Disclaimer

Aufgaben aus dieser Vorlage stammen aus der Vorlesung Algorithmen, Sprachen und Komplexität und wurden zu Übungszwecken verändert oder anders formuliert! Für die Korrektheit der Lösungen wird keine Gewähr gegeben.

- 1. Definitionen der Automatentheorie. Vervollständige die folgenden Definitionen:
 - (a) Eine Regel $(l \to r)$ einer Grammatik $G = (V, \sum, P, S)$ heißt rechtslinear, falls ...

Solution:

- (b) Ein NFA ist ein Tupel M = (...)
- (c) Die von einem PDA $M=(Z, \sum, \Gamma, \delta, z_0, \#)$ akzeptierten Sprache ist $L(M)=\dots$
- (d) Sei $M=(Z,\sum,z_0,\delta,E)$ ein DFA. Die Zustände $z,z'\in Z$ heißen erkennungsäquivalent, wenn
- 2. Sätze und Lemmas aus der Automatentheorie. Vervollständige die folgenden Aussagen:
 - (a) Sei $L \supseteq \sum^*$ eine Sprache. Dann sind äquivalent: 1) L ist regulär (d.h. wird von einem DFA akzeptiert), 2)..., 3)...
 - (b) Der Satz von Myhill-Nerode besagt,...
 - (c) Das Pumping-Lemma für kontextfreie Sprachen ...
- 3. Konstruktionen der Automatentheorie
 - (a) Betrachte den NFA X (Bild wird noch erstellt). Berechne einen DFA Y mit L(X) = L(Y).
 - (b) Betrachte den DFA X (Bild wird noch erstellt). Berechne den minimalen DFA Y mit L(X) = L(Y).
- 4. Algorithmen für reguläre Sprachen
 - (a) Sei $\sum = \{a, b, c\}$. Gebe einen Algorithmus an, der bei Eingabe eines NFA X entscheidet, ob alle Wörter $\omega \in L(X)$ ungerade Länge besitzen und abc als Infix enthalten.
- 5. Kontextfreie Sprachen: Sei $\sum = \{a,b,c\}$. Betrachte die Sprache $K = \{a^kb^lc^m|k\leq l \text{ oder } k\leq m\}$.
 - (a) Zeige, dass K eine kontextfreie Sprache ist.
 - (b) Zeige, dass $L = \sum^* \backslash K$ (Komplement von L) nicht kontextfrei ist.
 - (c) Begründe warum K deterministisch kontextfrei ist oder warum nicht.
- 6. Kontextfreie Grammatiken: Sei $\sum = \{a, b, c, \}$
 - (a) Sei G die kontextfreie Grammatik mit Startsymbol S und der Regelmenge $S \to AB$, $A \to aBS|a$ und $B \to bBa|b|\epsilon$. Überführe G in eine äquivalente Grammatik in Chomsky Normalform.
 - (b) Sei G' die kontextfreie Grammatik mit Startsymbol S und der Regelmenge $S \to AB$, $A \to CD|CF$, $F \to AD$, $B \to c|EB$, $C \to a$, $D \to b$, $E \to c$. Entscheide mit dem CYK-Algorithmus, ob die Wörter $w_1 = aaabbbcc$ oder $w_2 = aaabbccc$ von G' erzeugt werden.

- (c) Gebe für die Wörter aus b), die von G' erzeugt werden, den Ableitungsbaum an.
- 7. Definitionen der Berechnbarkeitstheorie. Verfollständige die Definitionen
 - (a) Ein While Programm ist von der Form...
 - (b) Die von einer Turingmaschine M akzeptierte Sprache ist L(M) = ...
 - (c) Eine Sprache L heißt rekursiv aufzählbar, falls ...
- 8. Sätze der Berechnbarkeitstheorie: Vervollständige die folgenden Aussagen
 - (a) Sei $L \subseteq \sum^*$ eine Sprache. Sind L und $\sum^* \backslash L$ semi-entscheidbar, dann...
 - (b) Der Satz von Rice lautet...
- 9. Berechnungsmodelle
 - (a) Gebe ein Loop-Programm an, das die Funktion $n \to n^2 n$ berechnet
 - (b) Gebe eine deterministische Turingmaschine M für das Eingabealphabet $\{0,1\}$ an, das folgende Funktion berechnet: Für Eingabe $a_1a_2...a_{n-1}a_n$ berechnet M die Ausgabe $a_na_1...a_{n-1}$ (letzte Symbol der Eingabe an erste Stelle).
- 10. Reduktionen
 - (a) Seien $A,L\subseteq \sum^*$ nichtleere Sprachen und A
 entscheidbar. Gebe eine Reduktion von $L\cup A$ auf
 L an
 - (b) Gebe eine Bedingung für A an, sodass $L \cup A \leq_p L$ für alle nichtleeren Sprachen $L \subseteq \sum^*$ gilt. Begründe.
- 11. Komplexitätsklassen. Ergänze zu den Paaren von Komplexitätsklassen das Relationssymbol zur Teilmengenbeziehung.
 - (a) EXPSPACE ? EXPTIME
 - (b) NP?P
 - (c) NPSPACE? EXPTIME
 - (d) NP? NPSPACE
 - (e) NPSPACE ? PSPACE
- 12. NP-vollständiges Problem: Gebe zwei NP-vollständige Probleme an (als Menge oder Eingabe-Frage-Paar).