\documentclass[10pt, a4paper]{exam} \printanswers % Comment this line to hide the answers \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[ngerman]{babel} \usepackage{listings} \usepackage{float} \usepackage{graphicx} \usepackage{color} \usepackage{listings} \usepackage[dvipsnames]{xcolor} \usepackage{tabularx} \usepackage{geometry} \usepackage{color,graphicx,overpic} \usepackage{amsmath,amsthm,amsfonts,amssymb} \usepackage{tabularx} \usepackage{listings} \usepackage[many]{tcolorbox} \usepackage{multicol} \usepackage{hyperref} \usepackage{pgfplots} \usepackage{bussproofs} \pdfinfo{ /Title (Kryptographie - Übung) /Creator (TeX) /Producer (pdfTeX 1.40.0) /Author (Robert Jeutter) /Subject () } \title{Kryptographie - Übung} \author{} \date{} % Don't print section numbers \setcounter{secnumdepth}{0} \newtcolorbox{myboxii}[1][]{ breakable, freelance, title=#1, colback=white, colbacktitle=white, coltitle=black, fonttitle=\bfseries, bottomrule=0pt, boxrule=0pt, colframe=white, overlay unbroken and first={ \draw[red!75!black,line width=3pt] ([xshift=5pt]frame.north west) -- (frame.north west) -- (frame.south west); \draw[red!75!black,line width=3pt] ([xshift=-5pt]frame.north east) -- (frame.north east) -- (frame.south east); }, overlay unbroken app={ \draw[red!75!black,line width=3pt,line cap=rect] (frame.south west) -- ([xshift=5pt]frame.south west); \draw[red!75!black,line width=3pt,line cap=rect] (frame.south east) -- ([xshift=-5pt]frame.south east); }, overlay middle and last={ \draw[red!75!black,line width=3pt] (frame.north west) -- (frame.south west); \draw[red!75!black,line width=3pt] (frame.north east) -- (frame.south east); }, overlay last app={ \draw[red!75!black,line width=3pt,line cap=rect] (frame.south west) -- ([xshift=5pt]frame.south west); \draw[red!75!black,line width=3pt,line cap=rect] (frame.south east) -- ([xshift=-5pt]frame.south east); }, } \begin{document} \begin{myboxii}[Disclaimer] Die Übungen die hier gezeigt werden stammen aus der Vorlesung \textit{Kryptographie}! Für die Korrektheit der Lösungen wird keine Gewähr gegeben. \end{myboxii} %########################################## \begin{questions} \question Possibilistisch sichere Kryptosysteme Bestimmen Sie alle possibilistisch sicheren Kryptosysteme $S=(X,K,Y,e,d)$ mit $X=\{a,b\}$ und $K=\{1,2\}$ (bis auf das Umbenennen von Chiffretexten). \begin{solution} \end{solution} \question Possibilistische Sicherheit: Eine alternative Definition? Beweisen oder widerlegen Sie: Ein Kryptosystem $S=(X,K,Y,e,d)$ ist possibilistisch sicher genau dann, wenn Folgendes gilt: $\forall x\in X\forall y\in Y\exists k\in K:d(y,k)=x$. \begin{solution} \end{solution} Bemerkung: Im Gegensatz zur Definition der possibilistischen Sicherheit wird hier eine Aussage über die Entschlüsselungsfunktion gemacht. \question Possibilistische Sicherheit bei komponentenweiser Verschlüsselung Gegeben seien ein Kryptosystem $S=(X,K,Y,e,d)$ und $l\in\mathbb{N}^+$. Wir können $S$ benutzen, um längere Klartexte (Elemente aus $X^l$) zu verschlüsseln. Das Kryptosystem $S'=(X^l,K,Y^l,e',d')$ mit $e'((x_1,...,x^l),k)=(e(x_1,k),...,e(x_l,k))$ verschlüsselt komponentenweise unter Verwendung eines einzigen Schlüssels $k$. \begin{parts} \part Definieren Sie $d'$ so, dass $S'$ tatsächlich ein Kryptosystem ist. \begin{solution} \end{solution} \part Zeigen Sie, dass $S'$ für $|X|,l\geq 2$ nicht possibilistisch sicher ist. (Dies gilt auch dann, wenn S selber possibilistisch sicher ist!) \begin{solution} \end{solution} \end{parts} Das Kryptosystem $S^*=(X^l,K^l,Y^l,e^*,d^*)$ mit $e^*((x_1,...,x_l),(k_1,...,k_l))=(e(x_1,k_1),..., e(x_l,k_l))$ verschlüsselt komponentenweise unter Verwendung mehrerer Schlüssel $k_1,...,k_l$. \begin{parts} \part Definieren Sie $d^*$ so, dass $S^*$ tatsächlich ein Kryptosystem ist. \begin{solution} \end{solution} \part Zeigen Sie, dass $S^*$ genau dann possibilistisch sicher ist, wenn $S$ possibilistisch sicher ist. \begin{solution} \end{solution} \end{parts} Notation: Für eine natürliche Zahl $n\geq 2$ sei $Z_n$ die Menge der Zahlen $\{0,1,...,n-1\}$. Die Addition $+_n$ und Multiplikation $*_n$ auf $Z_n$ sind wie folgt definiert: $a +_n b =(a+b)\ mod\ n$ und $a *_n b =(a*b)\ mod\ n$, wobei $x\ mod\ n$ der Rest von $x$ bei Division durch $n$ ist. \question Verschiebe- und affines Kryptosystem Für $n\in N^+$ betrachten wir zwei Kryptosysteme, um Elemente aus $Z_n$ zu verschlüsseln. Das Verschiebekryptosystem (Cäsar-Chiffre) mit Parameter $n$ ist gegeben durch $C_n=(Z_n,Z_n,Z_n,e_n,d_n)$ mit $e_n(x,k)=x +_n k$. \begin{parts} \part Wie muss $d_n$ definiert werden, damit $C_n$ tatsächlich ein Kryptosystem ist? \begin{solution} \end{solution} \part Zeigen Sie, dass $C_n$ possibilistisch sicher ist. \begin{solution} \end{solution} \end{parts} Das affine Kryptosystem mit Parameter $n\geq 2$ ist gegeben durch $A_n=(Z_n,A_n\times Z_n,Z_n,e_n',d_n')$ mit $A_n=\{a\in Z_n| ggT(a, n) = 1\}$ und $e_n'(x,(a,b)=a *_n x +_n b$. Hinweis: Falls $ggT(a,n)=1$, d.h., $a$ und $n$ teilerfremd sind, dann gilt: Es existert genau ein $b\in A_n\subseteq Z_n\backslash\{0\}$, so dass $a*_n b=b*_n a=1$. Dieses Element $b$ heißt ,,multiplikatives Inverses von a modulo n''. \begin{parts} \part Definieren Sie $d_n'$ so, dass $A_n$ tatsächlich ein Kryptosystem ist. \begin{solution} \end{solution} \part Zeigen Sie, dass $A_n$ possibilistisch sicher ist. \begin{solution} \end{solution} \end{parts} \end{questions} \end{document}