injektion von A nach B, d.h. $|A| \subseteq |B|$ andernfalls $y \in B, x \in A$ mit $x, y \in h$ ist h^{-1} eine Injektion von B nach A, d.h. $|B| \subset |A|$.

 $|A| \subset |B|$ und $|B| \subset |A|$ folgt |A| = |B|Satz (Cantor): Für jede Menge X gilt: $|X| < \wp(X)$ und $|X| \neq |\wp(X)|$. Z.B. ist $|\mathbb{N}| < |\mathbb{R}|;$ zu $|\mathbb{N}|$ gleichmächtige Mengen nennt man abzählbar: unendliche nicht-abzählbare Mengen nennt man überzählbar.

Satz (Cantor/Schröder/Bernstein): Für zwei Mengen A,B gilt: Aus

Kontinuitätshypothese Aus $|\mathbb{N}| \leq |A| \leq |\mathbb{R}|$ folgt $|A| = |\mathbb{N}|$ oder $|A| = |\mathbb{R}|$ (keine Zwischengrößen).

Seien M.I zwei Mengen. Eine Funktion $f: I \to M$ von I nach M heißt auch Familie über der Indexmenge I auf M. Schreibweise $(m_i)_{i\in I}$ wobei $m_i=f(i)$. Familien über $I=\mathbb{N}$ heißen Folgen (bzw. unendliche Folgen). Eine (endliche) Folge ist eine Familie über einer endlichen Indexmenge I. Funktionen von 1, ..., n in einer Menge A $(a_q,...,a_n \in A)$ heißen n-Tupel. Für eine Mengenfamilie $(A_i)_{i\in A}$ sei ihr Produkt durch $\prod A_i = (f : \text{Funktion von I nach} \bigcup A_i \text{ mit } f(i) \in A_i \text{ f.a. } i \in I).$ Ist

allgemein $A_i = A$ konstant, so schreibe $\prod A_i = A^I = f: I \to R$. Bezeichnung auch $2^{\mathbb{N}}$.

Gruppen, Ringe, Körper

Eine Operation auf eine Menge A ist eine Funktion $f: AxA \to A$; schreibweise x f y. EIne Menge G mit einer Operation o auf G heißt Gruppe, falls gilt:

- $a \circ (b \circ c) = (a \circ b) \circ c$ freie Auswertungsfolge
- es gibt ein $e \in G$ mit $a \circ e = a$ und $e \circ a = a$ f.a. $a \in G$. e heißt neutrales Element von G und ist eindeutig bestimmt
- zu jedem $a \in G$ existiert ein $b \in G$ mit $a \circ b = e$ und $b \circ a = e$; wobei e ein neutrales Element ist. b ist durch a eindeutig bestimmt, denn gäbe es noch ein $c \in G$ mit $a \circ c = e$ folgt $b = b \circ e$. Schreibweise für dieses eindeutig durch a bestimmte

Eine Gruppe G mit \circ wird auch mit (G, \circ) bezeichnet. Sie heißt kommutativ bzw abelsch, falls neben 1..2, und 3, außerdem gilt:

• $a \circ b = b \circ a$ f.a. $a, b \in G$

Das neutrale Element aus 2. wird mit 1 bezeichnet. Im Fall der abelschen Gruppe benutzt man gerne ädditive Schreibung": "+ßtatt "ound "Oßtatt" 1" (Bsp: 1*a = a*1 = a). Eine Bijektion von X nach X heißt Permutation von X. (S_X, \circ) ist eine Gruppe.

Zwei Gruppen (G, \circ_G) und (H, \circ_H) heißen isomorph, falls es einen Isomorphismus von (G, \circ_G) nach (H, \circ_H) gibt (bzw. von G nach H) Schreibweise $(G, \circ_G) \cong (H, \circ_H)$

- " \cong reflexiv": $G \cong G$, denn id_G ist ein Isomorphismus
- " \cong symmetrisch": aus $G \cong G$ folgt: es existiert ein bijektiver Homomorphismus
- " \cong transitiv": sei $G \cong H$ und $H \cong J \to$ es gibt einen Isomorphismus $\phi: G \to H$ und $\psi: H \to J \xrightarrow{} \phi \circ \psi: G \to J \to G$ J ist bijektiv. $\phi \circ G$ ist Homomorphismus von G nach J und bijektiv also Isomorph

Satz: Jede Gruppe (G, \circ) ist zu einer Untergruppe von (S_G, \circ)

Arithmetik von \mathbb{N} +: $\mathbb{N}x\mathbb{N} \to \mathbb{N}$ wird definiert durch:

- m+0:=m f.a. $m \in \mathbb{N}$ (0 ist neutral)
- m+n sei schon definiert f.a. $m \in \mathbb{N}$ und ein gutes $n \in \mathbb{N}$
- $m + n^+ := (m + n)^+$ f.a. $m, n \in \mathbb{N}$

Satz: m + n = n + m f.a. $m, n \in \mathbb{N}$ (Beweis induktiv über m) Satz: l + (m + n) = (l + m) + n f.a. $l, m, n \in \mathbb{N}$ (Klammern sind neutral bzgl +)

Satz (Streichungregel): aus a + n = b + n folgt a = b f.a. $a, b, n \in \mathbb{N}$

Analog: Multiplikation $* : \mathbb{N}x\mathbb{N} \to \mathbb{N}$ wird definiert durch:

- m * 0 := 0 f.a. $m \in \mathbb{N}$
- $m * n^+ = m * n + m$ f.a. $n \in \mathbb{N}$

Es gilt:

- m * n = n * m f.a. $n \in \mathbb{N}$
- $m * (n * l) = (m * n) * l \text{ f.a. } m, n \in \mathbb{N}$
- m * 1 = 1 * m = m f.a. $m \in \mathbb{N}$
- $a * n = b * n \rightarrow a = b$ f.a. $a, b \in \mathbb{N}, n \in \mathbb{N}/0$
- a * (b + c) = a * b + a * c (Distributivgesetz)

Die ganzen Zahlen \mathbb{Z} Durch $(a,b) \sim (c,d) \leftrightarrow a+d=b+c$ wird eine Äquivalenzrelation auf $\mathbb{N}x\mathbb{N}$ definiert. Die

Äquivalenzklassen bzgl \sim heißen ganze Zahlen (Bezeichnung \mathbb{Z} , Bsp $17 = [(17,0)]_{\sim}$). Wir definieren Operationen +, * auf \mathbb{Z} durch:

- $[(a,b)]_{/\sim} + [(c,d)]_{/\sim} = [(a+c,b+d)]_{/\sim}$
- $[(a,b)]_{/\sim} * [(c,d)]_{/\sim} = [(ac+bd, ad+bc)]_{/\sim}$

Zu zeigen ist: Die auf der rechten Seite definierten Klassen hängen nicht von der Wahl der "Repräsentanten" der Klassen auf der linken Seite ab (Wohldefiniert).

Formal (für +): $[(a,b)]_{/\sim} = [(a',b')]_{/\sim}$ und $[(c,d)]_{/\sim} = [(c',d')]_{/\sim}$ impliziert $[(a,b)]_{/\sim} + [(c,d)]_{/\sim} = [(a'+c',b'+d')]_{/\sim}$. Aus der Vss konstant kommt a+b'=b+a' und c+d'=c'+d. Dann folgt a+c+b'+d'=b+d+a'+c', also $(a+c,b+d)\sim (a'+c',b'+d')$. Satz: $\mathbb Z$ ist eine abelsche Gruppe (+ assoziativ, enthält neutrales Element, additiv Invers). $[(a,0)]_{/\sim}$ wird als a notiert.

 $-[(a,0)]_{/\sim} = [(0,a)]_{/\sim}$ wird als a notiert. Anordnung: $[(a,b)]_{/\sim} \subseteq [(c,d)]_{/\sim} \leftrightarrow a+d \leq b+c$

Ein Ring R ist eine Menge mit zwei Operationen $+,*:\mathbb{R}x\mathbb{R}\to\mathbb{R}$ mit:

- a + (b + c) = (a + b) + c f.a. $a, b, c \in \mathbb{R}$
- Es gibt ein neutrales Element $O \in \mathbb{R}$ mit O + a = a + O = O f.a. $a \in \mathbb{R}$
- zu jedem $a \in \mathbb{R}$ gibt es ein $-a \in \mathbb{R}$ mit a + (-a) = -a + a = 0
- a+b=b+a f.a. $a,b\in\mathbb{R}$
- a * (b * c) = (a * b) * c f.a. $a, b, c \in \mathbb{R}$
- a * (b + c) = a * b + a * c f.a. $a, b, c \in \mathbb{R}$

R heißt Ring mit 1, falls:

• es gibt ein $1 \in \mathbb{R}$ mit a * 1 = 1 * a = a f.a. $a \in \mathbb{R}$

R heißt kommutativ, falls:

• a * b = b * a f.a. $a, b \in \mathbb{R}$

Ein kommutativer Ring mit $1 \neq O$ heißt Körper, falls:

- zu jedem $a \in \mathbb{R}$ gibt es ein $a^{-1} \in \mathbb{R}$ mit $a*a^{-1} = a^{-1}*a = 1$ Bemerkung: O kann kein multiplikativ inverses haben.
 - Ist \mathbb{R} ein Körper, so ist $\mathbb{R}^* = \mathbb{R}/(0)$ mit * eine abelsche Gruppe.

 - $\bullet \ \mathbb{Q}, \mathbb{C}, \mathbb{R}$ mit + und * ist ein Körper

Division mt Rest in \mathbb{Z} Satz: Zu $a, b \in \mathbb{Z}, b \neq 0$, gibt es eindeutig bestimmte $q, r \in \mathbb{Z}$ mit a = q * b + r und $0 \leq q < |b|$ (d.h. \mathbb{Z} ist ein euklidischer Ring). (Beweis über Induktion)

Zerlegen in primäre Elemente Satz: Jede ganze Zahl n > 0 lässt sich bis auf die Reihenfolge der Faktoren eindeutig als Produkt von Primzahlen darstellen

Produkt von Primzahlen darstellen. Beweis-Existenz mit Annahme: Der Satz gilt nicht, dann gibt es eine kleinste Zahl n die sich nicht als Produkt von Primzahlen schreiben lässt \rightarrow n weder Primzahl noch $1\rightarrow n=m*l$ für $m,l>1\rightarrow$ m und l sind Produkt von Primzahlen $\rightarrow m*l=$ Produkt von Primzahlen. Eindeutigkeit mit Annahme: es gibt ein n>0 ohne eindeutige Primfaktorzerlegung (PFZ) \rightarrow es gibt ein kleinstes n>0 ohne eindeutige PFZ. Kommt eine Primzahl p in beiden Zerlegungen vor, so hat auch $\frac{n}{p}$ zwei verschiedene PFZen. Man erhält die PFZ von $n'=(1_1-p_1)*b$ aus den PFZen von q_1-p_1 und b.. -; Eindeutig bestimmbar.

Arithmetik im Restklassenring in \mathbb{Z} Sei m > 1 gegeben, $a \equiv b \mod m \leftrightarrow m|a-b$ def. Relation auf \mathbb{Z} . Die Äquivalenzklasse zu a wird mit \bar{a} bezeichnet, d.h.

 $\bar{a}=[a]_{\text{mod m}}=x\in\mathbb{Z}:x\equiv \text{a mod m},\,\mathbb{Z}_m=\bar{a}:a\in\mathbb{Z}.$ Sei dazu $\bar{a}\in\mathbb{Z}_m$ beliebig.

Division mit Rest \rightarrow es gibt eindeutig bestimmt q,r mit a=q*m+r und

 $0 \le r < m \to a - r = q * m \to m | a - r \to a \equiv r \mod m \to \bar{a} = \bar{r}$. Also tritt \bar{a} in der Liste $\bar{0}, \bar{1}, ..., m-1$ auf. Aus $0 \le i < j \le m-1$ folgt $\bar{i} \ne \bar{j}$. In der Liste $\bar{0}, \bar{1}, ..., m-1$ gibt es daher keine Wiederholungen $\to |\mathbb{Z}_M| = m$.

Wir definieren Operationen +,* auf \mathbb{Z}_m durch $\bar{a} + \bar{b} := a + b$ und $\bar{a} * \bar{b} := a * \bar{b}$ für $a, b \in \mathbb{Z}$. Wohldefiniert: aus $\bar{a} = \bar{a}'$ und $\bar{b} = \bar{b}'$ folgt $\bar{a} + \bar{b} = \bar{a}' + \bar{b}'$. Analog für Multiplikation.

Eigenschaften von $\mathbb Z$ mit +,* werden auf $\mathbb Z$ mit +,* "vererbt", z.B. Distributivgesetz.

Satz: Sei $m \geq 2$ dann ist \mathbb{Z}_m mit +,* ein kommutativer Ring mit $\bar{1} \neq \bar{0}$. Genau dann ist \mathbb{Z}_m sogar ein Körper, wenn m eine Primzahl ist.

Satz: Genau dann gibt es einen Körper mit n ELementen, wenn n eine Primzahl ist. D.h.. wenn $n=p^a$ ist für eine Primzahl p und $a \ge 1$.

Konstruktion von \mathbb{Q} aus \mathbb{Z} Sei $M = \mathbb{Z}x(\mathbb{Z}/0$ die Menge von Brüchen. Durch $(a,b) \sim (c,d) \leftrightarrow ad = bc$ wird Äquivalenzrelation auf M durchgeführt. Schreibweise für die Äquivalenzklassen $\frac{a}{b}$ Die Elemente von $\mathbb{Q}: \frac{a}{b}: a,b \in \mathbb{Z}, b \neq 0$ heißten rationale Zahlen. Definiere Operationen +,* auf \mathbb{Q} wie folgt:

- $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{b*d}$ (wohldefiniert)
- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{a*c}{b*d}$

Satz: \mathbb{Q} mit +,* ist ein Körper.

Durch $\frac{a}{b} \leq \frac{c}{d}$ wird eine totale Ordnung auf \mathbb{Q} definiert.

Konstruktion von \mathbb{R} aus \mathbb{Q} mit Dedchin-Schnitten.

Ring der formalen Potenzreihe Sei k ein Körper (oder nur ein Ring mit 1+0). Eine Folge $(a_0,a_1,...,a:n) \in K^{\mathbb{N}}$ mit Einträgen aus K heißt formale Potenzreihe. Die Folge (0,1,0,0,...) wird mit x bezeichnet. Statt $K^{\mathbb{N}}$ schreibt man K[[x]]. $(0_0,a_1,a_2,...)$ heißt Polynom in x, falls es ein $d \in \mathbb{N}$ gibt mit $a_j = 0$ f.a. j < n. Die Menge aller Polynome wird mit K[x] bezeichnet.

Satz: K[[x]] wird mit +,* wie folgt zu einem kommutativen Ring mit $1 \neq 0$

- $+: (a_0, a_1, ...) + (b_0, b_1, ...) = (a_o + b_0, a_1 + b_1, ...)$
- *: $(a_0, a_1, ...) + (b_0, b_1, ...) = (c_0, c_1, ...)$ mit $c_K = \sum_{i=0}^k a_i * b_{k-i}$

Die formale Potenzreihe $(a,0,0,0,\ldots)$ wird ebenfalls mit a bezeichnet.

Die bzgl \leq minimalen Elemente von B/\perp heißen Atom von B. Satz: Sei $b \in B/\perp$ und $a_1,...,a_k$ diejenigen Atome a mit $a \leq b$, dann ist $b = a_1 \vee a_2 \vee ... \vee a_k$.

B mit $\vee, \wedge, \bar{}$ und B mit $\dot{\vee}, \dot{\wedge}, \bar{}$ seien boolesche Algebren. Sie heißen isomorph, falls es einen Isomorphismus von B nach \dot{B} gibt, d.h. eine Bijektion $\phi: B \to \dot{B}$ mit:

- $\phi(a \vee b) = \phi(a) \dot{\vee} \phi(b)$ f.a. $a, b \in B$
- $\phi(a \wedge b) = \phi(a)\dot{\wedge}\phi(b)$ f.a. $a, b \in B$
- $\phi(\bar{a}) = \phi(\bar{a})$ f.a. $a \in B$

Satz (Stone): Ist B mit $\vee, \wedge, \bar{}$ eine boolesche Algebra, B endlich und A die Menge ihrer Atome, so ist B isomorph zur booleschen Algebra $\wp(A)$ mit $\cap, \cup, \bar{}$ wobei $\dot{X} = A/X$. Also ist in jeder Teilmenge X von A Bild eines Elements von B unter ϕ . Satz: \bot , T sind durch die Bedingung 3 eindeutig bestimmt.

Satz: \bar{a} ist durch die Bedingung 1,2,4 eindeutig bestimmt.

Lemma: Sei B mit \vee , \wedge , eine boolesche Algebra, dann gilt:

• Dominanz

$$-a \lor T = T \text{ f.a. } a \in B$$

 $-a \land \bot = \bot \text{ f.a. } a \in B$

• Absorption

$$-a \lor (a \land b) = a$$
 f.a. $a, b \in B$
 $-a \land (a \lor b) = a$ f.a. $a, b \in B$

Streichungsregel

$$-a \wedge x = b \wedge x \rightarrow a = b \text{ f.a. } a, b, c \in B$$

 $-a \wedge \bar{x} = b \wedge \bar{x} \rightarrow a = b \text{ f.a. } a, b, x \in B$

Assoziativität

$$- a \lor (b \lor c) = (a \lor b) \lor c \text{ f.a. } a, b, c \in B$$
$$- a \land (b \land c) = (a \land b) \land c \text{ f.a. } a, b, c \in B$$

• De Moorgansche Regel

$$\begin{array}{ll} -\ a\ \bar{\lor}\ b=\bar{a}\wedge\bar{b}\ \mathrm{f.a.}\ a,b\in B\\ -\ a\ \bar{\land}\ b=\bar{a}\lor\bar{b}\ \mathrm{f.a.}\ a,b\in B \end{array}$$

Satz: Durch $a \leq b :\leftrightarrow a \vee b = b$ wird eine Ordnung auf der booleschen Algebra B mit \vee , \wedge , definiert $(a \vee b = supa, b; a \wedge b = infa, b)$ Es gilt $a \vee b = b \rightarrow a \wedge b = a \wedge (a \vee b) = a$

- $a \vee b$ ist obere Schranke von a,b,d.h. $a \leq a \vee b,$ dann $a \vee (a \vee b) = a \vee b$
- $a \lor b$ ist kleinste obere Schranke, d.h. $a \le z$ und $b \le z$ folgt $a \lor b \le z$

Sind B, \dot{B} isomorph, so schreibe $B \cong \dot{B}$. Daraus folgt $\dot{B} \cong B$ und aus $B \cong \dot{B}$ und $\dot{B} \cong \ddot{B}$ folgt $B \cong \ddot{B}$. Weiterhin besitzt jede boolesche Algebra mit genau n Atomen genau 2^n viele Elemente (denn sie ist isomorph zur booleschen Algebra).

Beispiel: Sei X eine endliche Menge von Variablen. Eine aussagenlogische Formel F in X ist:

- atomar: "x" mit $x \in X$ oder "föder "wöder
- zusammengesetzt: $(P \lor Q), (P \land Q), (\neg P)$ aus den Formeln P,Q

Der Wahrheitswert von F unter der Belegung $\beta: X \to f, w$ ergibt sich wie in Kapitel 1. Bezeichnung für den Wahrheitswert von F unter $\beta: W_F(\beta)$. Es gibt $2^{|x|}$ Belegungen. Der Wahrheitswerteverlauf ist die so definierte Funktion $W_F: f, w^X \to f, w$. Folglich gibt es $2^{2^{|x|}}$ verschiedene Wahrheitswertverläufe für logische Formeln. Formeln F, F' heißen äquivalent, falls $W_F = W_{F'} \to \mathrm{es}$ gibt $2^{2^{|x|}}$ verschiedene Äquivalenzklassen aussagenlogischer Formeln in X. Die Äquivalenzklassen werden mit $[F]_{/\equiv}$ bezeichnet. Sei $B:=([F]_{/\equiv}:\mathrm{F}$ aussagenlogischer Formeln in X) die Menge aller Äquivalenzklassen aussagenlogischer Formeln in X.

- $[P]_{/\equiv} \vee [Q]_{/\equiv} = [(P \vee Q)]_{/\equiv}$
- $[P]_{/\equiv} \wedge [Q]_{/\equiv} = [(P \wedge Q)]_{/\equiv}$
- $[P]_{/\equiv} = [-(P)]_{/\equiv}$

liefert die boolesche Algebra auf B

- $\perp = [f]_{/\equiv} =$ Menge der Kontradiktionen von X
- $T = [w]_{/=} = \text{Menge der Tautologien von X}$

Ordnung \leq auf B: $[P]_{/\equiv} \leq [Q]_{/\equiv} \leftrightarrow [P]_{/\equiv} \land [Q]_{/\equiv} \rightarrow$ Die Atome von B sind genau die Klassen zu Formel P mit $W_p^{-1}(w)=1$. Kanonische Repräsentanten für diese Atome sind die Min-Terme. Zu jeder aussagenlogischen Formel f kann man die Atome $[P]_{/\equiv}$ mit $[P]_{/\equiv} \leq [F]_{/\equiv}$ betrachten, wobei P Min-Terme sind.

Satz: Jede Formel ist äquivalent zu einer Formel in DNF (disjunkte normal Form)

Coatome der booleschen Algebra B mit $\vee, \wedge,\bar{}:=$ Atome der dualen booleschen Algebra B mit $\vee, \wedge,\bar{}$

Ist $b \in B$ und $a_1, ..., a_k$ die Coatome a mit $b \le a$ so gibt $b = a_1 \wedge ... \wedge a_k$. Max-Terme sind " $x_1 \vee ... \vee x_k$ ünd alle j die durch Ersetzung einiger x_j durch $\neg x_j$ daraus hervorgehen und sind die kanonische Repräsentation der Coatome von B.

Satz: Jede aussagenlogische Formel ist äquivalent zu einer Formel in konjunktiver Normalform (KNF), d.h. zu einer Formel $P_1 \wedge ... \wedge P_n$, worin die P_j Max-Terme sind.

Diskrete Wahrscheinlichkeitsräume

Ein (endlicher, diskreter) Wahrscheinlichkeitsraum ist ein Paar (Ω,p) bestehend aus einer endlichen Menge Ω und einer Funktion $p:\Omega\to [0,1]\in\mathbb{R}$ mit $\sum_{\omega\in\Omega}p(\omega)=1.$ Jeder derartige p heißt (Wahrscheinlichkeits-) Verteilung auf $\Omega.$ Die Elemente aus Ω heißen Elementarereignis, eine Teilmenge A von Ω heißt ein Ereignis; seine Wahrscheinlichkeit ist definiert durch $p(A):=\sum_{\omega inA}p(\omega).$ $A=\emptyset$ und jede andere Menge $A\subseteq\Omega$ mit p(A)=0 heißt unmögliche (unmögliches Ereignis). $A=\Omega$ und jede andere Menge $A\subseteq\Omega$ mit p(A)=1 heißt sicher (sicheres Ereignis). Es gilt für Ereignisse $A,B,A_1,...,A_k$:

- $A \subseteq B \to p(A) \le p(B)$ denn $p(A) = \sum p(\omega) \le \sum p(\omega) = p(B)$
- $p(A \cup B) \rightarrow p(A) + p(B) p(A \cap B)$
- Sind $A_1, ..., A_k$ paarweise disjunkt (d.h. $A_i \cap A_J = \emptyset$ für $i \neq j$) so gilt $p(A_1 \cup ...cupA_k) = p(A_1) + ... + p(A_k)$
- $p(\Omega/A) :=$ Gegenereignis von A = 1 p(A)
- $p(A_1, ..., A_k) \le p(A_1) + ... + p(A_k)$

Beispiel: Würfelwurf

- ungezinkt:
 - $$\begin{split} & \ \Omega = 1, 2, 3, 4, 5, 6 \\ & \ p = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}) \\ & \ \mathrm{d.h.} \ p(\omega) = \frac{1}{6} \ \mathrm{f.a.} \ \omega \in \Omega \end{split}$$
- gezinkt:
 - $\begin{array}{ll} & \Omega = 1, 2, 3, 4, 5, 6 \\ & p = (\frac{1}{4}, \frac{1}{10}, \frac{1}{5}, \frac{1}{4}, \frac{1}{10}, \frac{1}{10}) = \\ & (25\%, 10\%, 20\%, 25\%, 10\%, 10\%) \end{array}$

$$-\ p(\omega\in\Omega:\omega gerade)=p(2,4,6)=p(2)+p(4)+p(6)=\frac{1}{10}+\frac{1}{4}+\frac{1}{10}=\frac{9}{20}$$

Satz: Sind $(\Omega, p_1), ..., (\Omega, p_m)$ Wahrscheinlichkeitsräume so ist durch $p((\omega_1,...,\omega_m)) = \prod p_i(\omega_i)$ eine Verteilung auf $\Omega = \Omega_1 x...x\Omega_m = (\omega_1,...,\omega_m): \omega \in \Omega, f.a.i \in 1,...,m$. Für $A_1 \subseteq \Omega_1, A_2 \subseteq \Omega_2, ..., A_m \subseteq \Omega_m$ gilt $p(A_1 x...xA_m) = \prod p_i(A_i)$. (Ω,p) heißt Produktraum von $(\Omega_1,p_1),...$ (Ω,p) Wahrscheinlichkeitsraum; $A,B \in \Omega$ heißen (stochastisch) unabhängig, falls $p(A \cap B) = p(A) * p(B)$. Beispiel: $p(A \cap B) = p(i,j) = p_1 i * p_2 j = p(A) * p(B)$ für das Ereignis "der 1. Würfel zeigt i, der 2. Würfel zeigt i"

Bedingte Wahrscheinlichkeiten (Ω, p)

Wahrscheinlichkeitsraum, $B\subseteq\Omega$ ("bedingtes Ereignis") mit p(B)>0, dann ist $p_B:B\to [0,1]; p_B(\omega)=\frac{p(\omega)}{p(B)}$ eine Verteilung auf B, denn $\sum p_b(\omega)=\sum \frac{p(\omega)}{p(B)}=\frac{1}{p(B)}\sum p(\omega)=\frac{1}{p(B)}p(B)=1$. p_B ist die durch B bedingte Verteilung. Für $A\subseteq\Omega$ gilt $p_B(A\cap B)=\sum p_B(\omega)=\sum \frac{p(\omega)}{p(B)}=\frac{p(A\cap B)}{p(B)}:=p(A|B)$ ("p von A unter B") bedingte Wahrscheinlichkeit von A unter B. Satz (Bayer): $p(A|B)=\frac{p(B|A)*p(A)}{p(B)}$ wobei $p_A,p_B\geq 0$ Satz (Totale Wahrscheinlichkeit): Seien $A_1,...,A_k$ paarweise disjunkt, $\bigcup A_j=\Omega, p(A_i)>0$, $B\subseteq\Omega$, dann gilt $p(B)=\sum p(B|A_i)*p(A_i)$. Satz (Bayer, erweitert): $A_1,...,A_k,B$ wie eben, p(B)>0. Für $i\in 1,...,k$ gilt $p(A_i|B)=\frac{p(B|A_i)*p(A_i)}{\sum p(B|A_j)*p(A_j)}$

Beispiel: In einem Hut liegen drei beidseitig gefärbte Karten. Jemand zieht (βufällig") eine Karte und leg sie mit einer (βufälligen") Seite auf den Tisch. Karten rot/rot, rot/blau und blau/blau. Gegeben er sieht rot, wie groß ist die Wahrscheinlichkeit, dass die andere Seite auch rot ist? p(unten rot — oben rot) =

p(unten rot und oben rot)/p(oben rot) = $\frac{p\binom{r}{r}}{p(\binom{r}{r}\binom{r}{b})} = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3}$

Eine Funktion $X:\Omega\to\mathbb{R}$ heißt (reellwertige) Zufallsvariable. Weil Ω endlich ist, ist auch $X(\Omega)=X(\omega):\omega\in\Omega\subseteq\mathbb{R}$ endlich. Durch $p_x(x):=p(X=x):=p(\omega\in\Omega:X(\omega)=x)$ wird ein Wahrscheinlichkeitsraum $(X(\Omega),p_x)$ definiert; denn $\sum p_x(x)=p(\Omega)=1.$ p_x heißt die von X induzierte Verteilung. $X(\Omega)$ ist meist erheblich kleiner als Ω . Beispiel: Augensumme beim Doppelwurf: $X:\Omega\to\mathbb{R}, X((i,j))=i+j\to X(\Omega)=2,3,4,...,12$ Satz: Seien $(\Omega_1,p_1),(\Omega_2,p_2)$ Wahrscheinlichkeitsräume und (Ω,p) ihr Produktraum. Sei $X:\Omega_1\to\mathbb{R}, Y:\Omega_2\to\mathbb{R}$, fasse X,Y als ZVA in Ω zusammen $X((\omega_1,\omega_2))=X(\omega_1)$ und $Y((\omega_1,\omega_2))=Y(\omega_2)$; d.h. X,Y werden auf Ω "fortgesetzt". Dann sind X,Y stochastisch unabhängig in (Ω,p) (und $p(X=x)=p_1(X=x),p(Y=y)=p_2(Y=y)$).

Erwartungswert, Varianz, Covarianz Sei $X : \Omega \to \mathbb{R}$ ZVA im Wahrscheinlichkeitsraum (Ω, p) .

 $E(X) = \sum_{x \in X(\Omega)} xp(X=x) = \sum_{\omega inOmega} X(\omega)p(\omega)$ Ë verhält sich wie Integral"; E(x) heißt Erwartungswert von x. Linearität des Erwartungswertes: E(x+y) = E(x) + E(y) und $E(\alpha x) = \alpha E(x)$. Ist $X: \Omega \to \mathbb{R}$ konstant gleich c, so ist $E(x) = \sum_{\alpha} x * p(X=x) = c * p(X=x) = c * 1 = c$. Die Varianz von X: $Var(X) = E((X-E(X))^2)$ heißt Varianz von X (um E(X)). Die Covarianz: Cov(X,Y) = E((X-E(X)) * (Y-E(Y))) heißt

Covarianz von X und Y. Der Verschiebungssatz: Cov(X,Y) = E(X * Y) - E(X) * E(Y) $Var(X) = Cov(X, X) = E(X * X) - E(X)E(X) = E(X^{2}) - (E(X))^{2}$ Seien X,Y stochastisch unabhängig $(\leftrightarrow p(X = x \land Y = y) = p(X = x) * p(Y = y))$ $E(X)*E(Y) = \sum_{x \in X(\Omega)} x*p(X=x)*\sum_{y \in Y(\Omega)} y*p(Y=y) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} xy*p(X=x)p(Y=y) = \sum_{Z \in \mathbb{R}} z*p(X*Y=x)$ Z = E(X * Y). Sind X,Y stochastisch unabhängig ZVA, so ist E(X) * E(Y) = E(X * Y); folglich Cov(X, Y) = 0Satz: Seien X.Y ZVA, dann gilt Var(X+Y) = Var(X) + Var(Y) + 2 * Cov(X,Y). Sind insbesondere X,Y unabhängig gilt: Var(X + Y) = Var(X) + Var(Y). Sei (Ω, p) Wahrscheinlichkeitsraum, $X : \Omega \to \mathbb{R}$ Zufallsvariable heißt Bernoulliverteilt im Parameter p falls p(X = 1) = p und $p(X = 0) = 1 - p, p \in [0, 1].$ $E(X) = \sum_{i=1}^{n} x * p(X = x) = 1 * p(X = 1) = p \text{ Für } X : \Omega \to 0, 1 \text{ ist}$ $X^2 = X : Var(X) = E(X^2) - E(X)^2 = p - p^2 = p(1-p) = p * q$

Binominalkoeffizienten Sei N eine Menge, dann ist $\binom{N}{k} := (x \subseteq N : x \text{ hat genau k Elemente } (|x| = k))$ für $k \in \mathbb{N}$. Für $n \in \mathbb{N}$ sei $\binom{n}{k} := |(\binom{1,\dots,k}{k})|$. Satz: $\binom{n}{0} = nn = 1$ f.a. $n \ge 0$ $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ f.a. n > 0, k > 1, k > n - 1

Jede n-elementige Menge N ist $\binom{N}{0}=(\emptyset), \binom{n}{n}=N \to \binom{n}{0}=\binom{n}{n}=1.$ Den zweiten Teil der Behauptung zeigt man induktiv über n.

Binominalsatz $(a+b)^n = \sum_{k=0}^n a^k b^{n-k}$ für $a,b \in \mathbb{R}$. Für $n \in \mathbb{N}$ sei $n! = n(n-1)(n-2)...*3*2*1 = \prod i$; für $n \in \mathbb{N}$ und $k \geq 0$ sei $[\binom{n}{k}] = \frac{n!}{k!(n-k)!}$

Satz: $\binom{n}{0} = \binom{n}{n} = 1$ für jedes $n \in \mathbb{N}$, $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ für $k \ge 1$ und $k \le n-1$. Zweiter Teil: $[\binom{n-1}{k}] + [\binom{n-1}{k-1}] = \frac{n!}{k!(n-k)!} = [\binom{n}{k}]$. Also stimmen die Rekursinsgleichungen von $\binom{n}{k}$ und $[\binom{n}{k}]$ überein $\binom{n}{k}$ und $\binom{n}{k}$.

Also stimmen die Rekursionsgleichungen von $\binom{k}{k}$ und $\binom{k}{k}$] überein sowie $\binom{n}{k} = \binom{n}{k}$]. Folglich ist die Anzahl k-elementiger Teilmengen eine n-elementige Menge gleich $\frac{n!}{k!(n-k)!}$.

Seien $X_1,...,X_n$ unabhängige ZVÅen, alle X_i seien Bernoulli-Verteilt im Parameter p[0,1], d.h. $p(X_1=1)=p,\ p(X_i=0)=(1-p)$. Dann ist $X_i=X_1+X_2+...+X_n$ ebenfalls reellwertige ZVA. Im Fall $X_i:\Omega\to 0,1$ ist $X:\Omega\to 0,1,...,n$. Die Verteilung von X ergibt sich wie folgt, für $k\in 0,1,...,n$: $p(X=k)=\binom{n}{k}*p^k(1-p)^{n-k}$ Eine ZVA heißt binominalverteilt in den Parametern n und p falls gilt: $p(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$ für $k\in 0,1,...,n$; schreibe $X\sim L(n,p)$. Sonst ist X Bernoulliverteilt (genau dann wenn $X\sim L(1,p)$).

Erwartungswert und Varianz Sei $X \sim L(n, p)$ OBdA $X = X_1, +... + X_n$ wobei X_i unabhängig und Bernoulliverteilt. E(X) = n * p, $E(X_i) = p \ Var(X) = n * p * (1 - p)$, $Var(X_i) = p * (1 - p)$

 $\begin{array}{ll} \textbf{Multinominal verteilung} & \binom{N}{k_1,...,k_n} \text{ sei Menge der} \\ \text{Abbildungen } f:N \rightarrow 1,...,r \text{ mit } k1,...,k_r \geq 0, \ k_1+...+k_r = |\mathbb{N}| \\ \text{und } f^{-1}[j] = k_j \binom{n}{k_1,...,k_r} = |\binom{N}{k_1,...,k_r}|. \end{array}$

Hypergeometrische Verteilung Beispiel: Urne mit zwei Sorten Kugeln; N Gesamtzahl der Kugeln, M Gesamtzahl Kugeln Sorte 1, N-M Gesamtzahl Kugeln Sorte 2, $n \leq N$ Anzahl Elemente einer Stichprobe. X Anzahl der Kugeln Sorte 1 in einer zufälligen

n-elementigen Stichprobe.
$$p(X=k) = \frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$$
 Eine ZVA

 $X:\Omega\to\mathbb{R}$ heißt hypergeometrisch Verteilt in den Parametern M,N,n falls p(X=k) für alle $k\geq 0, k\geq M$ gilt.

$$E(X) = \sum_{k=0}^{M} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} = \dots = n * \frac{M}{N}$$

$$Var(X) = E(X^2) - E(X)^2 = \dots = n * \frac{M}{N} (1 - \frac{M}{N})(\binom{N-n}{N-1})$$

Elementare Graphentheorie

G=(V,E) heißt Graph mit Eckenmenge V(G)=V und Kantenmenge $E(G)=E\subseteq x,y:x\neq y\in V.$ Veranschaulichung als Punkte in der Ebene (V) mit "Verknüpfunglinien" von x nach y. Bsp G=(1,2,3,4,12,13,14,15,16).

 $P=x_0,...,x_e$ Folge pw
 verschiedener Ecken mit $x_{i-1},...,x_i\in E(k)$ für $i\in 1,...,l$ he
ißt ein Weg von x_0 nach x_e der Länge
l. Für $(a,b)\in V(G)$ heißt

 $d_G(a,b)=min(l:$ es gibt einen a,b-Weg der Länge l) Abstand von a nach b. Falls es keinen a,b-Weg gibt, definiere $d_G(a,b)=+\infty$. $a\sim b\leftrightarrow$ es gibt einen a,b-Weg in G wird eine Äquivalenzrelation auf V(G) definiert. DIe Äquivalenzklassen heißen (Zusammenhangs-) Komponenten von G.

G heißt zusammenhängend, wenn G höchstens eine Komponente besitzt. $d_G:V(G)xV(G)\leftrightarrow \mathbb{R}_{>0}$ ist eine Matrix

- $d_G(x,y) = 0 \leftrightarrow x = y$ f.a. $x,y \in V(G)$
- $d_G(x,y) = d_G(y,x)$ f.a. $x,y \in V(F)$
- $d_G(x,z) \le d_G(x,y) + d_G(y,z)$) f.a. $x, y, z \in V(G)$

Für $A\subseteq V(G)$ sei $G[A]:=(A,x,y\in E(G):x,y\in A)$. Für $F\subseteq E(G)$ sei G[F]:=(V(G),F). G[A] bzw G[F] heißt von A bzw F induzierte Teilgraph. Ein Graph H mit $V(H)\subseteq V(G)$ und $E(H)\subseteq E(G)$ heißt Teilgraph von G, schreibweise $H\leq G.\leq$ ist Ordnung, denn:

- G < G
- $H \leq G \land G \leq H \rightarrow H = G$
- $H \leq G \wedge G = L \rightarrow H \leq L$

Ist $P=x_0,...,x_p$ Weg, so heißt auch der Teilgraph ein Weg von x_0 nach x_e . Graphen G, H heißen isomorph, falls es einen Isomorphismus von V(G) nach V(H) gibt. Das heißt eine Bijektion. $V(G) \to V(H)$ mit $f(x)f(y) \in E(H) \leftrightarrow x,y \in E(G)$. Es gilt:

- $G \cong G$
- $\bullet \ \ G\cong H\to H\cong G$
- $\bullet \ \ G \cong H \wedge H \cong L \to G \cong L$

Eine Folge $C=x_0,x_1,...,x_{l-1}$ von Ecken mit $x_i,x_{i+1}\in E(G)$ für $i\in 0,...,l-2$ und $x_{l-1}x_0\in E(G)$ heißt Kreis in G der Länge l, falls $x_0,...,x_{l-1}$ pw verschieden sind. Bsp: Kreis der Länge 5. Ein Teilgraph H des Graphen G (also $H\leq G$) heißt aufspannend, falls V(H)=V(G). Für eine Ecke $x\in V(G)$ sei

 $d_G(x)=|x,y\in E(G),y\in V(G)|$ die Anzahl der mit x indizierten Kanten, der sogenannte Grad von x in G.

Weiter $N_G(x) := x \in V(G) : xy \in E(G)$ die Menge der nachbarn von x in G. Hier gilt: $|N_G(x)| = d_G(x)|$.

In jedem Graph G gilt $\sum_{x \in V(G)} d_G(x) = 2|E(G)|$. Der

Durchschnittsgrad von G ist somit

$$d(\bar{G}) = \frac{1}{|V(G)|} \sum d_G(x) = \frac{2|E(G)|}{|V(G)|}$$

Ein Graph ist ein Baum wenn G zusammenhängend und G-e nicht zusammenhängend für jedes $e \in E(G)$ "G ist minimal zusammenhängend" Graph G ist ein Baum wenn G kreisfrei und Graph G+xy nicht kreisfrei für jedes $xy \notin E(G)$ G ist Baum, wenn

- G ist kreisfrei und zusammenhängend
- G kreisfrei und |E(G)| = |V(G)| 1
- G zusammenhängend und |E(G)| = |V(G)| 1

Jeder Baum mit wenigstens einer Ecke besitzt eine Ecke vom Grad ≤ 1 , ein sog. Blatt ("jeder Baum besitzt ein Blatt").

 $\rightarrow E(G) = |V(G)| - 1$ für jeden Baum also $d(G) = \frac{2|V(G)| - 2}{|V(G)|} < 2$.

G Wald \leftrightarrow die Komponenten von G sind Bäume G Baum \leftrightarrow G ist zusammenhängender Wald

Ein Teilgraph H von G heißt Teilbaum von G, falls H ein Baum ist. Ein aufspannender Teilbaum von G heißt Spannbaum von G. G zusammenhängend \leftrightarrow G Spannbaum.

Ein Spannbaum T von G heißt Breitensuchbaum von G bei $x \in V(G)$ falls $d_F(z,x) = d_G(z,x)$ f.a. $z \in V(G)$.

Ein Spannbaum T von G heißt Tiefensuchbaum von G bei $x \in V(G)$ falls für jede Kante zy gilt: z liegt auf dem y,x-Weg in T oder y liegt auf dem z,t-Weg in T.

Satz: Sei G zusammenhängender Graph $x \in V(G)$. (X) sind $x_0, ..., x_{e-1}$ schon gewählt und gibt es ein $+ \in (0, ..., e-1)$ so, dass x_+ einen Nachbarn y in V(G) $(x_0, ..., x_{e-1})$, so setze $x_e = y$ und f(e) := t; iteriere mit e+1 statt e. Dann ist $T := (x_0, ..., x_e, x_j * x_{f(j)} : j \in 1, ..., e)$ ein Spannbaum

• (X) wird in + stets kleinstmöglich gewählt, so ist T ein Breitensuchbaum

 $\bullet\,$ wird in (X) + stets größtmöglich gewählt, so ist T ein Tiefensuchbaum

Spannbäume minimaler Gewichte G Graph, $F \subseteq E(G)$ heißt kreisfrei, falls G(F) kreisfrei ist.

Lemma (Austauschlemma für Graphen): Seien F, F' zwei kreisfreie Kantenmengen in Graph G und |F| < |F'|, dann gibt es ein $e \in F'/F$ so, dass $F \vee e$ kreisfrei ist.

 $G, \omega : E(G) \to \mathbb{R}$ (Gewichtsfunktion an den Kanten). Für $F \subseteq E(G)$ sei $\omega(F) = \sum \omega(e)$, speziell $\omega(\emptyset) = 0$.

Für einen Teilgraphen H von G sei $\omega(G)=\omega(E(G))$. Ein Spannbaum minimalen Gewichts ist ein Spannbaum T von G mit $\omega(T)\leq\omega(S)$ für jeden Spannbaum S von G.

Satz (Kruskal): Sei G zuständiger Graph, $\omega: E(G) \to \mathbb{R}$; Setze $F = \emptyset$. Solange es eine Kante $e \in E(G)/F$ gibt so, dass $F \lor (e)$ kreisfrei ist, wähle e mit minimalem Gewicht $\omega(e)$, setzte $F = F \lor e$, iterieren. Das Verfahren endet mit einem Spannbaum T = G(F) minimalen Gewichts.

Beweis: Weil G endlich ist endet das Verfahren mit einem maximal kreisfreien Graphen T. Seien $e_1,...,e_n$ die Kanten von T in der Reihenfolge ihres Erscheinens, sei S Spannbaum minimalen Gewichts und $f_1,...,f_m$ die Kanten in Reihenfolge aufsteigenden Gewichts. Angenommen (redactio ad absurdum) $\omega(T)>\omega(S)$. Dann gibt es ein $i\in 1,...,m$ mit $\omega(e_i)>\omega(f_i)$. Wähle i kleinstmöglich, dann ist $F=e_1,...,e_{i-1}$ und $F'=f_1,...,f_i$ kreisfrei. Nach Austauschlemma gibt es ein $f\in F'/F$ so, dass $F\vee f$ kreisfrei ist. Also ist f ein Kandidat bei der Auswahl von e_i gewesen, also $\omega(e_i)\leq \omega(f)$ (Fehler!). Folglich ist $\omega(T)\leq \omega(S)\Rightarrow \omega(T)=\omega(S)$ also T und S Spannbaum mit minimalen Gewichten.

Das Traveling Salesman Problem

G sei Graph (vollständig) auf n Ecken, d.h. $xy \in E(G) \forall x \neq y$ aus V(G) und $\omega * E(G) \to \mathbb{R}$. Finde aufspannenden Kreis C von G minimalen Gewichts. Zusatzannahme (metrische TSP)

 $\omega(xz) \leq \omega(xy) + \omega(yz)$. Finde einen aufspannenden Kreis C, der um einen Faktor von höchstens zwei von einem aufspannenden Kreis D minimalen Gewichts abweicht $(\omega(C) \leq 2\omega(D))$ sog.

Approximationsalgorithmus mit Gütefaktor <.

Konstruiere eine Folge $x_0, ..., x_m$ mit der Eigenschaft, dass jede Kante von T genau zweimal zum Übergang benutzt wird, d.h. zu $e \in E(T)$ existieren $i \neq j$ mit $e = x_i x_{i+1}$ und $e = x_j x_{j+1}$ und zu jedem k existieren $e \in E(T)$ mit $e = x_k x_{k+1}$. Das Gewicht dieser Folge sei $\sum \omega(x_i x_{i+1}) = 2\omega(T)$.

Eliminiere Mehrfachnennungen in der Folge. Gibt es $i \neq j$ mit $x_j = x_i$ so streiche x aus der Folge. Das Gewicht der neuen Folge ist maximal so groß wie das Gewicht der alten. Durch iteration erhält man einen aufspannenden Kreis mit $\omega(X) \leq 2\omega(T)$. Sei e Kante von $D \to D - e = S$ ist aufspanndender Weg

 $\rightarrow \omega(T) \le w(D-e) \le \omega(D).$

G Graph, $k \ge 0$. Eine Funktion $f: V(G) \to C$ mit $|C| \le k$ heißt k-Färbung, falls $f(x) \ne f(y)$ für $xy \in E(G)$. G heißt k-färbbar, falls G eine k-Färbung besitzt. Das kleinste $k \ge 0$ für das G k-färbbar ist heißt dramatische Zahl von G, Bezeichnung X(G).

Satz (Tuga): Sei $k \geq 2$ und G ein Graph ohne Kreise eine Lösung $l \equiv 1 modk$, dann ist G k-faltbar. G 2-färbbar \leftrightarrow G hat keine Kreise ungerader Länge. Ein Graph heißt bipartit mit den Klassen A,B falls $(x \in A \land y \in B) \lor (x \in B \land y \in A)$ für alle $xy \in E(G)$ gilt. Genau dann ist G bipartit mit gewissen Klassen A,B wenn G 2-färbbar ist. Satz (Hall): Sei G bipartit mit Klassen A,B. Dann gilt G hat ein Matching von A $\leftrightarrow |N_G(X)| \leq |X|$ für alle $X \subseteq A$. Satz: " \rightarrow ßei M Matching von A in G

 $\rightarrow |N_G(X)| \leq N_{G[M]}(X) = |X|$. " \leftarrow Induktiv über |V(G)|. Ein schneller Zeuge für die Existenz eines Matchings von A im bipartiten Graphen G mit Klassen A,B ist das Matching selbst. Ein schneller Zeuge für die nicht-existenz eines Matchings ist ein $X \subseteq A$ mit $|N_G(X)| < |X|$.

Das Entscheidungsproblem "hat ein bipartiter Graph ein Matching?ist im NP und zugleich in co-NP. Also ist auch Problem ist ein Graph 2-färbbar?in NP und co-NP. Das Problem ist ein Graph 3-färbbarist in NP. Es ist sogar NP-vollständig, d.h. jedes Problem in NP (jedes Entscheidungsproblem mit schnellen Zeugen für Ja) lässt sich in Polynomalzeit in dieses Färbungsproblem überführen.