Advanced Operating Systems

Funktionale und nichtfunktionale Eigenschaften

e Requirements: (nicht-)Funktionale Eigenschaften entstehen durch
Erfiillung von (nicht-)funktionalen Anforderungen

e funktionale Eigenschaft: was ein Produkt tun soll

nichtfunktionale Eigenschaft (NFE): wie ein Produkt dies tun soll

e andere Bezeichnungen NFE: Qualitidten, Quality of Service

Hardwarebasis
e Einst: Einprozessor-Systeme
e Heute: Mehrprozessor-/hochparallele Systeme
e neue Synchronisationsmechanismen erforderlich
e — unterschiedliche Hardware und deren Multiplexing

Betriebssystemarchitektur

Einst: Monolithische und Makrokernel-Architekturen
Heute: Mikrokernel(-basierte) Architekturen

Exokernelbasierte Architekturen (Library-Betriebssysteme)
Virtualisierungsarchitekturen

Multikernel-Architekturen

.
.
.
.
.
e — unterschiedliche Architekturen

Ressourcenverwaltung

e Einst: Batch-Betriebssysteme, Stapelverarbeitung (FIFO)

e Heute: Echtzeitgarantien fiir Multimedia und Sicherheit

e echtzeitfihige Scheduler, Hauptspeicherverwaltung,
Ereignismanagement, Umgang mit Uberlast/Priorititsumkehr ...

e — unterschiedliche Ressourcenverwaltung

Betriebssystemabstraktionen

e Reservierung von Ressourcen (— eingebettete Systeme)
e Realisierung von QoS-Anforderungen (— Multimediasysteme)
e Erhshung der Ausfallsicherheit (— verfiigbarkeitskritisch)

e Schutz vor Angriffen und Missbrauch (— sicherheitskritisch)
e flexiblen und modularen Anpassen des BS (— hochadaptiv)

e — hochst diverse Abstraktionen von Hardware

Betriebssysteme als Softwareprodukte

Betriebssystem: endliche Menge von Quellcode

besitzen differenzierte Aufgaben — funktionale Eigenschaften
Anforderungen an Nutzung und Pflege — Evolutionseigenschaften
konnen fiir Betriebssysteme hochst speziell sein

— spezielle Anforderungen an das Softwareprodukt BS

Grundlegende funktionale Eigenschaften von BS: Hardware-

Abstraktion Ablaufumgebung auf Basis der Hardware bereitstellen

Multiplexing Ablaufumgebung zeitlich/logisch getrennt einzelnen
Anwendungen zuteilen

Schutz gemeinsame Ablaufumgebung gegen Fehler und Manipulation

Nichtfunktionale Eigenschaften (Auswahl) von Betriebssystemen:

e Laufzeiteigenschaften: zur Laufzeit eines Systems beobachtbar

— Sparsamkeit und Effizienz

— Robustheit, Verfiigbarkeit

— Sicherheit (Security)

— Echtzeitfihigkeit, Adaptivitit, Performanz

e Evolutionseigenschaften: charakterisieren (Weiter-) Entwicklung-
und Betrieb eines Systems

— Wartbarkeit, Portierbarkeit
— Offenheit, Erweiterbarkeit

1/24

Sparsamkeit und Effizienz

Motivation

Sparsamkeit (Arbeitsdefinition): Die Eigenschaft eines Systems, seine
Funktion mit minimalem Ressourcenverbrauch auszuiiben — Effizienz
bei Nutzung der Ressourcen

Effizienz: Der Grad, zu welchem ein System oder eine seiner
Komponenten seine Funktion mit minimalem Ressourcenverbrauch
ausiibt. (IEEE)

Beispiele:

mobile Geréte: Sparsamkeit mit Energie

Sparsamkeit mit weiteren Ressourcen, z.B. Speicherplatz
Betriebssystem (Kernel + User Space): geringer Speicherbedarf
optimale Speicherverwaltung durch Betriebssystem zur Laufzeit
BaugréBenoptimierung(Platinen-und Peripheriegeritegrofie)
Kostenoptimierung(kleine Caches, keine MMU, ...)

massiv reduzierte HW-Schnittstellen (E/A-Geriite, Peripherie)

Mobile und eingebettete Systeme (kleine Auswahl)

e mobile Rechner-Endgeriite

e Weltraumfahrt und -erkundung

e Automobile

e verteilte Sensornetze (WSN)

e Chipkarten

e Multimedia-und Unterhaltungselektronik
Energieeffizienz

zeitweiliges Abschalten momentan nicht bendtigter Ressourcen
Betriebssystemmechanismen

Dateisystem-E/A: energieeffizientes Festplatten-Prefetching
CPU-Scheduling: energieeffizientes Scheduling
Speicherverwaltung: Lokalitdtsoptimierung

Netzwerk: energiebewusstes Routing

Verteiltes Rechnen: temperaturabhingige Lastverteilung

T o

Energieeffiziente Dateizugriffe

HDD/Netzwerkgerite/... sparen nur bei relativ langer Inaktivitit Energie

e Aufgabe: kurze, intensive Zugriffsmuster — lange Inaktivitit
o HDD-Gerédten: Zustidnde mit absteigendem Energieverbrauch:

1. Aktiv: einziger Arbeitszustand

2. Idle: Platte rotiert, Elektronik teilweise abgeschaltet
3. Standby: Rotation abgeschaltet

4. Sleep: gesamte restliche Elektronik abgeschaltet

e idhnliche, noch stidrker differenzierte Zustinde bei DRAM
e durch geringe Verldngerungen des idle - Intervalls kann signifikant
der Energieverbrauch reduziert werden

Prefetching-Mechanismus
e Prefetching (,,Speichervorgriff”, vorausschauend) & Caching

— Standard-Praxis bei moderner Datei-E/A

— Voraussetzung: Vorwissen iiber benétigte Folge von
zukiinftigen Datenblockreferenzen

— Ziel: Performanzverbesserung durch Durchsatzerhthung
und Latenzzeit-Verringerung

— Idee: Vorziehen mdoglichst vieler E/A-Anforderungen an
Festplatte 4 zeitlich gleichméBige Verteilung verbleibender

— Umsetzung: Caching dieser vorausschauend gelesenen
Blécke in ungenutzten PageCache

e Folge: Inaktivitdt iberwiegend sehr kurz — Energieeffizienz ...7
e Zugriffs-/Festplattenoperationen

— access(x) ... greife auf Inhalt von Festplattenblock x im
PageCache zu
— fetch(x) ... hole Block x nach einem access(x) von Festplatte

— prefetch(x) ... hole Block x ohne access(x) von Festplatte

e Fetch-on-Demand-Strategie bisher (kein vorausschauendes Lesen)
e Traditionelles Prefetching

— traditionelle Prefetching-Strategie: bestimmt

* wann Block von der Platte holen (HW aktiv)
* welcher Block zu holen ist
* welcher Block zu ersetzen ist
1. Optimales Prefetching: Jedes prefetch sollte den néchsten
Block im Referenzstrom in den Cache bringen, der noch

nicht dort ist .
2. Optimales Ersetzen: Bei jedem ersetzenden prefetch sollte

der Block iiberschrieben werden, der am spétesten in der
Zukunft wieder benétigt wird

3. ,,Richte keinen Schaden an”: Uberschreibe niemals Block A
um Block B zu holen, wenn A vor B benétigt wird

4. Erste Moglichkeit: Fiihre nie ein ersetzendes prefetch aus,
wenn dieses schon vorher hitte ausgefiihrt werden kénnen

e Energieeffizientes Prefetching
— versucht Lange der Disk-Idle-Intervalle zu maximieren

1. Optimales Prefetching: Jedes prefetch sollte den nichsten
Block im Referenzstrom in den Cache bringen, der noch

nicht dort ist =)
2. Optimales Ersetzen: Bei jedem ersetzenden prefetch sollte

der Block iiberschrieben werden, der am spétesten in der
Zukunft wieder benétigt wird

3. ,,Richte keinen Schaden an”: Uberschreibe niemals Block A
um Block B zu holen, wenn A vor B bendtigt wird

4. Maximiere Zugriffsfolgen: Fiihre immer dann nach einem
fetch/prefetch ein weiteres prefetch aus, wenn Blécke fiir
eine Ersetzung geeignet sind

5. Beachte Idle-Zeiten: Unterbrich nur dann eine
Inaktivititsperiode durch ein prefetch, falls dieses sofort

ausgefiithrt werden muss, um Cache-Miss zu vermeiden
Allgemeine Schlussfolgerungen

1. Hardware-Spezifikation nutzen: Modi, in denen wenig Energie

verbraucht wird
2. Entwicklung von Strategien, die langen Aufenthalt in

energiesparenden Modi erméglichen und dabei
Leistungsparameter in vertretbarem Umfang reduzieren

3. Implementieren dieser Strategien in Betriebssystemmechanismen
zur Ressourcenverwaltung

Energieeffizientes Prozessormanagement

Hardware-Gegebenheiten

o z.Zt. meistgenutzte Halbleitertechnologie fiir Prozessor-Hardware:
CMOS (Complementary Metal Oxide Semiconductor)

e Komponenten fiir Energieverbrauch: $P = P_{switching} +
P_{leakage} + ...$

— $P_{switching}$: fiir Schaltvorginge notwendige Leistung

— $P_{leakage}$: Verlustleistung durch verschiedene
Leckstrome

— ...: weitere Einflussgroflen (technologiespezifisch)

Hardwareseitige Maflnahmen Schaltleistung:
$P_{switching}$

o Energiebedarf kapazitiver Lade-u. Entladevorginge wahrend des

Schaltens
e fiir momentane CMOS-Technologie i.A. dominanter Anteil am

Energieverbrauch
e Einsparpotenzial: Verringerung von

1. Versorgungsspannung (quadratische Abhingigkeit!)
2. Taktfrequenz

Advanced Operating Systems

e Folgen:

1. lidngere Schaltvorgéinge
2. grofere Latenzzwischen Schaltvorgingen
e Konsequenz: Energieeinsparung nur mit Qualitdtseinbufen(direkt
o. indirekt) moglich

— Anpassung des Lastprofils (Zeit-Last-Kurve? Fristen
kritisch?)

— Beeintrichtigung der Nutzererfahrung(Reaktivitéit
kritisch? Nutzungsprofil?)

Verlustleistung: $P_{leakage}$

Energiebedarf baulich bedingter Leckstrome

e Fortschreitende Hardware-Miniaturisierung — zunehmender
Anteil von $P_{leakage}$ an P

e Beispielhafte GréBenordnungen zum Einsparpotenzial: |
Schaltkreismafle | Versorgungsspannung | $P_{leakage}/P$ | |

| | | 180 nm | 2,5V |0, |

| 70nm [0,7V |0,]|22nm | 0,4V |>0,5]|

e Konsequenz: Leckstrome kritisch fiir energiesparenden

Hardwareentwurf

Regelspielraum: Nutzererfahrung

e Nutzererwartung: wichtigstes Kriterium zur (subjektiven)
Bewertung von auf einem Rechner aktiven Anwendungen durch
Nutzer — Nutzerwartung bestimmt Nutzererfahrung

e Typ einer Anwendung

— entscheidet iiber jeweilige Nutzererwartung
1. Hintergrundanwendung (z.B. Compiler); von
Interesse: Gesamt-Bearbeitungsdauer, Durchsatz
2. Echtzeitanwendung(z.B. Video-Player, MP3-Player);
von Interesse: ,,fliissiges” Abspielen von Video oder

Musik
3. Interaktive Anwendung (z.B. Webbrowser); von
Interesse: Reaktivitit, d.h. keine (wahrnehmbare)
Verzégerung zwischen Nutzer-Aktion und
Rechner-Reaktion
— Insbesondere kritisch: Echtzeitanwendungen, interaktive
Anwendungen

Reaktivitét

e Reaktion von Anwendungen

— abhidngig von sog. Reaktivitit des Rechnersystems ~
durchschnittliche Zeitdauer, mit der Reaktion eines
Rechners auf eine (Benutzerinter-) Aktion erfolgt

e Reaktivitédt: von Reihe von Faktoren abhéngig, z.B.:

1. von Hardware an sich

2. von Energieversorgung der Hardware (wichtig z.B.
Spannungspegel an verschiedenen Stellen)

3. von Software-Gegebenheiten (z.B. Prozess-Scheduling,
Speichermanagement, Magnetplatten-E/A-Scheduling,
Vorgénge im Fenstersystem, Arten des Ressourcen-Sharing
usw.)

Zwischenfazit: Nutzererfahrung

e bietet Regelspielraum fiir Hardwareparameter (— Schaltleistung)
— Versorgungsspannung, Taktfrequenz

e Betriebssystemmechanismen zum energieeffizienten
Prozessormanagement miissen mit Nutzererfahrung(jeweils
erforderlicher Reaktivitit) ausbalanciert werden (wie solche
Mechanismen wirken: 2.2.3)

e Schnittstelle zu anderen NFE:

— Echtzeitfihigkeit

— Performanz
— Usability

2/24

Energieeffizientes Scheduling

e so weit besprochen: Beschridnkung des durchschnittlichen
Energieverbrauchs eines Prozessors

e offene Frage zum Ressourcenmultiplexing: Energieverbrauch eines
Threads/Prozesses?

e Scheduling-Probleme beim Energiesparen:

1. Fairness (der Energieverteilung)?
2. Prioritdtsumkehr?

e Beispiel: Round Robin (RR) mit Prioritdten (Hoch, Mittel,
Niedrig)
e Problem 1: Unfaire Energieverteilung

— Beschrinkung des Energieverbrauchs (durch
QualitédtseinbuBlen, schlimmstenfalls Ausfall)ab einem
oberen Schwellwert E_{max}

— Problem: energieintensive Threads behindern alle
nachfolgenden Threads trotz gleicher Prioritdt —
Fairnessmaf von RR (gleiche Zeitscheibenlénge T)
untergraben

— Problem 2: energieintensive Threads niedrigerer Prioritéit
behindern spiter ankommende Threads hoherer Prioritit

Energiebewusstes RR: Fairness

e Begriffe:

— $E_i"{budget}$... Energiebudget von t_i

— $E.i"{limit}$... Energielimit von t_i

— P_{limit} ... Leistungslimit: maximale
Leistungsaufnahme [Energie/Zeit]

— T ... resultierende Zeitscheibenlinge

e Strategie 1: faire Energieverteilung (einheitliche Energielimits)

— $1\leq i\leq 4: E_i"{limit} = P_{limit}* T$
— (Abweichungen = Wichtung der Prozesse — bedingte
Fairness)

Energiebewusstes RR: Reaktivitit

e faire bzw. gewichtete Aufteilung begrenzter Energie optimiert
Energieeffizienz

e Problem: lange, wenig energieintensive Threads verzdgern
Antwort-und Wartezeiten kurzer, energieintensiver Threads

— Lésung im Einzelfall: Wichtung per $E_i" {limit}$
— globale Reaktivitdt (— Nutzererfahrung bei interaktiven
Systemen) ...7

e Strategie 2: maximale Reaktivitdt (— klassisches RR)
Energiebewusstes RR: Reaktivitdt und Fairness

e Problem: sparsame Threads werden bestraft durch Verfallen des
ungenutzten Energiebudgets

e Idee: Ansparen von Energiebudgets — mehrfache Ausfiithrung
eines Threads innerhalb einer Scheduling-Periode

e Strategie 3: Reaktivitit, dann faire Energieverteilung

Implementierungsfragen

e Scheduling-Zeitpunkte?
— welche Accounting-Operationen (Buchfiihrung iiber
Budget)?
— wann Accounting-Operationen?
— wann Verdridngung?

e Datenstrukturen?

— ... im Scheduler — Warteschlange(n)?
— ... im Prozessdeskriptor?

e Kosten ggii. klassischem RR? (durch Prioritéten...?)
e Pro:
— Optimierung der Energieverteilung nach
anwendungsspezifischen Schedulingzielen(— Strategien)
— Beriicksichtigung von prozessspezifischen
Energieverbrauchsmustern méglich:fordert Skalierbarkeit
i.S.v. Lastadaptivitéit, indirekt auch Usability (—
Nutzererfahrung)
e Kontra:

— zusitzliche sekundire Kosten: Energiebedarf des
Schedulers, Energiebedarf zusitzlicher Kontextwechsel,
Implementierungskosten (Rechenzeit, Speicher)

— Voraussetzung hardwareseitig: Monitoring des
Energieverbrauchs (erforderliche/realisierbare
Granularitét...? sonst: Extrapolation?)

e generelle Alternative: energieintensive Prozesse verlangsamen
— Regelung der CPU-Leistungsparameter (Versorgungsspannung)
(auch komplementir zum Schedulingals Mafnahme nach
Energielimit-Uberschreitung)

e Beispiel: Synergie nichtfunktionaler Eigenschaften

— Performanz nur moglich durch Parallelitit —

Multicore-Hardware
— Multicore-Hardware nur moglich mit Lastausgleich und

Lastverteilungauf mehrere CPUs

— dies erfordert ebenfalls Verteilungsstrategien:
,,Energy-aware Scheduling” (Linux-Strategie zur
Prozessorallokation -nicht zeitlichem Multiplexing!)

Systemglobale Energieeinsparungsmafinahmen

e Traditionelle Betriebssysteme: Entwurf so, dass zu jedem
Zeitpunkt Spitzen-Performanzangestrebt
e Beobachtungen:

— viele Anwendungen benétigen keine Spitzen-Performanz

— viele Hardware-Komponenten verbringen Zeit in
Leerlaufsituationen bzw. in Situationen, wo keine
Spitzen-Performanz erforderlich

e Konsequenz (besonders fiir mobile Systeme) :

— Hardware mit Niedrigenergiezustdnden(Prozessoren und
Magnetplattenlaufwerke, aber auch DRAM,
Netzwerkschnittstellen, Displays, ...)

— somit kann Betriebssystem Energie-Management
realisieren

Hardwaretechnologien

e DPM: Dynamic Power Management

— versetzt leerlaufende/unbenutzte Hardware-Komponenten
selektiv in Zustdnde mit niedrigem Energieverbrauch

— Zustandsiiberginge durch Power-Manager (in Hardware)
gesteuert, dem bestimmte DPM- Strategie (Firmware)
zugrunde liegt, um gutes Verhéltnis zwischen
Performanz/Reaktivitit und Energieeinsparung zu erzielen

e DVS: Dynamic Voltage Scaling

— effizientes Verfahren zur dynamischen Regulierungvon
Taktfrequenz gemeinsammit Versorgungsspannung

— Nutzung quadratischer Abhéingigkeitder dynamischen
Leistung von Versorgungsspannung

— Steuerung/Strategien: Softwareunterstiitzungnotwendig!

Dynamisches Energiemanagement (DPM)- Strategien (Klassen)
bestimmt, wann und wie lange eine Hardware-Komponente sich in
Energiesparmodusbefinden sollte

Advanced Operating Systems

e Greedy: Hardware-Komponente sofort nach Erreichen des
Leerlaufs in Energiesparmodus, ,,Aufwecken” durch neue
Anforderung

e Time-out: Energiesparmodus erst nachdem ein definiertes
Intervall im Leerlauf, ,,Aufwecken” wie bei Greedy-Strategien

e Vorhersage: Energiesparmodus sofort nach Erreichen des
Leerlaufs, wenn Heuristik vorhersagt,dass Kosten gerechtfertigt

e Stochastisch: Energiesparmodus auf Grundlage eines
stochastischen Modells

Spannungsskalierung (DVS)

e Ziel: Unterstiitzung von DPM-Strategien durch Mafinahmen auf
Ebene von Compiler, Betriebssystem und Applikationen:
— Compiler

* kann Informationen zur Betriebssystem-Unterstiitzung
beziiglich Spannungs-Einstellung in
Anwendungs-Code einstreuen,

* damit zur Laufzeit Informationen iiber jeweilige
Arbeitslast verfiigbar

e Betriebssystem (priadiktives Energiemanagement)

— kann Benutzung verschiedener Ressourcen (Prozessor usw.)
beobachten .
— kann dariiber Vorhersagen tétigen
— kann notwendigen Performanzbereich bestimmen
¢ Anwendungen

— koénnen Informationen iiber jeweils fiir sie notwendige
Performanz liefern

e — Kombination mit energieefizientemScheduling!

Speichereffizienz
e ... heiflt: Auslastung des verfiigbaren Speichers
— oft implizit: Hauptspeicherauslastung (memoryfootprint)
— besonders fiir kleine/mobile Systeme:
Hintergrundspeicherauslastung
e Mafle zur Konkretisierung:
— zeitliche Dimension: Maximum vs. Summe genutzten
Speichers?

— physischer Speicherverwaltung? — Belegungsanteil pAR
— virtuelle Speicherverwaltung? — Belegungsanteil vAR

e Konsequenzen fiir Ressourcenverwaltung durch BS:
— Taskverwaltung (Accounting, Multiplexing, Fairness, ...)
— Programmiermodell, API (besonders: dynamische
Speicherreservierung)
— Sinnfrage und ggf. Strategien virtueller Speicherverwaltung
(VMM)
e Konsequenzen fiir Betriebssystem selbst:

— minimaler Speicherbedarfdurch Kernel
— minimale Speicherverwaltungskosten (durch obige
Aufgaben)

Hauptspeicherauslastung
L]

Problem: externe Fragmentierung

.
e Losungen:

— First Fit, Best Fit, WorstFit, Buddy
— Relokation
e Kompromissloser Weg: kein Multitasking!

Problem: interne Fragmentierung

3/24

.
e Losung:

— Seitenrahmengréfie verringern
— Tradeoff: dichter belegte vAR — grofiere Datenstrukturen
fiir Seitentabellen!

e direkter Einfluss des Betriebssystems auf Hauptspeicherbelegung:

— — Speicherbedarf des Kernels

— statische(Minimal-) Gré8le des Kernels (Anweisungen +
Daten)

— dynamischeSpeicherreservierung durch Kernel

— bei Makrokernel: Speicherbedarf von Gerdtecontrollern
(Treibern)!

weitere Einflussfaktoren: Speicherverwaltungskosten

e VMM: Seitentabellengréfle — Mehrstufigkeit

e Metainformationen iiber laufende Programme: Gréfie von
Taskkontrollblécken(Prozess-/Threaddeskriptoren ...)

e dynamische Speicherreservierung durch Tasks

Beispiel 1: sparsam Prozesskontrollblock (PCB,
Metadatenstruktur des Prozessdeskriptors) eines kleinen
Echtzeit-Kernels (,,DICK”):

Beispiel 2: eher nicht sparsam Linux Prozesskontrollblock
(taskstruct):

Hintergrundspeicherauslastung

Einflussfaktoren des Betriebssystems:

e statische Grofle des Kernel-Images, welches beim Bootstrapping

gelesen wird

statische Grofie von Programm-Images (Standards wie ELF)

e statisches vs. dynamisches Einbinden von Bibliotheken: Grofle
von Programmdateien

e VMM: GréBe des Auslagerungsbereichs (inkl. Teilen der
Seitentabelle!) fiir Anwendungen

e Modularisierung (zur Kompilierzeit) des Kernels: gezielte
Anpassung an Einsatzdoméne moglich

e Adaptivitidt (zur Kompilier-und Laufzeit) des Kernels: gezielte
Anpassung an sich dndernde Umgebungsbedingungen moglich (
— Cassini-Huygens-Mission)

Architekturentscheidungen

e bisher betrachtete Mechanismen: allgemein fiir alle BS giiltig
e ... typische Einsatzgebiete sparsamer BS: eingebettete Systeme
e cingebettetes System: (nach [Manl94])

— Computersystem, das in ein grofleres technisches System,
welches nicht zur Datenverarbeitung dient,physisch
eingebunden ist.

— Wesentlicher Bestandteil dieses gréfleren Systems
hinsichtlich seiner Entwicklung, technischer Ausstattung
sowie seines Betriebs.

— Liefert Ausgaben in Form von
(menschenlesbaren)Informationen,
(maschinenlesbaren)Daten zur Weiterverarbeitung und
Steuersignalen.

e BS fiir eingebettete Systeme: spezielle, anwendungsspezifische
Auspriagung der Aufgaben eines ,,klassischen” Universal-BS

— reduzierter Umfang von HW-Abstraktion, generell:
hardwarendhere Ablaufumgebung

— begrenzte (extrem: gar keine) Notwendigkeit von
HW-Multiplexing & -Schutz

e daher eng verwandte NFE: Adaptivitdtvon sparsamen BS
e sparsame Betriebssysteme:

— energieeffizient ~ geringe Architekturanforderungen an
energieintensive Hardware (besonders CPU, MMU,
Netzwerk)

— speichereffizient © Auskommen mit kleinen Datenstrukturen
(memory footprint)

e Konsequenz: geringe logische Komplexitit des
Betriebssystemkerns
e sekundir: Adaptivitit des Betriebssystemkerns

Makrokernel (monolithischer Kernel)

e User Space:

— Anwendungstasks

— CPU im unprivilegiertenModus (Unix ,,Ringe” 1...3)

— Isolation von Tasks durch Programmiermodell(z.B.
Namespaces) oder VMM (private vAR)

e Kernel Space:

— Kernelund Ger#tecontroller (Treiber)

— CPU im privilegierten Modus (Unix ,,Ring” 0)

— keine Isolation (VMM: Kernel wird in alle vAR
eingeblendet)

Mikrokernel

e User Space:

— Anwendungstasks, Kernel-und Treiber tasks (
Serverprozesse, grau)

— CPU im unprivilegiertenModus

— Isolation von Tasks durch VMM

e Kernel Space:

— funktional minimaler Kernel(uKernel)
— CPU im privilegierten Modus
— keine Isolation (Kernel wird in alle vAR eingeblendet)

Architekturkonzepte im Vergleich

e Makrokernel:

— Vvglw. geringe Kosten von Kernelcode (Energie, Speicher)
— V'VMM nicht zwingend erforderlich
— Multitasking (— Prozessmanagement!)nicht zwingend

erforderlich
— XKernel (inkl. Treibern) jederzeit im Speicher

— XRobustheit, Sicherheit, Adaptivitit
o Mikrokernel:

— VRobustheit, Sicherheit, Adaptivitit

— v Kernelspeicherbedarf gering, Serverprozesse nur wenn
benétigt (— Adaptivitét)

— Xhohe IPC-Kosten von Serverprozessen

— XKontextwechselkosten von Serverprozessen

— XVMM, Multitasking i.d.R. erforderlich

Advanced Operating Systems

Beispiel-Betriebssysteme
TinyOS
e Beispiel fiir sparsame BS im Bereich eingebetteter Systeme
verbreitete Anwendung: verteilte Sensornetze (WSN)

L]
e , TinyOS” ist ein quelloffenes, BSD-lizenziertes Betriebssystem
e das fiir drahtlose Gerdte mit geringem Stromverbrauch, wie sie in

— Sensornetzwerke, (— Smart Dust)
— Allgegenwirtiges Computing,

— Personal Area Networks,

— intelligente Gebéude,

— und intelligente Z&hler.

e Architektur:

— grundsétzlich: monolithisch (Makrokernel) mit

Besonderheiten: . .
— keine klare Trennung zwischen der Implementierung von

Anwendungen und BS (wohl aber von deren funktionalen
Aufgaben!)
— — zur Laufzeit: 1 Anwendung + Kernel

o Mechanismen:

— kein Multithreading, keine echte Parallelitat
— — keine Synchronisation zwischen Tasks

— — keine Kontextwechsel bei Taskwechsel
— Multitasking realisiert durch Programmiermodell

— nicht-praemptives FIFO-Scheduling
— kein Paging — keine Seitentabellen, keine MMU

e in Zahlen:

— Kernelgréfie: 400 Byte

— Kernelimagegréfie: 1 - 4 kByte

— Anwendungsgréfe: typisch ca. 15 kB,
Datenbankanwendung: 64 kB

e Programmiermodell:

— BS und Anwendung werden als Ganzes iibersetzt: statische
Optimierungen durch Compilermdglich (Laufzeit,
Speicherbedarf)

— Nebenlidufigkeit durch ereignisbasierte Kommunikation zw.
Anwendung und Kernel

* — command: API-Aufruf, z.B. EA-Operation (vglb.
Systemaufruf)
* — event: Reaktion auf diesen durch Anwendung
— sowohl commands als auch events : asynchron

Beispieldeklaration:

RIOT
[RIOT-Homepage: http://www.riot-os.org]

e cbenfalls sparsames BS,optimiert fiir anspruchsvollere
Anwendungen (breiteres Spektrum)

e RIOT ist ein Open-Source-Mikrokernel-basiertes Betriebssystem,
das speziell fiir die Anforderungen von Internet-of-Things-Geriiten
(IoT) und anderen eingebetteten Gerdten entwickelt wurde.”

— Smartdevices,

— intelligentes Zuhause, intelligente Zahler,
— eingebettete Unterhaltungssysteme

— personliche Gesundheitsgerite,

— intelligentes Fahren,

— Geriite zur Verfolgung und Uberwachung der Logistik.
e Architektur:

— halbwegs: Mikrokernel

— energiesparendeKernelfunktionalitét:

* minimale Algorithmenkomplexitit

* vereinfachtes Threadkonzept — keine
Kontextsicherung erforderlich

* keine dynamische Speicherallokation

4/24

* energiesparende Hardwarezustdnde vom Scheduler
ausgelost (inaktive CPU)
— Mikrokerneldesign unterstiitzt komplementiare NFE:
Adaptivitdt, Erweiterbarkeit
— Kosten: IPC (hier gering!)

o Mechanismen:

— Multithreading-Programmiermodell
— modulare Implementierung von Dateisystemen, Scheduler,
Netzwerkstack

e in Zahlen:

— Kernelgrofe: 1,5 kByte
— Kernelimagegrofie: 5 kByte

Implementierung

e ... kann sich jeder mal ansehen (keine spezielle Hardware,
beliebige Linux-Distribution, FreeBSD, macOSX mit git):

e startet interaktive Instanz von RIOT als ein Prozess des Host-BS
e Verzeichnis RIOT: Quellenzur Kompilierung des Kernels,

mitgelieferte Bibliotheken, Geritetreiber, Beispielanwendungen;
z.B.:

— RIOT/core/include/thread.h: Threadmodell,
Threaddeskriptor

— RIOT/core/include/sched.h,

— RIOT/core/sched.c: Implementierung des (einfachen)
Schedulers

e weitere Infos: riot-os.org/api

Robustheit und Verfiigbarkeit

Motivation
e allgemein: verlasslichkeitskritische Anwendungsszenarien
e Forschung in garstiger Umwelt
e Weltraumerkundung
e hochsicherheitskritische Systeme:

— Rechenzentren von Finanzdienstleistern
— Rechenzentren von Cloud-Dienstleistern

e hochverfiigbare System:

— all das bereits genannte
— offentliche Infrastruktur(Strom, Fernwérme, ...)

e HPC (high performancecomputing)

Allgemeine Begriffe

e Verlésslichkeit, Zuverldssigkeit (dependability)
e iibergeordnete Eigenschaft eines Systems [ALRLO04]
e Fihigkeit, eine Leistungzu erbringen, der man berechtigterweise

vertrauen kann . .
e Taxonomie: umfasst entsprechend Definition die

Untereigenschaften

Verfiigbarkeit (availability)

Robustheit (robustness, reliability

(Funktions-) Sicherheit (safety)

Vertraulichkeit (confidentiality)

Integritét (integrity)

Wartbarkeit (maintainability) (vgl.: evolutionére
Eigenschaften)

S o=

e 1., 4. & 5. auch Untereigenschaften von IT-Sicherheit (security)
e — nicht fiir alle Anwendungen sind alle Untereigenschaften
erforderlich

Robustheitsbegriff

e Teil der primiren Untereigenschaften von Verlisslichkeit:
Robustheit (robustness, reliability)

e Ausfall: beobachtbare Verminderung der Leistung, die ein System
tatsdchlich erbringt, gegeniiber seiner als korrekt spezifizierten
Leistung

e Robustheit: Verlidsslichkeit unter Anwesenheit externer Ausfille
(= Ausfille, deren Ursache auerhalb des betrachteten Systems
liegt)

e im Folgenden: kurze Systematik der Ausfille ...

Fehler und Ausfille ...
e Fehler — fehlerhafter Zustand — Ausfall
e grundlegende Definitionen dieser Begriffe (ausfiihrlich: [ALRLO04,
AvLRO4]):

— Ausfall (failure): liegt vor, wenn tatséchliche Leistung(en),
die ein System erbringt, von als korrekt spezifizierter
Leistung abweichen

— fehlerhafter Zustand (error): notwendige Ursacheeines
Ausfalls (nicht jeder error muss zu failure fiithren)

— Fehler (fault): Ursache fiir fehlerhaften Systemzustand (
error), z.B. Programmierfehler

.

... und ihre Vermeidung
e Umgang mit ...

— faults:
* Korrektheit testen
* Korrektheit beweisen(— formale Verifikation)
— errors:
* Maskierung, Redundanz
* Isolationvon Subsystemen
* — Isolationsmechanismen
— failures:
* Ausfallverhalten (neben korrektem Verhalten)
spezifizieren
* Ausfille zur Laufzeit erkennen und Folgen beheben,
abschwichen...
* — Micro-Reboots

Fehlerhafter Zustand

e interner und externer Zustand (internal & external state)

— externer Zustand (einer Systems oder Subsystems): der Teil
des Gesamtzustands, der an externer Schnittstelle (also fiir
das umgebende (Sub-) System) sichtbar wird

— interner Zustand: restlicher Teilzustand

— (tatsichlich) erbrachte Leistung: zeitliche Folge externer
Zustédnde

e Beispiele fiir das System (Betriebssystem-) Kernel :

— Subsysteme: Dateisystem, Scheduler, E/A, IPC, ...,
Geriéitetreiber
— fault : Programmierfehler im Gerétetreiber

— externer Zustand des Treibers (oder des Dateisystems,
Schedulers, E/A, IPC, ...) C interner Zustand des Kernels

Fehlerausbreitung und (externer) Ausfall

e Wirkungskette: -[X] Treiber-Programmierfehler (fault) -[X]
fehlerhafter interner Zustand des Treibers (error)

— Ausbreitung dieses Fehlers (failure des Treibers)

— = fehlerhafter externer Zustand des Treibers

— = fehlerhafter interner Zustand des Kernels(error)
Kernelausfall!(failure)

X Auswirkung: fehlerhafter interner Zustand eines weiteren
Kernel-Subsystems (z.B. error des Dateisystems)
[e Robustheit: Isolationsmechanismen

Advanced Operating Systems

Isolationsmechanismen Private virtuelle Adressrdume und Robustheit von Mikrokernen

e im Folgenden: Isolationsmechanismen fiir robuste Betriebssysteme Fehlerausbreitung
e = Gewinn durch Adressraumisolation innerhalb des Kernels
— durch strukturierte Programmierung

— durch Adressraumisolation e korrekte private vAR ~ kollisionsfreie Seitenabbildung! — vkein nichtvertrauenswiirdiger Code im kernelspace , der

e Magie in Hardware: MMU (BS steuert und verwaltet...) dort beliebige physische Adressen manipulieren kann
e Robustheit: Was haben wir von privaten vAR? — vKommunikation zwischen nvw. Code (nicht zur zwischen

Anwendungstasks)muss durch IPC explizit hergestellt
— Vnichtvertrauenswiirdiger (i.S.v. potenziell nicht korrekter) werden — Uberwachung und Validierung zur Laufzeit
Code kann keine beliebigen physischen Adressen schreiben — vKontrollfluss begrenzen: Zugriffssteuerung auch zwischen
(er erreicht sie ja nicht mal...) Serverprozessen, zur Laufzeit unabhingiges
— vKommunikation zwischen nvw. Code (z.B. Teilmanagement von Code (Kernelcode) moglich (z.B.:
Anwendungstasks) muss durch IPC-Mechanismen explizit Nichtterminierung erkennen)
hergestellt werden (u.U. auch shared memory)

e es gibt noch mehr: Isolationsmechanismen fiir sichere
Betriebssysteme

— all die obigen...

— durch kryptografische Hardwareunterstiitzung: Enclaves
— durch streng typisierte Sprachen und managed code

— durch isolierte Laufzeitumgebungen: Virtualisierung

Strukturierte Programmierung e Neu:
Monolithisches BS... in historischer Reinform: * — Uberwachung und Validierung zur Laufzeit moglich — vnvw. BS-Code muss nicht mehr im kernelspace (héchste
— v Kontrollfluss begrenzen: Funktionsaufrufe kénnen i.A. PTOZCSS?rPriVﬂCgiCYUHg) laufen) .
e Anwendungen (Ausnahme: RPC) keine AR-Grenzen {iberschreiten - /verblfelbender Kernel (dessen Korrektheit wir annehmen):
e Kernel . . klein, funktional weniger komplex, leichter zu entwickeln
e gesamte BS-Funktionalitét * — BS-Zugriffssteuerungkann nicht durch Taskfehler 7u testen, evtl. formal zu veriﬁzier’“en ’
e programmiert als Sammlung von Prozeduren ausgehebglt Werden . . — Vdaneben: Adaptivitdtdurch konsequentere
e jede darf jede davon aufrufen * = unabSIChthche Terminierungsfehler(unendliche Modularisierung des Kernels gesteigert
e keine Modularisierung Rekursion) erschwert ...
e keine definierten internen Schnittstellen Mach

Monolithisches Prinzip

e Ziel: Isolation zwischen Anwendungen und Betriebssystem

e Mechanismus: Prozessor-Privilegierungsebenen (user space und
kernel space)

e Konsequenz fiir Strukturierung des Kernels: Es gibt keine
Strukturierung des Kernels ...

e ... jedenfalls fast: Ablauf eines Systemaufrufs (Erinnerung)

Strukturierte Makrokernarchitektur

Resultat: schwach strukturierter (monolithischer) Makrokernel
— nach [TaWo05], S. 45

Weiterentwicklung:

Schichtendifferenzierung (layered operating system)

Modularisierung (Bsp.: Linux-Kernel) | Kernelcode | |

————————————————————————— | | VFS | | IPC, Dateisystem | | Scheduler,

VMM | | Dispatcher, Gerétetreiber |

e Modularer Makrokernel:
e alle Kernelfunktionen in Moduleunterteilt (z.B. verschiedene

Dateisystemtypen) — Erweiterbarkeit, Wartbarkeit,

Portierbarkeit
e Kklar definierte Modulschnittstellen(z.B. virtualfilesystem, VFS)

e Module zur Kernellaufzeit dynamisch einbindbar (—
Adaptivitdt)

Fehlerausbreitung beim Makrokernel

strukturierte Programmierung:

v Wartbarkeit

v/ Portierbarkeit

v/ Erweiterbarkeit

O (begrenzt) Adaptivitit

O (begrenzt) Schutz gegen statische Programmierfehler: nur
durch Compiler (z.B. C private, public)

Xkein Schutz gegen dynamische Fehler

— Robustheit...7

néchstes Ziel: Schutz gegen Laufzeitfehler... —
Laufzeitmechanismen

Adressraumisolation
e zur Erinnerung: private virtuelle Adressrdume zweier Tasks

($i\not= j3)

e private virtuelle vs. physischer Adresse

5/24

Was das fiir den Kernel bedeutet

e private virtuelle Adressraume

— gibt es schon so lange wie VMM
— gab es lange nur auf Anwendungsebene
— — keine Isolation zwischen Fehlern innerhalb des Kernels!

e niichstes Ziel: Schutz gegen Kernelfehler (Gerétetreiber)... —
BS-Architektur

Mikrokernelarchitektur

e Fortschritt ggii. Makrokernel:

— Strukturierungskonzept:

% strenger durchgesetzt durch konsequente Isolation
voneinander unabhéngiger Kernel-Subsysteme
* zur Laufzeit durchgesetzt — Reaktion auf fehlerhafte
Zustdnde moglich!
— zusitzlich zu vertikaler Strukturierung des Kernels:
horizontale Strukturierungeingefiihrt

* — funktionale Einheiten: vertikal (Schichten)
* — isolierteEinheiten: horizontal (private vAR)

o Idee:

— Kernel (alle BS-Funktionalitdt) — pKernel (minimale
BS-Funktionalitét)

— Rest (insbes. Treiber): ,,gewhnliche” Anwendungsprozesse
mit Adressraumisolation

— Kommunikation: botschaftenbasierteIPC (auch client-server

operating system)
— Nomenklatur: Mikrokernelund Serverprozesse

Modularer Makrokernel vs. Mikrokernel

L]

e minimale Kernelfunktionalitét:

e keine Dienste, nur allgemeine Schnittstellenfiir diese

e keine Strategien, nur grundlegende Mechanismenzur
Ressourcenverwaltung

e neues Problem: minimales Mikrokerneldesign
. ,,er haben 100 Leute gefragt...”: Wie entscheide ich das?
. Ablauf eines Systemaufrufs

— schwarz: unprivilegierteInstruktionen
— blau:privilegierte Instruktionen
— rot:Ubergang zwischen beidem (puKern — Kontextwechsel!)

o Mikrokernel-Design: Erster Versuch
— Carnegie Mellon University (CMU), School of Computer
Science 1985 - 1994
e ein wenig Historie

— UNIX (Bell Labs) - K. Thompson, D. Ritchie
— BSD (U Berkeley) - W. Joy

— System V - W. Joy

— Mach (CMU) - R. Rashid

— MINIX - A. Tanenbaum

— NeXTSTEP (NeXT) - S. Jobs

— Linux - L. Torvalds

— GNU Hurd (FSF) - R. Stallman

— Mac OS X (Apple) - S. Jobs

Mach: Ziele Entstehung

e Grundlage:

— 1975: Aleph(BS des ,,Rochester Intelligent Gateway”), U
Rochester
— 1979/81: Accent (verteiltes BS), CMU

o geférdert durch militdrische Geldgeber:

— DARPA: Defense AdvancedResearch Projects Agency
— SCI: Strategic Computing Initiative

Ziele

e Mach 3.0 (Richard Rashid, 1989): einer der ersten praktisch
nutzbaren pKerne

e Ziel: API-Emulation(# Virtualisierung!)von UNIX und -Derivaten

auf unterschiedlichen Prozessorarchitekturen
e mehrere unterschiedliche Emulatoren gleichzeitig lauffahig

— Emulation auflerhalb des Kernels
— jeder Emulator:

*+ Komponente im Adressraum des
Applikationsprogramms

* 1...n Server, die unabhéingig von
Applikationsprogramm laufen

Mach-Server zur Emulation

.
e Emulation von UNIX-Systemen mittels Mach-Serverprozessen

pKernel-Funktionen

Advanced Operating Systems

1. Prozessverwaltung
2. Speicherverwaltung
3. IPC-und E/A-Dienste, einschlielich Geritetreiber

unterstiitzte Abstraktionen (— API, Systemaufrufe):

Prozesse
Threads
Speicherobjekte

Ports (generisches, ortstransparentes Adressierungskonzept; vgl.
UNIX ,,everything is a file”)

. Botschaften

6. ... (sekundire, von den obigen genutzte Abstraktionen)

[aliat e

Architektur

°
e Systemaufrufkosten:

— IPC-Benchmark (1995): i486 Prozessor, 50 MHz

— Messung mit verschiedenen Botschaftenldngen(x - Werte)

— ohne Nutzdaten (0 Byte Botschaftenlidnge): 115 us
(Tendenz unfreundlich ...)

e Bewertung aus heutiger Sicht:

— funktional komplex

— 153 Systemaufrufe

— mehrere Schnittstellen, parallele Implementierungen fiir
eine Funktion

— — Adaptivitdt (Auswahl durch Programmierer)

— zukunftsweisender Ansatz
— langsame und ineffiziente Implementierung

Lessons Learned

erster Versuch:

Idee des Mikrokernelsbekannt

Umsetzung: Designkriterienweitgehend unbekannt

Folgen fiir Performanz und Programmierkomfort: [Heis19)]
X,,complex”

X,,inflexible”

X, slow”

wir wissen etwas iiber Kosten: IPC-Performanz,
Kernelabstraktionen

wir wissen noch nichts iiber guten pKern-Funktionsumfangund
gute Schnittstellen...

— néchstes Ziel!

L4

e Made in Germany:

— Jochen Liedtke (GMD, ,,Gesellschaft fiir Mathematik und
Datenverarbeitung”), Betriebssystemgruppe (u.a.): J.
Liedtke, H. Hartig, W. E. Kithnhauser

— Symposium on Operating Systems Principles 1995 (SOSP
’95): ,,0n p-Kernel Construction” [Lied95]

e Analyse des Mach-Kernels:

1. falsche Abstraktionen
unperformanteKernelimplementierung

3. prozessorunabhingige Implementierung

— Letzteres: effizienzschidliche Eigenschaft eines
Mikrokernels

— Neuimplementierung eines (konzeptionell sauberen!)
p-Kerns kaum teurer als Portierung auf andere
Prozessorarchitektur

L3 und L4

e Mikrokerne der 2. Generation

e zunichst L3, insbesondere Nachfolger L4: erste Mikrokerne der 2.

Generation

6,/24

e vollstindige Uberarbeitung des Mikrokernkonzepts: wesentliche
Probleme der 1. Generation (z.B. Mach) vermieden

o Bsp.: durchschnittliche Performanz von User-Mode IPC in L3
ggii. Mach: Faktor 22 zugunsten L3

— heute: verschiedene Weiterentwicklungen von L4
(bezeichnet heute Familie &hnlicher Mikrokerne)

Mikrokernel-Designprinzipien

e Was gehért in einen Mikrokern?

— Liedtke: Unterscheidung zwischen Konzepten und deren
Implementierung
— bestimmende Anforderungen an beide:
* Konzeptsicht — Funktionalitit,
* Implementierungssicht — Performanz
— — 1. pKernel-Generation: Konzept durch
Performanzentscheidungen aufgeweicht
— — Effekt in der Praxis genau gegenteilig: schlechte (IPC-)
Performanz!

,,The determining criterion used is functionality, not
performance. More precisely, a concept is tolerated inside
the p-kernel only if moving it outside the kernel, i.e.
permitting competing implementations, would prevent the
implementation of the systems‘s required functionality .”
[Jochen Liedtke]

Designprinzipien fiir Mikrokernel-Konzept:
e — Annahmen hinsichtlich der funktionalen Anforderungen:

1. System interaktive und nicht vollsténdig vertrauenswiirdige
Applikationen unterstiitzen (— HW-Schutz, -Multiplexing),
2. Hardware mit virtueller Speicherverwaltung und Paging

Designprinzipien:

1. Autonomie: ,,Ein Subsystem (Server)muss so implementiert
werden konnen, dass es von keinem anderen Subsystem gestort
oder korrumpiert werden kann.”

2. Integritét: ,,Subsystem (Server) S_1 muss sich auf Garantien
von S_2 verlassen kénnen. D.h. beide Subsysteme miissen
miteinander kommunizieren kénnen, ohne dass ein drittes
Subsystem diese Kommunikation stéren, filschen oder abhoéren
kann.”

L4: Speicherabstraktion

e Adressraum: Abbildung, die jede virtuelle Seite auf einen
physischen Seitenrahmen abbildet oder als ,,nicht zugreifbar”
markiert

e Implementierung iiber Seitentabellen, unterstiitzt durch
MMU-Hardware

e Aufgabe des Mikrokernels (als gemeinsame obligatorische Schicht
aller Subsysteme): muss Hardware-Konzept des Adressraums
verbergen und durch eigenes Adressraum-Konzept iiberlagern
(sonst Implementierung von VMM-Mechanismen durch Server
unmdglich)

e Mikrokernel-Konzept des Adressraums:

— muss Implementierung von beliebigen virtuellen
Speicherverwaltungs-und -schutzkonzepten oberhalb des
Mikrokernels (d.h. in den Subsystemen) erlauben

— sollte einfach und dem Hardware-Konzept dhnlich sein

e Idee: abstrakte Speicherverwaltung

— rekursive Konstruktion und Verwaltung der Adressrdume
auf Benutzer-(Server-)Ebene
— Mikrokernel stellt dafiir genau drei Operationen bereit:

1. grant(x) - Server S iibertrigt Seite x seines AR in
AR von Empfinger $S‘8$

2. map(x) - Server S bildet Seite x seines AR in AR
von Empfianger $S‘§ ab

3. flush(x) - Server S entfernt (flusht) Seite x seines
AR aus allen fremden AR

Hierarchische Adressriume

o Rekursive Konstruktion der Adressraumhierarchie
— Server und Anwendungenkénnen damit ihren Klienten
Seiten des eigenen Adressraumes zur Verfiigung stellen
— Realspeicher: Ur-Adressraum, vom pKernel verwaltet
— Speicherverwaltung(en), Paging usw.: vollstdndig auBerhalb
des p-Kernels realisiert

L4: Threadabstraktion

e Thread
— innerhalb eines Adressraumesablaufende Aktivitat
— — Adressraumzuordnung ist essenziell fiir Threadkonzept
(Code + Daten)
* Bindung an Adressraum: dynamisch oder fest
* Anderung einer dynamischen Zuordnung: darf nur
unter vertrauenswiirdiger Kontrolle erfolgen (sonst:
fremde Adressrdume les- und korrumpierbar)
e Designentscheidung
— — Autonomieprinzip
— — Konsequenz: Adressraumisolation

— — entscheidender Grund zur Realisierung des
Thread-Konzepts innerhalb des Mikrokernels

IPC
e Interprozess-Kommunikation
— Kommunikation {iber Adressraumgrenzen:

vertrauenswiirdig kontrollierte Aufhebung der Isolation
— — essenziell fiir (sinnvolles) Multitasking und -threading
o Designentscheidung
— — Integritédtsprinzip
— — wir haben schon: vertrauenswiirdige
Adressraumisolation im pKernel
— — grundlegendes IPC-Konzepts innerhalb des Mikrokernels
(flexibel und dynamisch durch Server erweiterbar, analog
Adressraumhierarchie)
Identifikatoren
e Thread-und Ressourcenbezeichner
— miissen vertrauenswiirdig vergeben (authentisch und i.A.
persistent) und verwaltet(eindeutig und korrekt
referenzierbar)werden
— — essenziell fiir (sinnvolles) Multitasking und -threading
— — essenziell fiir vertrauenswiirdige Kernel-und
Server-Schnittstellen
e Designentscheidung
— — Integritédtsprinzip
— — ID-Konzept innerhalb des Mikrokernels (wiederum:
durch Server erweiterbar)

Lessons Learned
1. Ein minimaler Mikrokernel
e soll Minimalmenge an geeigneten Abstraktionenzur
Verfiigung stellen:
e flexibel genug, um Implementierung beliebiger
Betriebssysteme zu erméglichen
e Nutzung umfangreicher Mengeverschiedener
Hardware-Plattformen
2. Geeignete, funktional minimale Mechanismen im pKern:

e Adressraum mit map-, flush-, grant-Operation

Advanced Operating Systems

e Threadsinklusive IPC
e cindeutige Identifikatoren

Wahl der geeigneten Abstraktionen:

e kritischfiir Verifizierbarkeit (— Robustheit), Adaptivitét
und optimierte Performanz des Mikrokerns
Bisherigen p-Kernel-Abstraktionskonzepte:

1. ungeeignete
2. zu viele
3. zu spezialisierte u. inflexible Abstraktionen

Konsequenzen fiir Mikrokernel-Implementierung

e miissen fiir jeden Prozessortyp neu implementiert werden
e sind deshalb prinzipiell nicht portierbar — L3-und
L4-Prototypen by J. Liedtke: 99% Assemblercode
innerhalb eines Mikrokernels sind
1. grundlegende Implementierungsentscheidungen
2. meiste Algorithmen u. Datenstrukturen

e von Prozessorhardware abhingig

— Mikrokernelmit akzeptabler Performanz:
hardwarespezifische Implementierung minimalerforderlicher,
vom Prozessortyp unabhingiger Abstraktionen

Heutige Bedeutung

nach Tod von J. Liedtke (2001) auf Basis von L4 zahlreiche
moderne BS
L4 heute: Spezifikation eines Mikrokernels (nicht

Implementierung)

Einige Weiterentwicklungen:

TU Dresden (Hermann H'Eirtig): Neuimplementierung in C++
(L4/Fiasco), Basis des Echtzeit-Betriebssystems DROPS, der
VirtualisierungsplattformNOVA (genauer: Hypervisor) und des
adaptiven BS-Kernels Fiasco.OC

University ofNew South Wales (UNSW), Australien (Gernot
Heiser):

— Implementierung von L4 auf verschiedenen 64 -
Bit-Plattformen, bekannt als L4/MIPS, L4/Alpha

— Implementierung in C (Wartbarkeit, Performanz)

— Mit L4Ka::Pistachio bisher schnellste Implementierung von
botschaftenbasierterIPC (2005: 36 Zyklen auf
Itanium-Architektur)

— seit 2009: seL4, erster formal verifizierter BS-Kernel (d.h.
mathematisch bewiesen, dass Implementierung funktional
korrekt ist und nachweislich keinen Entwurfsfehler enthélt)

Zwischenfazit

7/24

Begrenzung von Fehlerausbreitung (— Folgen von errors):
konsequent modularisierte Architektur aus Subsystemen
Isolationsmechanismen zwischen Subsystemen

Konsequenzen fiir BS-Kernel:

statische Isolation auf Quellcodeebene — strukturierte
Programmierung

dynamische Isolation zur Laufzeit — private virtuelle
Adressraume

Architektur, welche diese Mechanismen komponiert: Mikrokernel
Was haben wir gewonnen?

v Adressraumisolation fiir simtlichen nichtvertrauenswiirdigen
Code

vkeine privilegierten Instruktionen in nvw. Code (Serverprozesse)
v geringe Grofie (potenziell: Verifizierbarkeit) des Kernels
vneben Robustheit: Modularitdtund Adaptivitdtdes Kernels
Und was noch nicht?

— XBehandlung von Ausfillen (— abstiirzende Gerétetreiber

)

3.5 Micro-Reboots

Ansatz

Beobachtungen am Ausfallverhalten von BS:

Kernelfehler sind (potenziell) fatal fiir gesamtes System
Anwendungsfehler sind es nicht

— kleiner Kernel = geringeres Risiko von Systemausfillen
— durch BS-Code in Serverprozessen: verbleibendes Risiko
unabhéngiger Teilausfille von BS-Funktionalitit (z.B. FS,
Treiberprozesse, GUI, ...)

Ergidnzung zu Isolationsmechanismen:

Mechanismen zur Behandlung von Subsystem-Ausfillen

= Mechanismen zur Behandlung Anwendungs-, Server- und

Geritetreiberfehlen
— Micro-Reboots

wir haben:

kleinen, ergo vertrauenswiirdigen (als fehlerfrei
angenommenen)pKernel

BS-Funktionalitdt in bedingt vertrauenswiirdigen Serverprozessen
(kontrollierbare, aber wesentlich grofiere Codebasis)
Geriitetreiber und Anwendungen in nicht vertrauenswiirdigen
Prozessen (nicht kontrollierbare Codebasis)

wir wollen:

Systemausfille verhindern durch Vermeidung von errors im
Kernel — hochste Prioritét

Treiber-und Serverausfille minimieren durch Verbergen ihrer

Auswirkungen — nachgeordnete Prioritdt (Best-Effort-Prinzip)
Idee:

— Systemausfille — pKernel
— Treiber-und Serverausfille — Neustart durch spezialisierten
Serverprozess

Beispiel: Ethernet-Treiberausfall

schwarz: ausfallfreie Kommunikation
rot: Ausfall und Behandlung
blau: Wiederherstellung nach Ausfall

Beispiel: Dateisystem-Serverausfall

Beis
L]
[]

schwarz: ausfallfreie Kommunikation
rot: Ausfall und Behandlung
blau: Wiederherstellung nach Ausfall

piel-Betriebssystem: MINIX

Ziele:

robustes Betriebssystems

— Schutz gegen Sichtbarwerden von Fehlern(= Ausfille) fiir
g(;lktlzlgrauf Anwendungsdominen: Endanwender-Einzelplatzrechner
(Desktop, Laptop, Smart*) und eingebettete Systeme

Anliegen: Robustheit > Verstindlichkeit > geringer HW-Bedarf
aktuelle Version: MINIX 3.3.0

Architektur

Kommunikationsschnittstellen ...

— ... fiir Anwendungen (weif): Systemaufrufe im
POSIX-Standard
— ... fiir Serverprozesse (grau):
* untereinander: IPC (botschaftenbasiert)
* mit Kernel: spezielle MINIX-API (kernel calls), fiir
Anwendungsprozesse gesperrt

Betriebssystem-Serverprozesse:

Dateisystem (FS)
Prozessmanagement (PM)
Netzwerkmanagement (Net)

Reincarnation Server (RS) — Micro-Reboots jeglicher
Serverprozesse

(u. a.) ...

Kernelprozesse:

systemtask

clocktask

Reincarnation Server

Implementierungstechnik fiir Micro-Reboots:
Prozesse zum Systemstart (— Kernel Image): system, clock, init,
rs
— system, clock: Kernelprogramm
— init: Bootstrapping (Initialisierung von rs und anderer
BS-Serverprozesse), Fork der Login-Shell (und damit
sdmtlicher Anwendungsprozesse)
— rs: Fork sdmtlicher BS-Serverprozesse, einschlieflich
Geriétetreiber

MINIX: Ausprobieren

e ausfiihrliche Dokumentation
e vorkompiliertes Kernel-Image zum Installieren (VirtualBox,
VMWare, ...)
Verfiigbarkeit
e komplementire NFE zu Robustheit: Verfiigbarkeit (availability)
— Zur Erinnerung: Untereigenschaften von Verlisslichkeit
1. Verfiigbarkeit (availability)
2. Robustheit (robustness, reliability)
o Bezichung:
— Verbesserung von Robustheit — Verbesserung von
Verfiigbarkeit
— Robustheitsmafinahmen hinreichend , nicht notwendig
(hochverfiigbare Systeme kénnen sehr wohl von Ausfiillen
betroffen sein...)
e cine weitere komplementiare NFE:

— Robustheit — Sicherheit (security)

Allgemeine Definition: Der Grad, zu welchem ein System oder eine
Komponente funktionsfihig und zuginglich (erreichbar) ist,wann immer
seine Nutzung erforderlichist. (IEEE)

genauer quantifiziert:

Der Anteil an Laufzeit eines Systems, in dem dieses seine
spezifizierte Leistung erbringt.

Availability= Total Uptime/ Total Lifetime= MTTF / (MTTF +

MTTR)

— MTTR: Mean Time to Recovery ... Erwartungswert fiir

TTR,

— MTTF: Mean Time to Failure ... Erwartungswert fiir TTF

einige Verfiigbarkeitsklassen: | Verfiigbarkeit | Ausfallzeit pro
Jahr | Ausfallzeit pro Woche | | | |
|1 90% | > 1 Monat | ca. 17 Stunden | | 99% | ca.
4 Tage | ca. 2 Stunden | | 99,9% | ca. 9 Stunden | ca. 10 Minuten |
[99,99% | ca. 1 Stunde | ca. 1 Minute | | 99,999% | ca. 5 Minuten
| ca. 6 Sekunden | | 99,9999% | ca. 2 Sekunden | << 1 Sekunde |
Hochverfiigbarkeitsbereich (gefeierte ,,five nines” availability)

MafBnahmen:
Robustheitsmainahmen
Redundanz
Ausfallmanagement

https://wiki.minix3.org/doku.php?id=www:getting-started:start
https://wiki.minix3.org/doku.php?id=www:download:start
https://wiki.minix3.org/doku.php?id=www:download:start

Advanced Operating Systems

QNX Neutrino: Hochverfiigbares Echtzeit-BS
Uberblick QNX:

Mikrokern-Betriebssystem

priméres Einsatzfeld: eingebettete Systeme, z.B. Automobilbau
Mikrokernarchitektur mit Adressraumisolation fiir Gerétetreiber
(begrenzt) dynamische Micro-Rebootsmdoglich

— Maximierung der Uptime des Gesamtsystems

Hochverfiigbarkeitsmechanismen:

1. ,,High-Avalability-Manager”: Laufzeit-Monitor, der Systemdienste
oder Anwendungsprozesse iiberwacht und neustartet —
pnReboot-Server

2. ,,High-Availability-Client-Libraries”: Funktionen zur
transparenten automatischen Reboot fiir ausgefallene
Server-Verbindungen

Sicherheit

Motivation
Medienberichte zu IT-Sicherheitsvorfillen:

e 27.-28.11.2016: Ausfille von iiber 900.000 Kundenanschliissen der
Deutschen Telekom
— Bundesamt fiir Sicherheit in der Informationstechnik (BSI):
weltweiter Angriff auf ausgew#hlte Fernverwaltungsports
von DSL-Routern, um angegriffene Geréte mit

Schadsoftware zu infizieren
— Angreiferziel: Missbrauch der Hardware fiir eigentliche

Angriffe (Botnet)

e 15.05.-06.06.2019: Ransomware-Angriff zur Erpressung der Heise
Verlagsgruppe

— Infektion eines Rechners im lokalen Netz durch Malware in
eMail-Anhang (Trojaner)

— Téauschung des Nutzers: Schadcode mit
Administratorrechten ausgefiihrt (Spezialfall von Malware:
Root Kit)

— Malwareziel: Verschliisselungvon Nutzerdaten

— Angreiferziel: Erspressungvon Losegeld fiir Entschliisselung

‘Was sichere Betriebssysteme erreichen kénnen ...

Terminologie
Achtung zwei unterschiedliche ,,Sicherheiten”

und was nicht: youtube

1. Security (IT-Sicherheit, Informationssicherheit)

e Ziel: Schutz des Rechnersystems
e hier besprochen
e Systemsicherheit

2. Safety (Funktionale Sicherheit, Betriebssicherheit)

e Ziel: Schutz vor einem Rechnersystem
e an dieser Stelle nicht besprochen

Eine (unvollstéindige) Taxonomie:

Sicherheitsziele

Allgemeines Ziel von IT-Sicherheit i.S.v. Security ... ein Rechnersystem
sicher zu machen gegen Schiden durch zielgerichtete Angriffe,
insbesondere in Bezug auf die Informationen, die in solchen Systemen
gespeichert, verarbeitet und iibertragen werden. (Programme sind somit
ebenfalls als Informationen zu verstehen.)

Cave! Insbesondere fiir Sicherheitsziele gilt: Daten $\not=$

Informationen
Sicherheitsziele: sukzessive Konkretisierungen dieser Allgemeinformel
hinsichtlich anwendungsspezifischer Anforderungen

8/24

Abstrakte Ziele:

1. Vertraulichkeit (Confidentiality)

2. Integritét (Integrity)

3. Verfiigbarkeit (Availability)

4. Authentizitét (Authenticity)

5. Verbindlichkeit = Nichtabstreitbarkeit (Non-repudiability)

Abstrakte Ziele dienen zur Ableitung konkreter Sicherheitsziele. Wir
definieren sie als Eigenschaften von gespeicherten oder iibertragenen
Informationen ...
e Vertraulichkeit: ... nur fiir einen autorisierten Nutzerkreis
zugénglich (i.S.v. interpretierbar) zu sein.
e Integritét: ... vor nicht autorisierter Veridnderung geschiitzt zu
sein,
e Verfiligbarkeit: ... autorisierten Nutzern in angemessener Frist
zugéinglich zu sein.
e Authentizitét: ... ihren Urheber eindeutig erkennen zu kdnnen.
e Verbindlichkeit: ... sowohl integer als auch authentisch zu sein.

Schadenspotenzial
1. Vandalismus, Terrorismus
e reine Zerstorungswut
2. Systemmissbrauch

e illegitime Ressourcennutzung, Ziel i.d.R.: hocheffektive
Folgeangriffe
e Manipulationvon Inhalten (— Desinformation)

3. (Wirtschafts-) Spionage und Diebstahl

e Verlust der Kontrolle iiber kritisches Wissen (—
Risikotechnologien)

e immense wirtschaftliche Schiden (— Technologiefiihrer,
Patentinhaber)

e z.B. Diebstahl von industriellem Know-How

4. Betrug, persdnliche Bereicherung
e wirtschaftliche Schiden
5. Sabotage, Erpressung

o AufBerkraftsetzen lebenswichtiger Infrastruktur (z.B. schon
Registrierkassen)

e Erpressung von ausgewihlten (oder schlicht grofien) Zielgruppen
durch vollendete, reversible Sabotage (— Verschliisselung von
Endanwenderinformationen)

Bedrohungen
1. Eindringlinge (intruders)

e im engeren Sinne menschliche Angreifer (,,Hacker”), deren
Angriff eine technische Schwachstelleausnutzt (exploit)

2. Schadsoftware (malicious software, malware)

e durch Ausnutzung einer (auch menschlichen) Schwachstelle
zur Ausfiihrung gebrachte Programme, die (teil-)
automatisierte Angriffe durchfiithren

e Trojanische Pferde (trojan horses): scheinbar niitzliche
Software, die verborgene Angriffsfunktionalitit enthélt

e Viren, Wiirmer (viruses, worms): Schadsoftware, die
Funktionalitdt zur eigenen Vervielfdltigung und/oder
Modifikation beinhaltet

e Logische Bomben (logicbombs): Code-Sequenz in
trojanischen Pferden, deren Aktivierung an System-oder
Datumsereignisse gebunden ist

e Root Kits

3. Bots und Botnets

o (weit-) verteilt ausgefiihrte Schadsoftware
e cigentliches Ziel i.d.R. nicht das jeweils infizierte System

Professionelle Malware: Root Kit

e Programm-Paket, das unbemerkt Betriebssystem (und
ausgewihlte Anwendungen) modifiziert, um Administratorrechte
zu erlangen

— Administrator-bzw. Rootrechte: ermdglichen Zugriff auf alle
Funktionen und Dienste eines Betriebssystems
— Angreifer erlangt vollstindige Kontrolle des Systems und
kann
Dateien (Programme) hinzufiigen bzw. d&ndern
Prozesse iiberwachen
iiber die Netzverbindungen senden und empfangen
bei all dem Hintertiiren fiir Durchfithrung und
Verschleierung zukiinftiger Angriffe platziere
— Ziele eines Rootkits:
* seine Existenz verbergen
* zu verbergen, welche Verdnderungen vorgenommen
wurden
* vollstdndige und irreversible Kontrolle iiber BS zu
erlangen

* % % ¥

e Ein erfolgreicher Root-Kit-Angriff ...

— ... kann jederzeit

— ... mit hochaktuellem und systemspezifischem Wissen iiber
Schwachstellen . X

— ... vollautomatisiert, also reaktiv unverhinderbar

— ... unentdeckbar

— ... nicht reversibel .

— ... die uneingeschriankte Kontrolle iiber das Zielsystem
erlangen.

e Voraussetzung: eine einzige Schwachstelle...

Schwachstellen
1. Passwort (begehrt: Administrator-Passworter...)

,,erraten”

zu einfach, zu kurz, usw.

Brute-Force-Angriffe mit Rechnerunterstiitzung
Abfangen (eavesdropping)

unverschliisselte Ubertragung (verteilte Systeme) oder
Speicherung

2. Programmierfehler (Speicherfehler...!)

e im Anwenderprogrammen
e in Gerdtemanagern
e im Betriebssystem

3. Mangelhafte Robustheit

e keine Korrektur fehlerhafter Eingaben
e buffer overrun/underrun (,, Heartbleed”)

4. Nichttechnische Schwachstellen

e physisch, organisatorisch, infrastrukturell
e menschlich (— Erpressung, socialengineering)

Zwischenfazit

e Schwachstellen sind unvermeidbar
e Bedrohungen sind unkontrollierbar

— ... und nehmen tendeziellzu!

Beides fiihrt zu operationellen Risiken beim Betrieb eines IT-Systems
— Aufgabe der Betriebssystemsicherheit: Auswirkungen operationeller
Risiken reduzieren (wo diese nicht vermieden werden kénnen...)

Wie dies geht: Security Engineering

https://www.youtube.com/watch?v=opRMrEfAIiI&t=

Advanced Operating Systems

Sicherheitspolitiken

e Herausforderung: korrekte Durchsetzung von Sicherheitspolitiken
e Vorgehensweise: Security Engineering

I
Sicherheitsziele | Welche Sicherheitsanforderungen muss das
Betriebssystem erfiillen? | | Sicherheitspolitik | Durch welche Strategien
soll es diese erfiillen? (— Regelwerk) | | Sicherheitsmechanismen | Wie
implementiert das Betriebssystem seine Sicherheitspolitik? | |
Sicherheitsarchitektur | Wo implementiert das Betriebssystem seine
Sicherheitsmechanismen (und deren Interaktion)? |

Sicherheitspolitiken und -modelle Kritischfiir korrekten
Entwurf, Spezifikation, Implementierung der
Betriebssystem-Sicherheitseigenschaften!

Begriffsdefinitionen:

e Sicherheitspolitik (Security Policy): Eine Menge von Regeln, die
zum Erreichen eines Sicherheitsziels dienen.

e Sicherheitsmodell (Security Model): Die formale Darstellung einer
Sicherheitspolitik zum Zweck

— der Verifikation ihrer Korrektheit
— der Spezifikation ihrer Implementierung.

Zugriffssteuerungspolitiken ... geben Regeln vor, welche
durch Zugriffssteuerungsmechanismen in BS durchgesetzt werden
miissen.

Zugriffssteuerung (access control): Steuerung, welcher Nutzer oder
Prozess mittels welcher Operationen auf welche BS-Ressourcen zugreifen
darf (z.B.: Anwender darf Textdateien anlegen, Administrator darf
Dateisysteme montieren und System-Logdateien 16schen, systemd -
Prozess darf Prozessdeskriptoren manipulieren, ...)
Zugriffssteuerungspolitik: konkrete Regeln, welche die Zugriffssteuerung
in einem BS beschreiben

Zugriffssteuerungsmodell: Sicherheitsmodell einer
Zugriffssteuerungspolitik

Zugriffssteuerungsmechanismus: Implementierung einer
Zugriffssteuerungspolitik

Beispiele fiir BS-Zugriffssteuerungspolitiken
klassifiziert nach Semantik der Politikregeln:

e IBAC (Identity-basedAccess Control): Politik spezifiziert, welcher
Nutzer an welchen Ressourcen bestimmte Rechte hat.
— Bsp.: ,,Nutzer Anna darf Brief.docx lesen, aber nicht
schreiben.”
e TE (Type-Enforcement): Politik spezifiziert Rechte durch
zusitzliche Abstraktion (Typen): welcher Nutzertyp an welchem
Ressourcentyp bestimmte Rechte hat.

— Bsp.: ,,Nutzer vom Typ Administrator diirfen Dateien vom
Typ Log lesen und schreiben.”

e MLS (Multi-Level Security): Politik spezifiziert Rechte, indem aus
Nutzern und Ressourcen hierarchische Klassen (Ebenen,
,,Levels”) gleicher Kritikalitdt im Hinblick auf Sicherheitsziele
gebildet werden.

— Bsp.: ,,Nutzer der Klasse nicht vertrauenswiirdig diirfen
Dateien der Klasse vertraulich nicht lesen.”

e DAC (Discretionary Access Control, auch: wahlfreie
Zugriffssteuerung): Aktionen der Nutzer setzen die
Sicherheitspolitik (oder wesentliche Teile davon) durch. Typisch:
Begriff des Eigentiimers von BS-Ressourcen.

— Bsp.: ,,Der Eigentiimer einer Datei bestimmt (bzw. éndert),
welcher Nutzer welche Rechte daran hat.”
e MAC (MandatoryAccess Control, auch: obligatorische
Zugriffssteuerung): Keine Beteiligung der Nutzer an der
Durchsetzungeiner (zentral administrierten) Sicherheitspolitik.

9/24

— Bsp.: ,,Anhand ihres Dateisystempfads bestimmt das
Betriebssystem, welcher Nutzer welche Rechte an einer
Datei hat.”

Einige Beispiele eee . und ein Verdacht Eindruck der
Effektivitdt von DAC: ,,[...] so the theory goes. By extension, yes, there
may be less malware, but that will depend on whether users keep UAC
enabled, which depends on whether developers write software that works
with it and that users stop viewing prompts as fast-clicking exercises and
actually consider whether an elevation request is legitimate.” (Jesper M.
Johansson, TechNet Magazine) [https://technet.microsoft.com/en-
us/library/2007.09.securitywatch.aspx, Stand:

10.11.2017]

Traditionell: DAC, IBAC
Auszug aus der Unix-Sicherheitspolitik:

e es gibt Subjekte (Nutzer, Prozesse) und Objekte (Dateien,
Sockets ...)

jedes Objekt hat einen Eigentiimer

Eigentiimer legen Zugriffsrechte an Objekten fest (— DAC)

es gibt drei Zugriffsrechte: read, write, execute

je Objekt gibt es drei Klassen von Subjekten, fiir die individuell
Zugriffsrechte vergeben werden kénnen: Eigentiimer (,,u”),
Gruppe (,,8”), Rest der Welt (,,0”)

In der Praxis:

e identitétsbasierte (IBAC), wahlfreie Zugriffssteuerung (DAC)

e hohe individuelle Freiheit der Nutzer bei Durchsetzung der Politik

e hohe Verantwortung (,,Welche Nutzer werden jemals in Gruppe
vsbs sein...?”)

Modellierung: Zugriffsmatrix

e acm (access control matrix): Momentaufnahme der globalen
Rechteverteilung zu einem definierten ,,Zeitpunkt t”

o Korrektheitskriterium: Wie kann sich dies nach t mdglicherweise
dndern...? (HRU-Sicherheitsmodell)[HaRU76]

Modellkorrektheit: Rechteausbreitung

e Anderungsbeispiel: kithnhauser nimmt krause in Gruppe vsbs auf

. ﬁechteausbreitung (privilegeescalation), hier verursacht durch
eine legale Nutzeraktion (— DAC)

— (Sicherheitseigenschaft: HRU Safety , —
,,Systemsicherheit”)

Modern: MAC, MLS
Sicherheitspolitik der Windows UAC (user account control):

e es gibt Subjekte (Prozesse) und Objekte (Dateisystemknoten)
e jedem Subjekt ist eine Integritdtsklasse zugewiesen:

— Low: nicht vertrauenswiirdig (z.B. Prozesse aus
ausfithrbaren Downloads)

— Medium: regulidre Nutzerprozesse, die ausschliefllich
Nutzerdaten manipulieren

— High: Administratorprozesse, die Systemdaten
manipulieren kénnen

— System: (Hintergrund-) Prozesse, die ausschlieflich
Betriebssystemdienste auf Anwenderebene implementieren
(etwa der Login-Manager)

e jedem Objekt ist analog eine dieser Integritdatsklassen zugewiesen
(Kritikalitdt von z.B. Nutzerdaten vs. Systemdaten)

e simtliche DAC-Zugriffsrechte (die gibt es auch) miissen mit einer
Hierarchie der Integrititsklassen konsistent sein (— ein bisschen
MAC)

e Nutzer kénnen diese Konsistenzanforderung selektiv auler Kraft
setzen (— DAC)

MAC-Modellierung: Klassenhierarchie Beispiel:
Modelliert durch Relation \leq: gleich oder kritischer als

$\leq={(High , Medium), (High , Low), (Medium , Low), (High ,
High), (Medium , Medium), (Low , Low)}$

e reprisentiert Kritikalitdt hinsichtlich des Sicherheitsziels
Integritét (Biba-Sicherheitsmodell) [Biba77]

e wird genutzt, um legale Informationsfliisse zwischen Subjekten
und Objekten zu modellieren — Schutz vor illegalem

Uberschreiben .
o leitet Zugriffsrechte aus Informationsfliissen ab:

— Prozess Datei: schreiben
— Prozess Datei: lesen

DAC-Modellierung: Zugriffsmatrix
Modellkorrektheit: Konsistenz

o Korrektheitskriterium: Garantiert die Politik, dass acm mit
\leq jederzeit konsistent ist? (BLP Security) [BeLa76]

e clevation-Mechanismus: veréndert nach Nutzeranfrage (— DAC)
sowohl acm als auch $\leq\rightarrow$ konsistenzerhaltend?

e andere BS-Operationen: veréindern unmittelbar nur acm (z.B.
mittels Dateisystemmanagement) — konsistenzerhaltend?

Autorisierungsmechanismen
Begriffsdefinitionen:

e Sicherheitsmechanismen: Datenstrukturen und Algorithmen,
welche die Sicherheitseigenschaften eines Betriebssystems
implementieren.

— — Sicherheitsmechanismen benétigt man zur Herstellung
jeglicher Sicherheitseigenschaften (auch jener, die in
unseren Modellen implizit angenommen werden!)

— Nutzerauthentisierung (login - Dientsprogramm,
Passwort-Hashing, ...)

— Autorisierungsinformationen (Metainformationen iiber
Rechte, MLS-Klassen, TE-Typen, ...)

— Autorisierungsmechanismen (Rechtepriifung,
Politikadministration, ...)

— kryptografische Mechanismen
(Verschliisselungsalgorithmen, Hashfunktionen, ...)

e Auswahl im Folgenden: Autorisierungsmechanismen und
-informationen

Traditionell: ACLs, SUID

Autorisierungsinformationen:

e miissen Subjekte (Nutzer) bzw. Objekte (Dateien, Sockets ...) mit
Rechten assoziieren — Implementierung der Zugriffsmatrix (acm
), diese ist:

— groB (— Dateianzahl auf Fileserver)

— diinn besetzt

— in Grole und Inhalt dynamisch verdnderlich
— — effiziente Datenstruktur?

e Losung: verteilte Implementierung der acm als Spaltenvektoren,
deren Inhalt in den Objekt-Metadaten reprasentiert wird:
Zugriffssteuerungslisten (Access Control Lists , ACLs)

ACLs: Linux-Implementierung

e objektspezifischer Spaltenvektor = Zugriffssteuerungsliste
e Dateisystem-Metainformationen: implementiert in I-Nodes

Advanced Operating Systems

ACLs: Linux-Implementierung Modell einer Unix acm ...

| | lesen | schreiben | ausfiihren | | J— \ |
————————— | | Eigentiimer (,,u”) | ja | ja | ja | | Rest der Welt (,,0”) | ja |
nein | ja | | Gruppe (,,g”) | ja | nein | ja |

3 - elementige Liste

3 - elementige Rechtemenge

— 9 Bits

dessen Implementierung kodiert in 16-Bit-Wort: 111101101
. und dessen Visualisierung in Linux:

Autorisierungsmechanismen: ACL-Auswertung
Subjekte = Nutzermenge eines Linux-Systems... besteht aus Anzahl
registrierter Nutzer

e jeder hat eindeutige UID (userID), z.B. integer- Zahl
e Dateien, Prozesse und andere Ressourcenwerden mit UID des
Eigentiimersversehen
— bei Dateien: Teil des I-Nodes
— bei Prozessen: Teil des PCB (vgl. Grundlagen
,,Betriebssysteme”)
— standardméfBiger Eigentiimer: derjenige, eine Ressource
erzeugt hat

Nutzergruppen (groups)

e jeder Nutzer wird durch Eintrag in einer Systemdatei (
/etc/group) einer oder mehreren Gruppen zugeordnet(— ACL:
,, &7 Rechte)

Superuser oder root... hat grundsétzlich uneingeschrinkte Rechte.

e UID =0
e darf insbesondere alle Dateien im System lesen, schreiben,
ausfiihren; unabhingig von ACL

ACL-Implementierung

e ACLs:

— in welchen Kerneloperationen?
— welche Kernelschnittstellen (Rechte priifen, &ndern)?
— welche Datenstrukturen, wo gespeichert?

e acm und ACLs:

— Vorteile der Listenimplementierung?
— Nachteile ggii. zentral implementierter Matrix? (DAC vs.
MAC, Administration, Analyse ...)

e — Ubung 2

Nutzerrechte — Prozessrechte bisher:
Linux-Sicherheitspolitik formuliert Nutzerrechte an Dateien (verteilt

gespeichert in ACLs)
Durchsetzung: basiert auf Prozessrechten

e Annahme: Prozesse laufen mit UID des Nutzers, welcher sie
gestartet hat und reprasentieren Nutzerintention und
Nutzerberechtigungen i.S.d. Sicherheitspolitik

e technisch bedeutet dies: ein Nutzer beauftragt einen anderen
Prozess, sich zu dublizieren(fork()) und das gewiinschte
Programm auszufiihren (exec*())

e Vererbungsprinzip:

Autorisierungsmechanismen: Set-UID
Rechtevererbung:

konsequente

e Nutzer kénnen im Rahmen der DAC-Politik ACLs manipulieren
e Nutzer kénnen (i.A.) jedoch keine Prozess-UIDs manipulieren
e — und genau so sollte es gem. Unix-Sicherheitspolitik auch sein!

10/24

Hintergrund:

e Unix-Philosophie ,, everythingisa file ”: BS-Ressourcen wie
Sockets, IPC-Instanzen, E/A-Geritehandler als Datei
repriasentiert — identische Schutzmechanismen zum regulidren
Dateisystem

e somit: Autorisierungsmechanismen zur Begrenzung des Zugriffs
auf solche Geréte nutzbar (Bsp.: Zugriffe verschiedener Prozesse
auf einem Drucker miissen koordiniert, ggf. eingeschréinkt werden)

e dazu muss

— root bzw. zweckgebundener Nutzer Eigentiimer des

Druckers sein .
— ACL als rw- --- --- gesetzt sein

Folge:
e Nutzerprozesse konnten z.B. nicht drucken ...
Losung: Mechanismus zur Rechtedelegation

e implementiert durch ein weiteres ,,Recht” in ACL: SUID-Bit (,,
setUID”)

e Programmausfithrung modifiziert Kindprozess, so dass UID des
Programmeigentiimers (im Bsp.: root) seine Rechte bestimmt

e Technik: eine von UID abweichende Prozess-Metainformation (—
PCB) effektive UID (eUID) wird tatséichlich zur Autorisierung
genutzt

® -rws rws r-x 1 root root 2 2011-10-01 16:00 print

Strategie fiir sicherheitskritische Linux-Programme

e Eigentiimer: root

e SUID-Bit: gesetzt

e per eUID delegiert root seine Rechte an genau solche
Kindprozesse, die SUID-Programme ausfithren

e Folge: Nutzerprozesse kénnen Systemprogramme (und nur diese)
ohne permanente root - Rechte ausfithren

‘Weiteres Beispiel: passwd

e erméglicht Nutzern Andern des (eigenen) Anmeldepassworts

e Schreibzugriff auf /etc/shadow (Password-Hashes) erforderlich ...
Schutz der Integritit anderer Nutzerpassworter?

e Losung: ‘-rws rws r-x 1 root root 1 2005-01-20 10:00 passwd$

e passwd - Programm (und nur dieses!) wird mit root-Rechten
ausgefiihrt ()... und passwd schreibt ja nur unseren eigenen
Passwort-Hash)

Beispiel passwd

e Problem: privilegierter Zugriff durch unprivilegierte Anwendung
e Standard Linux Lésung:

Modern: SELinux

e Ursprung

— Anfang 2000er Jahre: sicherheitsfokussiertes
Betriebssystemprojekt fiir US-amerikanische NSA [LoSm01]
— Implementierung des
(eigentlich) pKernel-Architekturkonzepts Flask
— heute: Open Source, Teil des mainline Linux Kernels

o Klassische UNIXoide: Sicherheitspolitik fest im Kernel
implementiert
— I-Nodes, PCBs, ACLs, UID, GID, SUID, ...
e Idee SELinux: Sicherheitspolitikals eigene BS-Abstraktion
— zentrale Datenstruktur fiir Regeln, die erlaubte Zugriffe auf
ein SELinux-System definiert

— erlaubt Modifikation und Anpassung an verschiedene
Sicherheitsanforderungen — NFE Adaptivitat ...

SELinux-Sicherheitsmechanismen BS-Komponenten

e Auswertung der Sicherheitspolitik: Security- Server ,
implementiert als Linux-Kernelmodul(Technik: LSM, Linux
Security Module); — entscheidet {iber alle Zugriffe auf alle
Objekte

e Durchsetzung der Sicherheitspolitik : LSM Hooks (generische
Anfrage-Schnittstellen in allen BS-Funktionen)

e Administration der Sicherheitspolitik: geschrieben in Textform,
muss zur Laufzeit in Security Server installiert werden

SELinux-Sicherheitspolitik Reprasentation der
Sicherheitspolitik:

e physisch: in spezieller Datei, die alle Regeln enthilt (in
maschinenlesbarer Bindrdarstellung), die der Kernel durchsetzen
muss

e diese Datei wird aus Menge von Quelldateien in einer
Spezifikationssprache fiir SELinux-Sicherheitspolitiken kompiliert

e diese ermdoglicht anforderungsspezifische SELinux-Politiken:
konnen (und miissen) sich von einem SELinux-System zum
anderen wesentlich unterscheiden

e Politik wird wiahrend des Boot-Vorgangs in Kernel geladen

Politiksemantik Regeln einer SELinux-Sicherheitspolitiken,
Semantische Konzepte(Auswahl):

e Type Enforcement (TE)
Typisierung von

— Subjekten: Prozesse
— Objekten der Klassen: Dateien, Sockets,
EA-Geriteschnittstellen, ...

e Rechte delegation durch Retypisierung(vgl. Unix-SUID!)
.

Autorisierungsinformationen Security Context:
Resprisentiert SELinux-Autorisierungsinformationen fiir jedes Objekt:

e Semantik:

— Prozess bash lduft (momentan) mit Typ shell_t
— Datei shadow hat (momentan) den Typen shadow_t.

Autorisierungsregeln .. werden systemweit festgelegt in
dessen Sicherheitspolitik (— MAC):
Access Vector Rules

e definieren Autorisierungsregeln basierend auf
Subjek-/Objekttypen

e Zugriffe miissen explizit gewéhrt werden (default-deny)

e Semantik: Erlaube(7allow”) ...

— jedem Prozess mit Typ shell_t

— ausfiihrenden Zugriff (benotigt die Berechtigung
{execute}),

— auf Dateien (also Objekte der Klassefile)

— mit Typ passwd_exec_t.

Autorisierungsmechanismen: passwd Revisited
Klassischer Anwendungsfall fiir SELinux-TE: Passwort dndern
Losung: Retypisierung bei Ausfithrung

o Prozess wechselt in einen aufgabenspezifischen Typ passwd-t

e — massiv verringertes Missbrauchspotenzial!
L]

Advanced Operating Systems

SELinux: weitere Politiksemantiken

e hier nur gezeigt: Uberblick iiber TE
e aufBlerdem relevant fiir SELinux-Politiken (und deren
Administration...):

— Einschrinkung von erlaubten Typtransitionen (Welches
Programm darf mit welchem Typ ausgefiihrt werden?)

— weitere Abstraktionsschicht: rollenbasierte Regeln (RBAC)

— — Schutz gegen nicht vertrauenswiirdige Nutzer (vs. nvw.
Software)

e Ergebnis:

— Vextrem feingranulare, anwendungsspezifische
Sicherheitspolitik zur Vermeidung von privilege escalation
Angriffen

— Vobligatorische Durchsetzung (— MAC, zusétzlich zu
Standard-Unix-DAC)

— O Softwareentwicklung: Legacy-Linux-Anwendungen laufen
ohne Einschrinkung, jedoch

— XPolitikentwicklung und -administrationkomplex!

Weitere Informationen zu SELinux —
MAC-Mechanismen ala SELinux sind heutzutage in vielerlei Software
bereits zu finden:

e Datenbanksoftware (SEPostgreSQL)
e Betriebssysteme fiir mobile Gerite (FlaskDroid)
e schr wahrscheinlich: zukiinftige, sicherheitsorientierte BS...

Isolationsmechanismen
e bekannt: Isolationsmechanismen fiir robuste Betriebssysteme

— strukturierte Programmierung
— Adressraumisolation

e nun: Isolationsmechanismen fiir sichere Betriebssysteme

— all die obigen...
— kryptografische Hardwareunterstiitzung: Intel SGX
Enclaves
— sprachbasiert:
* streng typisierte Sprachen und managed code :
Microsoft Singularity [HLAAO5]
* speichersichere Sprachen (Rust) +
Adressraumisolation (uKernel): RedoxOS

— isolierte Laufzeitumgebungen: Virtualisierung (Kap. 6)

Intel SGX

o SGX: Software Guard Extensions [CoDel6]

e Ziel: Schutz von sicherheitskritischen Anwendungen durch
vollstdndige, hardwarebasierte Isolation

e — strenggenommen kein BS-Mechanismus: Anwendungen miissen
dem BS nicht mehr vertrauen! (AR-Schutz, Wechsel von
Privilegierungsebenen, ...)

e Annahmen/Voraussetzungen:

1. sdmtliche Software nicht vertrauenswiirdig (potenziell
durch Angreifer kontrolliert)

2. Kommunikation mit dem angegriffenen System nicht
vertrauenswiirdig (weder vertraulich noch verbindlich)

3. kryptografische Algorithmen (Verschliisselung und
Signierung) sind vertrauenswiirdig, also nicht fiir den
Angreifer zu brechen

4. Ziel der Isolation: Vertraulichkeit, Integritdt und
Authentizitéit(nicht Verfiigbarkeit) von Anwendungen
(Code) und den durch sie verarbeiteten Informationen

11/24

Enclaves

e Idee: geschiitzter Speicherbereich fiir Teilmenge der Seiten (Code
und Daten) einer Task: Enclave Page Cache (EPC)

e Prozessor (und nur dieser) ver-und entschliisselt EPC-Seiten

L]

e Enclaves: Erzeugung

— Erzeugen: App. — Syscall — BS-Instruktion an CPU
(ECREATE)
— Seiten hinzufiigen: App. — Syscall — BS-Instruktion an
CPU (EADD)
* Metainformationen fiir jede hinzugefiigte Seite als Teil
der EPC-Datenstruktur (u.a.: Enklave - ID,
Zugriffsrechte, vAR-Adresse)

— Initialisieren: App. — Syscall — BS-Instruktion an CPU
(EINIT)

* finalisiert gesamten Speicherinhalt fiir diese Enclave

% CPU erzeugt Hashwert = eindeutige Signatur des
Enclave - Speicherinhalts

* falls BS bis zu diesem Punkt gegen Integritit der
Anwendung verstofien hat: durch Vergleich mit von
dritter Seite generiertem Hashwert feststellbar!

e Enclave - Zustandsmodell (vereinfacht) :
e Zugriff: App. — CPU-Instruktionen in User Mode (EENTER,
EEXIT)

— CPU erfordert, dass EPC-Seiten in vARder zugreifenden
Task

SGX: Licht und Schatten

Einfithrung 2015 in Skylake - Mikroarchitektur

e seither in allen Modellen verbaut, jedoch nicht immer aktiviert
e Nutzer bislang: Demos und Forschungsprojekte, Unterstiitzung
durch einige Cloud-Anbieter, (noch) keine gréfieren Mérkte

erschlossen . .
o Konzept hardwarebasierter Isolation ...

— Vliefert erstmals die Moéglichkeit zur Durchsetzung von
Sicherheitspolitiken auf Anwendungsebene
— O setzt Vertrauen in korrekte (und nicht bdswillige)
Hardwarevoraus
— O Dokumentation und Entwicklerunterstiitzung (im
Ausbau ...)
— Xschiitzt mittels Enclaves einzelne Anwendungen, aber
nicht das System
— Xsteckt hinsichtlich praktischer Eigenschaften noch in den
Anfingen (vgl. pKernel...):
* Performanz [WeAK18]
* Speicherkapazitit(max. Grofie EPC: 128 MiB, davon
nur 93 MiBnutzbar)
* — komplementire NFE: Speichereffizienz!

Sicherheitsarchitekturen
Sicherheitsarchitektur... ist die Softwarearchitektur (Platzierung,
Struktur und Interaktion) der Sicherheitsmechanismen eines IT-Systems.

e Voraussetzung zum Verstehen jeder Sicherheitsarchitektur:

— Verstehen des Referenzmonitorprinzips

— frithe Forschungen zu Betriebssystemsicherheit in
1970er-1980er Jahren durch US-Verteidigungsministerium

— Schliisselversffentlichung: Anderson-Report(1972)[Ande72]

— — fundamentalen Eigenschaften zur Charakterisierung von
Sicherheitsarchitekturen

o Begriffe des Referenzmonitorprinzips kennen wir schon:

— Abgrenzung passiver Ressourcen (in Form einzelner
Objekte, z.B. Dateien)

— von Subjekten (aktiven Elementen, z.B. laufenden
Programmen, Prozessen) durch Betriebssystem

Referenzmonitorprinzip
o Idee:
— — sédmtliche Autorisierungsentscheidungen durch einen
zentralen (abstrakten) Mechanismus = Referenzmonitor
— Bewertet jeden Zugriffsversuch eines Subjekts auf Objekt
durch Anwendung einer Sicherheitspolitik (security policy)
* — vgl. SELinux
— somit: Architekturbeschreibung, wie Zugriffe auf
Ressourcen (z.B. Dateien) auf solche Zugriffe, die
Sicherheitspolitik erlaubt, eingeschrinkt werden
e Autorisierungsentscheidungen

— basieren auf sicherheitsrelevanten Eigenschaften jedes
Subjekts und jedes Objekts
— einige Beispiele kennen wir schon:
* Nutzname, Unix-Gruppe
* Prozess-ID, INode-Nummer
* SELinux-Typ

e Architekturkomponenten in a nutshell:

Definierende Eigenschaften: Referenzmonitor ist eine
Architekturkomponenten, die

e (RM 1) bei siamtlichen Subjekt/Objekt-Interaktionen involviert
sind
— — Unumgehbarkeit (total mediation)
e (RM 2) geschiitzt sind vor unautorisierter Manipulation
— — Manipulationssicherheit (tamperproofness)

e (RM 3) hinreichend klein und wohlstrukturiert sind, um formalen
Analysemethoden zuginglich zu sein

— — Verifizierbarkeit (verifyability)

Referenzmonitor in Betriebssystemen Nahezu alle
Betriebssysteme implementieren irgendeine Form eines Referenzmonitors
[Jaegll] und konnen iiber Begriffe, wie

Subjekte

Objekte

Regeln einer Sicherheitspolitik charakterisiert sowie auf
Unumgehbarkeit

Manipulationssicherheit

Verifizierbarkeit ihrer Sicherheitsarchitektur hin untersucht
werden

Beispiel: Standard- Linux

e Subjekte (generell Prozesse)
— haben reale (und effektive) Nutzer-Identifikatoren (UIDs)

e Objekte (verschiedene Systemressourcen, genutzt fiir Speicherung,
Kommunikation: Dateien, Directories, Sockets, SharedMemory
usw.)

— haben ACLs (,,rwxrw----")

e Regeln der Sicherheitspolitik, die durch den Referenzmonitor
(hier Kernel) unterstiitzt werden

— hart codiert, starr

e Sicherheitsattribute, die durch diese Regeln zur Priifung genutzt
werden (z.B. Zugriffsmodi)

— Objekten zugeordnet
— modifizierbar
Man beurteile die Politikimplementierung in dieser Architektur bzgl.:

e Unumgehbarkeit
e Manipulationssicherheit
e Verifizierbarkeit

https://www.redox-os.org/

Advanced Operating Systems

Referenzmonitorimplementierung: Flask
Architekturmodell)

(Flask -

SELinux-Architektur: Security Server

e Security Server: Laufzeitumgebung fiir Politik in Schutzdoméne

des Kerns . . X . .
e Objektmanager: implementiert in allen BS-Dienstenmittels,,

Linux Security Module Framework ”

— jedes Subsystemvon SELinux , das zustidndig fiir
1. Erzeugung neuer Objekte
2. Zugriff auf existierende Objekte
— Beispiele:
1. Prozess-Verwaltung (behandelte Objekte:
hauptséchlich Prozesse)
2. Dateisystem (behandelte Objekte: hauptséichlich
Dateien)
3. Networking/Socket-Subsystem (behandelte Objekte:
[verschiedene Typen von] Sockets)
4. u.a.

SELinux-Architektur: Objektklassen

e Objektmanager zur Verwaltung verschiedener Objektklassen
e spiegeln Diversitidt und Komplexitdt von Linux BS-Abtraktionen
wider:
— Dateisysteme: file, dir, fd, filesystem, ...
— Netzwerk: netif, socket, tcp_socket, udp_socket, ...
— IPC: msgq, sem, shm, ...
— Sonstige: process, system, ...

Dateisystem als Objektmanager

e Durch Analyse von Linux - Dateisystem und zugehoriger API
wurden zu iiberwachenden Objektklassen identifiziert:

— ergibt sich unmittelbar aus Linux-API:
* Dateien
* Verzeichnisse
* Pipes
— feingranularere Objektklassen fiir durch Dateien
reprisentierte Objekte (Unix-Prinzip: ,,everythingisa file”!):

* reguldre Dateien
* symbolische Links
zeichenorientierte Geréte
bloc(l:()orientierte Gerite
S
Unix-Domain Sockets (lokale Sockets)

* ¥ X *

e Permissions (Zugriffsrechte)

e fiir jede Objektklasse: Menge an Permissions definiert, um
Zugriffe auf Objekte dieser Klasse zu kontrollieren

e Permissions: abgeleitet aus Dienstleistungen, die
Linux-Dateisystem anbietet

e — Objektklassen gruppieren verschiedene Arten von
Zugriffsoperationen auf verschiende Arten von Objekten

e z.B. Permissions fiir alle ,,Datei”-Objektklassen (Auswahl ...):
read, write, append, create, execute, unlink

e fiir ,,Verzeichnis”-Objektklasse: add-name, remove_name,
reparant, search, rmdir

Trusted Computing Base (TCB)

Begriff zur Bewertung von Referenzmonitorarchitekturen: TCB (Trusted
Computing Base)

e = die Hard-und Softwarefunktionen eines IT-Systems, die
notwendig und hinreichend sind, um alle Sicherheitsregeln

durchzusetzen. .
e besteht iiblicherweise aus

12/24

Laufzeitumgebung der Hardware(nicht E/A-Geriéte)
verschiedenen Komponenten des Betriebssystem-Kernels
Benutzerprogrammen mit sicherheitsrelevanten Rechten
(bei Standard-UNIX/Linux-Systemen: diejenigen mit
root-Rechten)

L=

e Betriebssystemfunktionen, die Teil der TCB sein miissen,
beinhalten Teile
— des Prozessmanagements
— des Speichermanagements
— des Dateimanagements
— des E/A-Managements
— alle Referenzmonitorfunktionen

Echtzeitfiahigkeit

Motivation
Echtzeitbegriff: Was ist ein Echtzeitsystem?

Any system in which the time at which output is produced
is significant. This is usually because the input
corresponds to some movement in the physical world, and
the output has to relate to that same movement. The lag
from input time to output time must be sufficiently small
for acceptable timeliness. (The Oxford
DictionaryofComputing)

A real-time system is any information processing activity
or system which has to respond to externally generated
input stimuli within a finite and specified period. [Young
1982]

A real-time system is a system that is required to react to
stimuli from the environment (including the passage of
physical time) within time intervals dictated by the
environment. [Randall et.al. 1995]

Spektrum von Echtzeitsystemen:

1. Regelungssysteme: z.B. eingebettete Systeme (exakter:
Steuerungs-, Regelungs-u. Uberwachungssysteme =
,SRU”-Systeme)

2. Endanwender-Rechnersysteme: z.B. Multimediasysteme

3. Lebewesen: Menschen, Tiere

Beispiel Regelungssystem: ,,Fly-by-Wire”-Fluglage-Regelungssystem
(Schema)

Flugzeugbewegung

Sensoren + Einstellmoéglichkeiten des Piloten
Echtzeit-Datenverarbeitung (durch Echtzeit-Rechnersystem)
Aktoren setzen Berechnung um

Einstellung von Regelflichen

Aerodynamik und Flug Mechanik fiihrt zu Flugzeugbewegung (1.)

O U W

Beispiel Uberwachungssysteme

e Luftraumiiberwachung:

— Ortsfeste Radarstation

— Mobile Radarstation

— Tiefflieger-Erfassungsradar

— Flugplatzradar Netzfunkstellen
— Zentrale

o Umweltiiberwachung: Stickstoffdioxidkonzentration iiber Europa
e Vorgeburtliche Gesundheitsiiberwachung:
Herzschlagsiiberwachungssystem fiir Mutter und Kind
Beispiel Multimediasystem

e zeitabhingige Datenwiedergabe

e Bildwiedergabe bei Mediendatenstrémen

e Durchfiithrung der Schritte durch Multimedia-Task binnen
$t_{i+1} - t_i$

e Frist fiir Rendering in Multimedia-Tasks: festgelegt durch
periodische Bildrate (24748 fps — 1/24 ... 1/48 s)

o — Beriicksichtigung bei Scheduling, Interruptbehandlung,
Speicherverwaltung, ... erforderlich!

Zwischenfazit [Buttazzo97]

e Murphy‘s General Law: If something can go wrong, it will got
wrong.

e Murphy‘s Constant: Damage to an object is proportional to its
value.

e Johnson‘s First Law: If a system stops working, it will do it at
the worst possible time.

e Sodd‘sSecond Law: Sooner or later, the worst possible
combination of circumstances will happen.

Realisierung von Echtzeiteigenschaften: komplex und fragil!

Terminologie
bevor wir uns iiber Echtzeit-Betriebssystemen unterhalten:

1. Wie ist die Eigenschaft Echtzeit definiert?

2. Was sind (rechnerbasierte) Echtzeitsysteme?

3. Wie kénnen Echtzeitanwendungen beschrieben werden?

4. Welche grundsitzlichen Typen von Echtzeitprozessen gibt
es/wodurch werden diese charakterisiert?

Antwortzeit:

e Alle Definitionen -die zitierten u. andere - betrachten eine
,,responsetime” (Antwortzeit, Reaktionszeit) als das Zeitintervall,
das ein System braucht, um (irgend)eine Ausgabe als Reaktion
auf (irgend)eine Eingabe zu erzeugen.

Frist

e Bei Echtzeitsystemen ist genau dieses Δt kritisch, d.h. je
nach Art des Systems darf dieses auf keinen Fall zu grof3 werden.

o Genauer spezifizierbar wird dies durch Einfiithrung einer Frist
(deadline, due time) d, die angibt bis zu welchem Zeitpunkt
spatestmoglich die Reaktion erfolgt sein muss, bzw. wie grofl das
Intervall Δt maximal sein darf.

Echtzeitfihigkeit und Korrektheit

e Wird genau dieses maximale Zeitintervall in die Spezifikation
eines Systems einbezogen, bedeutet dies, dass ein Echtzeitsystem
nur dann korrekt arbeitet, wenn seine Reaktion bis zur
spezifizierten Frist erfolgt.

e Die Frist trennt also korrektes von inkorrektem Verhalten des
Systems.

Harte und weiche Echtzeitsysteme

e Praktische Anwendungen erfordern oft Unterscheidung in harte
und weiche Echtzeitsysteme:

— hartes Echtzeitsystem: keine Frist darf jemals iiberschritten
werden (sonst: katastrophale Konsequenzen)

— weiches Echtzeitsystem: mafvolles (im spezifizierten Maf)
Uberschreiten von Fristen tolerierbar

Charakteristika von Echtzeit-Prozessen
e reale Echtzeitanwendungen beinhalten periodische oder
aperiodische Prozesse (oder Mischung aus beiden)
e typische Unterscheidung:

— Periodische Prozesse
* zeitgesteuert (typisch: periodische Sensorauswertung)
* oft: kritische Aktivitdten — harte Fristen
— Aperiodische Prozesse
* ereignisgesteuert
* Abhéngig von Anwendung: harte oder weiche Fristen,
gef. sogar Nicht-Echtzeit

Advanced Operating Systems

Periodische Prozesse
e bei Echtzeit-Anwendungen: hiufigster Fall
e typisch fiir:

1. periodische Analyse von Sensor-Daten (z.B.
Umweltiiberwachung)

2. Aktionsplanung (z.B. automatisierte Montage)

3. Erzeugung oder Verarbeitung einzelner Dateneinheiten

4 eines multimedialen Datenstroms

o Prozessaktivierung

— ereignisgesteuert oder zeitgesteuert

— Prozesse, die Eingangsdaten verarbeiten: meist
ereignisgesteuert, z.B. wenn neues Datenpaket eingetroffen

— Prozesse, die Ausgangsdaten erzeugen: meist zeitgesteuert,
z.B. Ansteuerung von Roboteraktoren

Periodische Prozesse

e [Fristen:

— hart oder weich (anwendungsabhéngig)

* innerhalb einer Anwendung sind sowohl Prozesse mit
harten oder weichen Fristen moglich

* Frist: spitestens am Ende der aktuellen Periode,
moglich auch frithere Frist

e Modellierung:

— unendliche Folge identischer Aktivierungen: Instanzen,
aktiviert mit konstanter Rate (Periode)

e Aufgaben des Betriebssystems:

— WennalleSpezifikationeneingehaltenwerden-muss
Betriebssystem garantieren, dass

1. zeitgesteuerte periodische Prozesse: mit ihrer
spezifizierten Rate aktiviert werden und ihre Frist
einhalten kénnen

2. ereignisgesteuerte periodische Prozesse: ihre Frist
einhalten kénnen

Aperiodische Prozesse
e typisch fiir
— unregelmifig auftretende Ereignisse, z.B.:
* Uberfahren der Spurgrenzen, Unterschreiten des

Sicherheitsabstands — Reaktion des
Fahrassistenzsystems

* Nutzereingaben in Multimediasystemen (—
Spielkonsole)

o Prozessaktivierung

— ereignisgesteuert
e Fristen

— oft weich(aber anwendungsabhéngig)
e Aufgabendes Betriebssystems

— bei Einhaltung der Prozessspezifikationen muss
Betriebssystem auch hier fiir Einhaltung der Fristen sorgen

e Modellierung

— bestehen ebenfalls aus (maximal unendlicher) Folge
identischer Aktivierungen (Instanzen); aber:
Aktivierungszeitpunkte nicht regelméfig (moglich: nur
genau eine Aktivierung)

13/24

Parameter von Echtzeit-Prozessen

.
e a_i: Ankunftszeitpunkt (arrival time); auch r ...
time/release time

request

— Zeitpunkt, zu dem ein Prozess ablauffihig wird
o s_i: Startzeitpunkt (start time)

— Zeitpunkt, zu dem ein Prozess mit der Ausfithrung beginnt
e f_i: Beendigungszeitpunkt (finishing time)

— Zeitpunkt, an dem ein Prozess seine Ausfithrung beendet
e d_i: Frist (deadline, due time)

— Zeitpunkt, zu dem ein Prozess seine Ausfithrung spiitestens
beenden sollte

e 3C_i: Bearbeitungszeit(bedarf) (computation time)

— Zeitquantum, das Prozessor zur vollstdndigen Bearbeitung
der aktuellen Instanz benétigt (Unterbrechungen nicht
eingerechnet)

L_i: Unpiinktlichkeit (lateness): $L_i= f_i - d_i$

— Zeitbetrag, um den ein Prozess frither oder spéter als seine
Frist beendet wird (wenn Prozess vor seiner Frist beendet,

hat L_i negativen Wert)
e E_i: Verspitung (exceeding time, tardiness): $E_i= max(0, L_i)$

— Zeitbetrag, den ein Prozess noch nach seiner Frist aktiv ist

X_i: Spielraum (Laxity, Slacktime): $X_i = d.i - a_i - C_i$

— maximales Zeitquantum, um das Ausfithrung eines
Prozesses verzogert werden kann, damit dieser noch bis zu
seiner Frist beendet werden kann ($f_i=d_i3$)

e auflerdem:

— criticality: Parameter zur Beschreibung der Konsequenzen
einer Fristiiberschreitung (typischerweise ,,hart” oder
,,weich”)

— $V.i$...Wert (value): Parameter zum Ausdruck der
relativen Wichtigkeit eines Prozesses bezogen auf andere
Prozesse der gleichen Anwendung

Echtzeitfihige Betriebssysteme

e Hauptfragestellungen

1. Was muss BS zu tun, um Echtzeitprozesse zu erméglichen?
‘Welche Teilprobleme miissen beachtet werden?

2. Welche Mechanismen miissen hierfiir anders als bei
nicht-echtzeitfihigen Betriebssystemen implementiert
werden, und wie?

e Grundlegender Gedanke

— Abgeleitet aus den Aufgaben eines Betriebssystems sind
folgende Fragestellungenvon Interesse:

1. Wie miissen die Ressourcen verwaltet werden? (— CPU,
Speicher, E/A, ...)

2. Sind neue Abstraktionen, Paradigmen (Herangehensweisen)
und entsprechende Komponenten erforderlich (oder
giinstig)?

e Prozess-Metainformationen

1. Frist

2. Periodendauer . . .

3. abgeleitet davon: Spielraum, Unpiinktlichkeit, Verspidtung,
4. im Zusammenhang damit: Prioritéitsumkehr, Uberlast

o Ressourcen-Management

— Wie miissen Ressourcen verwaltet werden, damit Fristen
eingehalten werden kénnen?

Wir betrachten i.F.

1. Algorithmen, die Rechnersysteme echtzeitfdhig machen
-einschlieBlich des Betriebssystems:

e grundlegende Algorithmen zum Echtzeitscheduling
e Besonderheiten der Interruptbehandlung
e Besonderheiten der Speicherverwaltung

2. Probleme, die behandelt werden miissen, um Echtzeitfahigkeit
nicht zu be- oder verhindern:
e Prioritdtsumkehr

e Uberlast L
e Kommunikation-und Synchronisationsprobleme

Echtzeitscheduling
e Scheduling:

— Schedulingvon Prozessen/Threads als wichtigster
Einflussfaktor auf Zeitverhalten des Gesamtsystems

o Echtzeit-Scheduling:

— benétigt: Scheduling-Algorithmen, die Scheduling unter
Beriicksichtigung der (unterschiedlichen) Fristen der
Prozesse durchfithren kénnen

e Fundamentale Algorithmen:

— wichtigste Strategien:

1. Ratenmonotones Scheduling (RM)
2. Earliest Deadline First (EDF)

— beide schon 1973 von Liu & Layland ausfiihrlich diskutiert
[Liu&Layland73]

Annahmen der Scheduling-Strategien

e Al: Alle Instanzen eines periodischen Prozesses t_i treten
regelmifBig und mit konstanter Rate auf (= werden aktiviert).
Das Zeitintervall T_i zwischen zwei aufeinanderfolgenden
Aktivierungen heift Periode des Prozesses.

e A2: Alle Instanzen eines periodischen Prozesses t_i haben den
gleichen Worst-Case-Rechenzeitbedarf C_i.

e A3: Alle Instanzen eines periodischen Prozesses t_i haben die
gleiche relative Frist D_i, welche gleich der Periodendauer T_i

ist.

e A4: Alle Prozessesind kausal unabhéngig voneinander (d.h. keine
Vorrang- und Betriebsmittel-Restriktionen)

e Ab5: Kein Prozess kann sich selbst suspendieren, z.B. bei
E/A-Operationen.

e AG6: Alle Prozesse werden mit ihrer Aktivierung sofort
rechenbereit (release time = arrival time).

e AT7: Jeglicher Betriebssystem-Overhead (Kontextwechsel,
Scheduler-Rechenzeit) wird vernachléssigt.

A5-7 sind weitere Annahmen des Scheduling Modells
Ratenmonotones Scheduling (RM)

o Voraussetzung:

— periodisches Bereitwerden der Prozesse/Threads, d.h.
periodische Prozesse bzw. Threads

e Strategie RM:

— Prozess (Thread) mit hochster Ankunftsrate bekommt
hochste statische Prioritit (Kriterium: Wie oft pro
Zeiteinheit wird Prozess bereit?)

— Scheduling-Zeitpunkt: nur einmal zu Beginn (bzw. wenn
neuer periodischer Prozess auftritt)

— pridemptiver Algorithmus

Advanced Operating Systems

. — Zuteilung eines Prozessors nach RM
— t_1, t_-2: Anforderungen von Prozessorzeit durch zwei
periodische Prozesse
— darunter: Prozessorzuteilung nach RM
e Optimalitdt von RM

— Unter allen Verfahren mit festen (statischen)Prioritéiten ist
RM optimaler Algorithmus in dem Sinne, dass kein anderes
Verfahren dieser Klasse eine Prozessmenge einplanen kann,
die nicht auch von RM geplant werden kann.
[Liu&Layland73]

e Prozessor-Auslastungsfaktor

— Bei gegebener Menge von n periodischen Prozessen gilt:
$U=\sum_{i=1}"n \frac{C_i}{T-i}$

— mit $\frac{C_i}{T-i}$ Anteil an Prozessorzeit fiir jeden
periodischen Prozess t_i

— und U Summe der Prozessorzeit zur Ausfithrung der
gesamten Prozessmenge (,,utilization factor”)

e Prozessorlast

— US ist folglich MaB fiir die durch Prozessmenge
verursachte Last am Prozessor — Auslastungsfaktor

e Planbarkeitsanalyse einer Prozessmenge

— im allgemeinen Fall kann RM einen Prozessor nicht zu

100% auslasten
— von besonderem Interesse: kleinste obere Grenze des
Auslastungsfaktors U_{lub} (lub: ,least upper bound”)

e Beispiel fiir $n=2%

— Obere Grenze des Prozessor-Auslastungsfaktors fiir zwei
periodische Prozesse als Funktion des Verhéltnisses ihrer

Perioden.
— (Abb. nach [Buttazzo97] Bild 4.7, S. 90)

e Obere Auslastungsgrenze bei RM

— nach [Buttazzo97] (S. 89-91) erhilt man bei n Prozessen fiir
RM: $U_{lub}=n(2"{\frac{1}{n}}-1)$

— fiir $n\rightarrow\infty$ konvergiert U_{lub} zu $ln\ 2
\approx 0,6931...%

— Wird genannter Wert nicht {iberschritten, sind beliebige
Prozessmengen planbar.

— (Herleitung siehe [Buttazzo97| , Kap. 4.3.3)

Earliest Deadline First (EDF)
e Voraussetzung:

— kann sowohl periodische als auch aperiodische Prozesse
planen

e Optimalitit:
— EDF in Klasse der Schedulingverfahren mit dynamischen
Prioritédten: optimaler Algorithmus [Liu&Layland73]
e Strategie EDF:

— Zu jedem Zeitpunkt erhélt Prozess mit frithester Frist
héchste dynamische Prioritét

— Scheduling-Zeitpunkt: Bereitwerden eines (beliebigen)
Prozesses

— priaemptiver Algorithmus (keine Verdringung bei gleichen
Prioritéten)

e Beispiel

— Zuteilung eines Prozessors nach EDF

— t_1, t_2: Anforderungen nach Prozessorzeit durch zwei
periodische Prozesse

— darunter: Prozessorzuteilung nach EDF

e Planbarkeitsanalyse:

14/24

— Mit den Regeln $A1 ... A7$ ergibt sich fiir die obere
Schranke des Prozessorauslastungsfaktors: $U_{lub}=
1\rightarrow$ Auslastung bis 100% moglich!

— Eine Menge periodischer Prozesse ist demnach mit EDF
planbar genau dann wenn: $U=\sum_{i=1}"n
\frac{C.i}{T-i}\leq 1$ (Prozessor natiirlich nicht mehr als
100% auslastbar)

e Beweis: Obere Auslastungsgrenze bei EDF

— Behauptung: Jede Menge von n periodischen Tasks ist mit
EDF planbar <»: $U=\sum_{i=1}"n \frac{C_i}{T_i}\leq 18

— <«: $U>18$ iibersteigt die verfiigbare Prozessorzeit; folglich
kann niemals eine Prozessmenge mit dieser (oder héherer)
Gesamtauslastung planbar sein.

— —: Beweis durch Widerspruch. Annahme: $U\leq 1$ und
die Prozessmenge ist nicht planbar. Dies fiihrt zu einem
Schedule mit Fristverletzung zu einem Zeitpunkt t_2,

—]Z?;chBachtungcn an diesem Schedule:

* $exists$ ein ldngstes, kontinuierliches Rechenintervall
$[t-1,t-2]$, in welchem nur Prozessinstanzen mit
Fristen $\leq t-2$ rechnen

* die Gesamtrechenzeit C_{bad} aller Prozesse in
$[t-1,t-2]$ muss die verfiighbare Prozessorzeit
iibersteigen: $C_{bad} > t_2-t_1$ (sonst: keine
Fristverletzung an t_2)

* Anwesenheit in $[t_1,t_2]$ leitet sich davon ab, ob
(genauer: wie oft) die Periode eines Prozesses in
$t_2-t_1% passt: t_i in
$[t-1,t_2]\Leftrightarrow\Ifloor\ frac{t_2-
t_1}{T_i}\rfloor
>08$

* Damit ist C_{bad} die Summe der Rechenzeiten
aller Prozessinstanzen, die garantiert in $[t_1,t_2]$
sind, mithin: $C_{bad}=\sum_{i=1}"n
\lfloor\frac{t-2-t_1}{T_i}\rfloor C_i$

* Im Beispiel: $t_1... t_38 in $[t_1,t_2]$, folglich:
$C_{bad}=2C.1 +1C2+ 1 C_3%

* Zu zeigen: Beobachtung $C_{bad}> t_2-t_1$
widerspricht Annahme $U\leq 18$.

* Es gilt $\sum_{i=1}"n
\Ifloor\frac{t-2-t_1}{T_i}\rfloor
C.i\leq\sum_{i=1}"n\frac{t_2-t_1}{T_i}C_i$ wegen
Abrundung.

* Mit $U=\sum_{i=1} "n\frac{C_i}{T-i}$ folgt daraus
$C_{bad}\leq(t-2-t_1)US$

* $C_{bad}>t_2-t_1$ entspricht also
$(t-2-t-1)U>t_2-t_1$ und somit $U>1$. Widerspruch
zur Annahme!

Vergleich: EDF vs. RM

Zuteilung eines Prozessors nach EDF (dynamisch) bzw. RM (statisch)
$t_1,t-28: Anforderungen nach Prozessorzeit durch zwei periodische
Prozesse darunter: Prozessorzuteilung nach EDF bzw. RM

e gut erkennbar: deutliche Unterschiede bei Scheduling mit
statischem (RM) vs. dynamischem Algorithmus (EDF).

Vergleich: Anzahl Prozesswechsel

e Hiufigkeit von Prozesswechseln im Beispiel:

— RM: 16
— EDF: 12

e Ursache: dynamische Prioritdtenvergabe fiihrt dazu, dass Instanz
II von t_2 die gleiche Prioritéit wie Instanz A von t_1 hat
(usw.) — keine unndtige Verdréngung

Vergleich: 100% Prozessorauslastung

e EDF: erzeugt auch bei Prozessorauslastung bis 100% (immer)

korrekte Schedules
e RM: kann das im allgemeinen Fall nicht

e Bedeutung von 100% Prozessorauslastung in der Praxis:
Uberwiegend miissen Systeme mit harten Echtzeitanforderungen
auch weiche Echtzeit- sowie Nicht-Echtzeit-Prozesse unterstiitzen.
Daher: Belegungsliicken am Prozessor fiir die letzteren beiden
nutzbar.

Vergleich: Implementierung

— statisch: jeweils eine Warteschlange pro Prioritét:
— Einfiigen und Entfernen von Tasks: $O(1)$

— dynamisch: balancierter Bindrbaum zur Sortierung nach
Prioritdten:
— Einfiigen und Entfernen von Tasks: $O(log\ n)$

Scheduling in Multimedia-Anwendungen

e Konkretisierung des Betrachtungswinkels

— RM und EDF wurden entwickelt insbesondere fiir
Echtzeit-Regelsysteme — ohne Berticksichtigung von
Multimediasystemen

— Multimediasysteme — andere Probleme, schwéchere
Annahmen: spezialisierte Scheduling-Algorithmen

— gehen meist auch von EDF und/oder RM als Grundlage aus

e Betrachteter Algorithmus:

— Beispielfiir spezialisierten Scheduling-Algorithmus:
* RC-Algorithmus - entwickelt an University of Texas

* Anpassung von EDF an Charakteristika von
Multimedia-Anwendungen

Prozesstypen in Multimedia-Anwendungen
1. Echte Multimedia-Prozesse

e periodische Prozesse: weiche Fristen

1. piinktliche periodische Prozesse mit konstantem
Prozessorzeitbedarf C fiir jede Instanz (unkomprimierte
Audio- und Videodaten)

2. piinktliche periodische Prozesse mit unterschiedlichem C
einzelner Instanzen (komprimierte Audio- und Videodaten)

3. unpiinktliche periodische Prozesse:

— verspétete Prozesse
— verfrithte Prozesse

e aperiodische-Prozesse aus Multimedia-Anwendungen: weiche
Fristen

2. Prozesse nebenldufiger Nicht-Multimedia-Anwendungen

e interaktive Prozesse : keine Fristen , aber: keine zu langen
Antwortzeiten Ansatz (z.B.): maximal tolerierbare
Verzogerung

e Hintergrund-Prozesse : zeitunkritisch, keine Fristen, aber :
diirfen nicht verhungern

Multimediaanwendungen sind ein typisches Beispiel fiir moégliche
Abweichungen der Lastpezifikation $(T-i,C.i)$ eines Echtzeitprozesses!
Problem: Abweichungen von Lastspezifikation

e gibt Prozessor nicht frei
e verspétete periodische Prozesse

Advanced Operating Systems

RC Algorithmus
o Ziel

— spezifikationstreue Prozesse nicht bestrafen durch

Fristiiberschreitung aufgrund abweichender Prozesse
e Idee

— grundsétzlich: Schedulingnach frithester Fristaufsteigend (=
EDF) — fiir eine vollstédndig spezifikationstreue
Prozessmenge verhilt sich RC wie reines EDF

— Frist einer Instanz wird dynamisch angepasst:basierend auf
derjenigen Periode, in der sie eigentlich sein sollte 1t.
Spezifikation der Prozessornutzung (U_i, hier: ,,Rate”):
$U_i=\frac{C.i}{T-i}$

— Bsp.: $ULi =\frac{20}{40}=\frac{1}{2}$ (t_-B hat
spezifizierte Aktivitétsrate von $0,5$ pro Periode)

RC Algorithmus: Strategie

e Variablen

— a_i: Ankunftszeit der zuletzt bereitgewordenen Instanz
von t_i

— $t_i"{virt}$: virtuelle Zeit in aktueller Periode, die t_i
bereits verbraucht hat

— $ci"{virt}$: Netto-Rechenzeit, die t_i in aktueller
Periode bereits verbraucht hat

— $d.i$: dynamische Frist von t_i, nach der sich dessen

Prioritét berechnet (EDF)
e Strategie

— fiir eine bereite (lauffihige) Instanz von t_i: adaptiere
dynamisch $d-i$ basierend auf $t_i"{virt}$

— fiir eine bereit gewordene (neu angekommene oder zuvor
blockierte) Instanzvon t_i: aktualisiere $t_i" {virt}$ auf
akt. Systemzeit $(t)\rightarrow$ etwaiger ” Zeitkredit”
verfallt

RC Algorithmus: Berechnung von $t_i"{virt}$
Beispiel: Situation bei $t=20ms$
Da t_B aber noch weiteren Rechenbedarf hat: Situation bei $t=30 ms$

RC Algorithmus: Adaptionsfunktion Fiir Prozess ti zu
jedem Scheduling-Zeitpunkt:

RC Algorithmus: Scheduling Zeitpunkte, zu denen der
Scheduler aktiv wird:

1. aktuell laufender Prozess t_i blockiert:
e $RC(t-1)$
2. Prozesse $t_i..._j$ werden bereit:
o $for\ x\in[i,j]: RC(tx)$
3. periodischer ,,clock tick” (SchedulingInterrupt):

e 3t_i := aktuell ausgefiithrter Prozess

o 3RC(t-i)$
anschlieBendes Scheduling (prdemptiv) = EDF:
Umgang mit abweichenden Prozessen unter RC
Resultat
Garantie: Prozesse, die sich entsprechend ihrer
Spezifikation verhalten, erhalten bis zum Ende jeder
spezifizierten Periode ihren spezifizierten Anteil an

Prozessorzeit.

Auswirkung auf verschiedene Prozesstypen:

15/24

o , piinktliche” Prozesse: Einhaltung der Frist in jeder Periode
garantiert (unabhéngig von Verhalten anderer Prozesse)

e , verspitete” Prozesse: nur aktuelle Periode betrachtet, Nachholen
,;ausgelassener Perioden” nicht moglich

e .gierige” Prozesse: Prozessorentzug, sobald andere lauffihige
Prozesse frithere Fristen aufweisen

e nicht-periodische Hintergrundprozesse: pro ,,Periode” wird
spezifizierte Prozessorrate garantiert (z.B. kleine Raten bei
groBen ,,Periodendauern” wihlen.)

Umgang mit gemischten Prozessmengen
e Hintergrund-Scheduling:
— Prinzip:
— rechenbereite Prozesse auf 2 Warteschlangen aufgeteilt
(einfache Variante eines Mehr-Ebenen-Scheduling)
— Warteschlange 1:
* alle periodischen Prozesse
* mit hochster Prioritdt mittels RM oder EDF bedient
— Warteschlange 2:
* alle aperiodischen Prozesse
* nur bedient, wenn keine wartenden Prozesse in
‘Warteschlange 1

Hintergrund-Scheduling: Vor- und Nachteile

e Hauptvorteil:
— einfache Implementierung
o Nachteile:

— Antwortzeit aperiodischer Prozesse kann zu lang werden
(insbesondere bei hoher aperiodischer Last) — Verhungern
moglich!

— geeignet nur fiir relativ zeitunkritische aperiodische
Prozesse

e Beispiel: Hintergrund-Scheduling mit RM
Optimierung: Server-Prozess

e Scheduling mit Server-Prozessen:

— Prinzip: periodisch aktivierter Prozess benutzt zur
Ausfiihrung aperiodischer Prozessoranforderungen
— Beschreibung Server-Prozess: durch Parameter dquivalent
zu wirklichem periodischen Prozess:
* Periodendauer T_S
* ,,Prozessorzeitbedarf” C_S; jetzt Kapazititdes
Server-Prozesses
— Arbeitsweise Server-Prozess:
* geplant mit gleichem Scheduling-Algorithmus wie
periodische Prozesse
* zum Aktivierungszeitpunkt vorliegende aperiodische
Anforderungen bedient bis zur Kapazitidt des Servers
* keine aperiodischen Anforderungen: Server
suspendiert sich bis Beginn der nédchsten Periode
(Schedule wird ohne ihn weitergefiihrt —
Prozessorzeit fiir periodische Prozesse)
* Kapazititin jeder Server-Periode neu ”aufgeladen”

Beispiel: Server-Prozess mit RM
Optimierung: Slack-Stealing

e Prinzip: Es existiert passiver Prozess ,,slack stealer” (kein
periodischer Server)

e versucht so viel Zeit wie moglich fiir aperiodische Anforderungen
zu sammeln

e realisiert durch ,,slackstealing” (= Spielraum-Stehlen) bei
periodischen Prozessen

e letztere auf Zeit-Achse so weit nach hinten geschoben, dass Frist
und Beendigungszeitpunkt zusammenfallen

e Sinnvoll, da normalerweise Beenden periodischer Prozesse vor
ihrer Frist keinerlei Vorteile bringt

o Resultat: Verbesserung der Antwortzeiten fiir aperiodische

Anforderungen
.

Prioritatsumkehr
Mechanismen zur Synchronisation und Koordination sind

héufige Ursachen fiir kausale Abhingigkeiten zwischen
Prozessen!

Problem

e Prinzip kritischer Abschnitt (Grundlagen BS):

— Sperrmechanismen stellen wechselseitigen Ausschluss bei
der Benutzung exklusiver Betriebsmittel durch nebenldufige
Prozesse sicher . o .

— Benutzung von exklusiven sowie nichtentziehbaren

Betriebsmitteln: kritischer Abschnitt .
— Folge: Wenn ein Prozess einen kritischen Abschnitt betreten

hat, darf er aus diesem nicht verdringt werden (durch
anderen Prozess, der dasselbe Betriebsmittel nutzen will)

o Konflikt: kritische Abschnitte vs. Echtzeit-Prioritdten

— Falls ein weiterer Prozess mit hoherer Prioritdt ablauffihig
wird und im gleichen kritischen Abschnitt arbeiten will,
muss er warten bis niederpriorisierter Prozess kritischen
Abschnitt verlassen hat

— (zeitweise) Prioritdtsumkehr moglich! d.h. aus einer (Teil-)

Menge von Prozessen muss derjenige mit hochster Prioritét
auf solche mit niedrigerer Prioritit warten

Ursache der Prioritdtsumkehr

.
e Prioritdtsumkehr bei Blockierung an nichtentziehbarem,

exklusivem Betriebsmittel
e — unvermeidlich

Folgen der Priorititsumkehr

H Kritisch bei zusédtzlichen Prozessen mittlerer Prioritét
e Losung: Priority Inheritance Protocol (PIP)

Lo6sung: Prioritédtsvererbung

e ![Abb. nach [Buttazzo97] , Bild 7.6, S.188]
e cPrio ... effektive Prioritét

Uberlast

e Definition: kritische Situation - bei der die benétigte Menge an
Prozessorzeit die Kapazitiat des vorhandenen Prozessors
iibersteigt $(U>1)$

— Folge: nicht alle Prozesse konnen Fristen einhalten

e Hauptrisiko: kritische Prozesse kénnen Fristen nicht einhalten —
Gefidhrdung funktionaler und anderer nichtfkt. Eigenschaften (—
harte Fristen!)

e Stichwort: ,,graceful degradation” (,,wiirdevolle”
Verschlechterung) statt unkontrollierbarer Situation — Wahrung
von Determinismus

Wichtigkeit eines Prozesses

e Minimallosung: (lebenswichtig fiir Echtzeit-System)

— Unterscheidung zwischen Zeitbeschrankungen (Fristen) und
tatsidchlicher Wichtigkeit eines Prozesses fiir System

Advanced Operating Systems

e Allgemein gilt:

— Wichtigkeit eines Prozesses ist unabhingig von seiner
Periodendauer und irgendwelchen Fristen

— z.B. kann ein Prozess trotz spiterer Frist viel wichtiger als
anderer mit fritherer Frist sein.

— Beispiel: Bei chemischem Prozess kénnte
Temperaturauswertung jede 10s wichtiger sein als
Aktualisierung graphischer Darstellung an Nutzerkonsole
jeweils nach 5s

Umgang mit Uberlast: alltiigliche Analogien

1. Weglassen weniger wichtiger Aktionen
e ohne Frithstiick aus dem Haus...
e kein Zihneputzen ...
e Wichtung vom Problem bzw. Aktivitdtstrigern (hier:
Personen) abhingig!

2. Verkiirzen von Aktivitdten
e Katzenwische...
3. Kombinieren
e kein Friihstiick + Katzenwésche + ungekdmmt

Wichtung von Prozessen Behandlung:

e zusiitzlicher Parameter V (Wert) fiir jeden Prozess/Thread einer
Anwendung

e spezifiziert relative Wichtigkeit eines Prozesses (od. Thread) im
Verhéltnis zu anderen Prozessen (Threads) der gleichen
Anwendung

e bei Scheduling: V stellt zusitzliche Randbedingung (primér:
Prioritét aufgrund von Frist, sekundir: Wichtigkeit)

Obligatorischer und optionaler Prozessanteil

e Aufteilung der Gesamtberechnung (C_{ges}) eines Prozesses in
zwei Phasen

e cinfache Moglichkeit der Nutzung des Konzepts des anpassbaren
Prozessorzeitbedarfs

e Prinzip:

— Bearbeitungszeitbedarf eines Prozesses zerlegt in
1. obligatorischer Teil (Pflichtteil, C_{ob}): muss
unbedingt u. immer ausgefithrt werden — liefert
bedingt akzeptables Ergebnis
2. optionaler Teil (C_{opt}): nur bei ausreichender
Prozessorkapazitit ausgefithrt — verbessert durch
obligatorischen Teil erzieltes Ergebnis
— Prinzip in unterschiedlicher Weise verfeinerbar
.

Echtzeit-Interruptbehandlung

1. Fristiiberschreitung durch ungeeignete Interruptbearbeitung
2. Losung fiir Echtzeitsysteme ohne Fristiiberschreitung
e Interrupt wird zunéchst nur registriert (deterministischer
Zeitaufwand)

e tatsichliche Bearbeitung der Interruptroutine muss durch
Scheduler eingeplant werden — Pop-up Thread

Echtzeit-Speicherverwaltung
e Prinzip:

— Hauptanliegen: auch hier Fristen einhalten

— wie bei Interrupt-Bearbeitung und Prioritdtsumkehr:
unkontrollierbare Verzogerungen der Prozessbearbeitung (=
zeitlicher Nichtdeterminismus) vermeiden!

e Ressourcenzuordnung, deswegen:

16/24

1. keine Ressourcen-Zuordnung ,,on-demand” (d.h. in dem
Moment, wo sie benétigt werden) sondern ,,Pre-Allokation”
(= Vorab-Zuordnung)

2. keine dynamische Ressourcenzuordnung (z.B.
Hauptspeicher), sondern Zuordnung maximal ben&tigter
Menge bei Pre-Allokation (— BS mit ausschlieBSlich
statischer Hauptspeicherallokation: TinyOS)

Hauptspeicherverwaltung

e bei Anwendung existierender Paging-Systeme

— durch unkontrolliertes Ein-/Auslagern ,,zeitkritischer”
Seiten (-inhalte): unkontrollierbare Zeitverzogerungen
moglich!

— Technik hier: ,,Festnageln” von Seiten im Speicher
(Pinning, Memory Locking)

Sekundirspeicherverwaltung

e Beispiel 1: FCFS Festplattenscheduling

— Anforderungsreihenfolge = 98, 183, 37, 122, 14, 124, 65, 67
— Zuletzt gelesener Block: 53

e Beispiel 2: EDF Festplattenscheduling

— Anforderungsreihenfolge $t_1 = 98, 37, 124, 65%

— Anforderungsreihenfolge $t_2 = 183, 122, 14, 67$

— Zuletzt gelesener Block: 53 | | $a-i$ | $d-i$ | | ----- | ----- |
————— [$t-18]0 3] |%$t28|0]9]

e Primairziel: Wahrung der Echtzeitgarantien

— naheliegend: EA-Schedulingnach Fristen — EDF (wie
Prozessor)

— fiir Zugriffsreihenfolge auf Datenblocke: lediglich deren
Fristen mafBigebend (weitere Regeln existieren nicht!)

o Resultat bei HDDs:

— ineffiziente Bewegungen der Lese-/Schreibkopfe -dhnlich

FCFS
— nichtdeterministische Positionierzeiten
— geringer Durchsatz

o Fazit:

— Echtzeit-Festplattenscheduling — Kompromiss zwischen
Zeitbeschrankungen und Effizienz

e bekannte Lésungen:

1. Modifikation von EDF
2. Kombination von EDF mit anderen Zugriffsstrategien

— realisierte Strategien:

1. SCAN-EDF (SCAN: Kopfbewegung nur in eine Richtung bis
Mitte-/Randzylinder; EDF iiber alle angefragten Blécke in dieser
Richtung)

2. Group Sweeping_ (SCAN mit nach Fristen gruppenweiser
Bedienung)

3. Mischstrategien

e Vereinfachung:

— o.g. Algorithmen i.d.R. zylinderorientiert —
bertiicksichtigen bei Optimierung nur Positionierzeiten
(Grund: Positionierzeit meist >> Latenzzeit)

Kommunikation und Synchronisation
e zeitlichen Nichtdeterminismus vermeiden:
1. Interprozess-Kommunikation

— Minimierung blockierender Kommunikationsoperationen

— indirekte Kommunikation — CAB zum
Geschwindigkeitsausgleich

— keine FIFO-Ordnungen (nach Fristen priorisieren)
— CAB ... Cyclic Asynchronous Buffer:

2. Synchronisation

— keine FIFO-Ordnungen, z.B. bei Semaphor-Warteschlangen
(vgl. 0.)

Cyclic Asynchronous Buffer (CAB) Kommunikation

zwischen 1 Sender und n Empfingern:

e nach erstem Schreibzugriff: garantiert niemals undefinierte
Wartezeiten durch Blockierung von Sender/Empfinger

. Lesen/Uberschreiben in zyklischer Reihenfolge:

e Implementierung:

— MRW: Most-Recently-Written; Zeiger auf jlingstes, durch
Sender vollstidndig geschriebenes Element

— LRW: Least-Recently-Written; Zeiger auf dltestes durch
Sender geschriebenes Element

— Garantien:

% sowohl MRW als auch LRW kénnen ausschlielich
durch Sender manipuliert werden — keine
inkonsistenten Zeiger durch konkurrierende
Schreibzugriffe!

* sowohl MRW als auch LRW zeigen niemals auf ein
Element, das gerade geschrieben wird — keine
inkonsistenten Inhalte durch konkurrierende
Schreib-/Lesezugriffe!

— Regeln fiir Sender:

+* muss nach jedem Schreiben MRW auf geschriebenes
Element setzen
* muss bevor LRW geschrieben wird LRW
inkrementieren
— Regel fiir Empfianger: muss immer nach Lesen von MRW
als nidchstes LRW anstelle des Listennachbarn lesen

e Sender-Regeln:
— anschaulich, ohne aktiven Empfianger
e Empfinger-Regel:

— anschaulich, ohne aktiven Sender
Sonderfall 1: Empfinger schneller als Sender

e nach Zugriff auf MRW muss auf Lesesequenz bei LRW fortgesetzt
werden — transparenter Umgang mit nicht-vollem Puffer

o Abschwichung der Ordnungsgarantien:Empfinger weifl nur, dass
Aktualitét der Daten zwischen LRW und MRW liegt

e Empfinger (nach min. einem geschriebenen Element) niemals

R durch leeren Puffer blockiert

Sonderfall 2: Sender schneller als Empfinger

e Schreiben in Puffer grundsitzlich in Reihenfolge der Elemente —
keine blockierenden Puffergrenzen — niemals Blockierung des
Senders

e keine Vollstandigkeitsgarantien:Empfianger kann nicht sicher sein,
eine temporal stetige Sequenz zu lesen

e — Szenarien, in denen Empfinger sowieso nur an aktuellsten

Daten interessiert (z.B. Sensorwerte)
.

Konkurrierende Zugriffe:

e ... sind durch Empfinger immer unschédlich (da lesend)

Advanced Operating Systems

e ... miissen vom Sender nach Inkrementieren von LRW
nicht-blockierend erkannt werden (klassisches Semaphormodell
ungeeignet)

e schnellerer Sender iiberspringtein gesperrtes Element durch
erneutes Inkrementieren von LRW | muss MRW trotzdem

N nachziehen

Architekturen und Beispiel-Betriebssysteme
e Architekturprinzipien:

— miissen Echtzeitmechanismen unterstiitzen; ermoglicht
entsprechende Strategien zur Entwicklungs-oder Laufzeit
(CPU-Scheduler, EA-Scheduler, IPC ...)

— miissen funktional geringe Komplexitit aufweisen —
theoretische und praktische Beherrschung von
Nichtdeterminismus

* Theoretisch: Modellierung und Analyse (vgl.
Annahmen fiir Scheduling-Planbarkeitsanalyse)

* Praktisch: Implementierung (vgl. RC-Scheduler,
Prioritédtsvererbung)

e Konsequenzen:

— Architekturen fiir komplementire NFE:
* Sparsamkeit — hardwarespezifische
Kernelimplementierung
* Adaptivitit — puKernel, Exokernel
— zu vermeiden:
* starke Hardwareabstraktion —
Virtualisierungsarchitekturen
* Kommunikation und Synchronisationskosten —

verteilte BS
* Hardwareunabhingigkeit und Portabilitiat — vgl.
Mach

Auswahl: Beispiel-Betriebssysteme

e wir kennen schon:

— funktional kleine Kernelimplementierung: TinyOS

— hardwarespezifischer pKernel: L4-Abkémmlinge

— Mischung aus beidem: RIOT

— Kommerziell bedeutender pKernel: QNX Neutrino
e weitere Vertreter:

— hardwarespezifische Makrokernel: VRTX, VxWorks
— pKernel: DRYOS, DROPS
— ,,Exokernel” ...7

VRTX (Versatile Real-Time Executive)

e Entwickler:
— Hunter & Ready
e FEckdaten:

— Makrokernel

— war erstes kommerzielles Echtzeitbetriebssystem fiir
eingebettete Systeme

— heutige Bedeutung eher historisch

— Nachfolger (1993 bis heute): Nucleus RTOS (Siemens)

e Anwendung:

— Eingebettete Systeme in Automobilen(Brems-und
ABS-Controller)

— Mobiltelefone
— Geldautomaten

e Einsatzgebiete

— spektakulédr: im Hubble-Weltraumteleskop

VxWorks

e Entwickler:

17/24

— Wind River Systems (USA)
e Eckdaten:

— modularer Makrokernel

— Konkurrenzprodukt zu VRTX

— Erfolgsfaktor: POSIX-konforme API

— ahnlich QNX: |, skalierbarer” Kernel,zuschneidbarauf

Anwendungsdoméine (— Adaptivitéitsansatz)
e Anwendung:

— eingebettete Systeme:

— industrielle Robotersteuerung
— Luft-und Raumfahrt

— Unterhaltungselektronik

e Einsatzgebiete

— Deep-Impact-Mission zur Untersuchung des Kometen
Temple 1

— NASA Mars Rover
— SpaceX Dragon

DRYOS®

e Entwickler: Canon Inc.
e Eckdaten:
— Mikrokernel(Gréfie: 16 kB)
— Echtzeit-Middleware (Gerétetreiber — Objektive)
— Anwendungen: AE-und AF-Steuerung/-Automatik, GUI,
Bildbearbeitung, RAW-Konverter, ...
— POSIX-kompatible Prozessverwaltung

DROPS (Dresden Real-Time Operating System)

e Entwickler: TU Dresden, Lehrstuhl Betriebssysteme
H Eckdaten: Multi-Server-Architektur auf Basis eines L4-Mikrokerns

Adaptivitat

Motivation

e als unmittelbar geforderte NFE:

— eingebettete Systeme

— Systeme in garstiger Umwelt (Meeresgrund, Arktis,
Weltraum, ...)

— Unterstiitzung von Cloud-Computing-Anwendungen

— Unterstiitzung von Legacy-Anwendungen

e Beobachtung: genau diese Anwendungsdoménen fordern
typischerweise auch andere wesentliche NFE (s.bisherige
Vorlesung ...)

e — Adaptivitdt als komplementidre NFE zur Férderung von

— Robustheit: funktionale Adaptivitdtdes BS reduziert
Kernelkomplexitédt (— kleiner, nicht adaptiver pKernel)

— Sicherheit: wie Robustheit:TCB-Gréfle — Verifizierbarkeit,
auBerdem: adaptive Reaktion auf Bedrohungen

— Echtzeitfihigkeit: adaptive Scheduling-Strategie (vgl. RC),
adapt. Uberlastbehandlung, adapt.
Interruptbehandlungs-und Pinning-Strategien

— Performanz: Last-und Hardwareadaptivitit

— Erweiterbarkeit: adaptive BS liefern oft hinreichende
Voraussetzungen der einfachen Erweiterbarkeit von
Abstraktionen, Schnittstellen, Hardware-Multiplexing-und
-Schutzmechanismen (Flexibility)

— Wartbarkeit: Anpassung des BS an Anwendungen, nicht
umgekehrt

— Sparsamkeit: Lastadaptivitdtvon CPUs, adaptive Auswahl
von Datenstrukturen und Kodierungsverfahren

Adaptivitatsbegriff

e Adaptability: ,,see Flexibility. ” [Marciniak94]
o Flexibility:

— ,,The ease with which a system or a component can be
modified for use in applications or environments other than
those for which it was specifically designed.” (IEEE)

— fiir uns: entspricht Erweiterbarkeit

e Adaptivitét: (unsere Arbeitsdefinition)

— Die F#higkeit eines Systems, sich an ein breites Spektrum
verschiedener Anforderungen anpassen zu lassen.

— = ... so gebaut zu sein, dass ein breites Spektrum
verschiedener nicht funktionaler Eigenschaften unterstiitzt

wird.
— letztere: komplementér zur allgemeinen NFE Adaptivitit

Roadmap

e in diesem Kapitel: gleichzeitig Mechanismen und
Architekturkonzepte

e Adaptivitit jeweils anhand komplementirer Eigenschaften
dargestellt:

— Exokernel: { Adaptivitdt } U { Performanz,
Echtzeitfahigkeit, Wartbarkeit, Sparsamkeit }

— Virtualisierung: { Adaptivitit } U { Wartbarkeit,
Sicherheit, Robustheit }

— Container: { Adaptivitidt } U { Wartbarkeit, Portabilitét,
Sparsamkeit }

e Beispielsysteme:

— Exokernel-Betriebssysteme: Aegis/ExOS, Nemesis,
MirageOS

— Virtualisierung: Vmware, VirtualBox, Xen

— Containersoftware: Docker

Exokernelarchitektur

o Grundfunktion von Betriebssystemen

— physische Hardware darstellen als abstrahierte Hardware
mit komfortableren Schnittstellen

— Schnittstelle zu Anwendungen (API) : bietet dabei exakt
die gleichen Abstraktionen der Hardware fiir alle
Anwendungen an, z.B.

+ Prozesse: gleiches Zustandsmodell, gleiches

Threadmodell
* Dateien: gleiche Namensraumabstraktion

* Adressrdume: gleiche Speicherverwaltung (VMM,
Seitengrofle, Paging)

* Interprozesskommunikation: gleiche Mechanismen
fiir alle Anwendungsprozesse

e Problem:

— Implementierungsspielraumfiir Anwendungen wird
begrenzt:

1. Vorteile doménenspezifischer Optimierungender
Hardwarebenutzung kénnen nicht ausgeschopft werden —
Performanz, Sparsamkeit

2. die Implementierung existierender Abstraktionen kann bei
verdnderten Anforderungen nicht an Anwendungen
angepasst werden — Wartbarkeit

3. Hardwarespezifikationen, insbesondere des Zeitverhaltens
(E/A, Netzwerk etc.), werden von Effekten des
BS-Management iiberlagert — Echtzeitfahigkeit

e Idee von Exokernel-Architekturen:

Advanced Operating Systems

Exokernelmechanismen
e Designprinzip von Exokernelmechanismen:

— Trennung von Schutz und Abstraktion der Ressourcen
— Ressourcen-Schutz und -Multiplexing: verbleibt beim
Betriebssystemkernel(dem Exokernel)
— Ressourcen-Abstraktion (und deren Management): zentrale
Aufgabe der Library-Betriebssysteme
* — autonome Management-Strategien durch in
Anwendungen importierte Funktionalitit
— Resultat:
1. systemweit(durch jeweiliges BS vorgegebene) starre
Hardware-Abstraktionen vermieden
2. anwendungsdoméinenspezifische Abstraktionen sehr
einfach realisierbar
3. (Wieder-) Verwendung eigener und fremder
Managementfunktionalitit wesentlich erleichtert —
komplementére NFEn! (Performanz, EZ-F#higkeit,
Sparsamkeit, ...)

e Funktion des Exokernels:
— Prinzip: definiert Low-level-Schnittstelle

* ,,low-level” = so hardwarenah wie moglich, bspw. die
logische Schnittstelle eines elektronischen
Schaltkreises/ICs (— Geriitetreiber \subseteq
Library-BS!)

* Bsp.: der Exokernelmuss den Hauptspeicher schiitzen,
aber nicht verstehen, wie dieser verwaltet wird —
Adressierung ermdéglichen ohne Informationen iiber
Seiten, Segmente, Paging-Attribute, ...

— Library-Betriebssysteme: implementieren darauf jeweils
geeignete anwendungsnahe Abstraktionen

* Bsp.: Adressraumsemantik, Seitentabellenlayout und
-verwaltung, Paging-und Locking-Verfahren, ...

— Anwendungsprogrammierer: wihlen geeignete
Library-Betriebssysteme bzw. schreiben ihre eigenen
Exokernelmechanismen

e prinzipielle Exokernelmechanismen am Beispiel Aegis/ExOS
[Engler+95]

— Der Exokernel...
* implementiert: Multiplexing der

Hardware-Ressourcen
* exportiert: geschiitzte Hardware-Ressourcen

e minimal: drei Arten von Mechanismen

1. Secure Binding: erlaubt geschiitzte Verwendung von
Hardware-Ressourcen durch Anwendungen, Behandlung
von Ereignissen

2. Visible ResourceRevocation: beteiligt Anwendungen am
Entzug von Ressourcen mittels (kooperativen)
Ressourcen-Entzugsprotokolls

3. Abort-Protokoll: erlaubt ExokernelBeendigung von
Ressourcenzuordnungen bei unkooperativen Applikationen

Secure Binding

e Schutzmechanismus, der Autorisierung (— Library-BS)zur
Benutzung einer Ressource von tatsichlicher Benutzung (—
Exokernel) trennt

e implementiert fiir den Exokernelerforderliches
Zuordnungswissenvon (HW-)Ressource zu Mangement-Code (der
im Library-BS implementiert ist)

e — ”Binding” in Aegis implementiert als Unix-Hardlinkauf
Metadatenstruktur zu einem Gerét im Kernelspeicher (
,,remember: everythingisa file...”)

e Zur Implementierung bendtigt:

— Hardware-Unterstiitzung zur effizienten Rechtepriifung
(insbes. HW-Caching)

18/24

— Software-Caching von Autorisierungsentscheidungen im
Kernel (bei Nutzung durch verschiedene Library-BS)

— Downloadingvon Applikationscode in Kernel zur effizienten
Durchsetzung (quasi: User-Space-Implementierung von
Systemaufrufcode)

e einfach ausgedriickt: ,,Secure Binding” erlaubt einem
ExokernelSchutz von Ressourcen, ohne deren Semantik verstehen
zu miissen.

Visible Resource Revocation

e monolithische Betriebssysteme: entziehen Ressourcen
,,unsichtbar” (invisible), d.h. transparent fiir Anwendungen

— Vorteil: im allgemeinen geringere Latenzzeiten, einfacheres
und komfortableres Programmiermodell

— Nachteil: Anwendungen(hier: die eingebetteten Library-BS)
erhalten keine Kenntnis iiber Entzug,bspw. aufgrund von
Ressourcenknappheit etc.

— — erforderliches Wissen fiir Management-Strategien!

e Exokernel-Betriebssysteme: entziehen(iiberwiegend) Ressourcen
,,sichtbar” — Dialog zwischen Exokernel und Library-BS

— Vorteil: effizientes Management durch Library-BS mdéglich
(z.B. Prozessor: nur tatséichlich bendtigte Register werden
bei Entzug gespeichert)

— Nachteil : Performanz bei sehr hdufigem Entzug,
Verwaltungs-und Fehlerbehandlungsstrategien zwischen
verschiedenen Library-BS miissen korrekt und
untereinander kompatibelsein...

— — Abort - Protokoll notwendig, falls dies nicht gegeben ist

Abort - Protokoll

e Ressourcenentzug bei unkooperativen Library-Betriebssystemen (
Konflikt mit Anforderung durch andere Anwendung/deren
Library-BS: Verweigerung der Riickgabe, zu spéte Riickgabe, ...)
notwendig aufgrund von Visible Ressource Revocation
e Dialog:

— Exokernel: ,,Bitte Seitenrahmen x freigeben.”

— Library-BS: ,,...”

— Exokernel: ,,Seitenrahmen x innerhalb von 50 us freigeben!”

— Library-BS: ,,...”

— Exokernel: (fiihrt Abort-Protokoll aus)

— Library-BS: X (,,Abort” in diesem Bsp. =
Anwendungsprozess terminieren)

e In der Praxis:

— harte Echtzeit-Fristen (,, innerhalb von 50 us”) in den
wenigsten Anwendungen berticksichtigt
* — Abort = lediglich Widerruf aller Secure Bindings
der jeweiligen Ressource fiir die
unkooperativeAnwendung, nicht deren Terminierung
(= unsichtbarerRessourcenentzug)
% — anschlieend: Informieren des entsprechenden
Library-BS

— ermdéglicht sinnvolle Reaktion des Library-BS (in
Library-BS wird ,,Repossession”-Exceptionausgeldst, so
dass auf Entzug geeignet reagiert werden kann)

— bei zustandsbehafteten Ressourcen (— CPU):
Exokernelkann diesen Zustand auf Hintergrundspeicher
sichern — Management-Informationen zum Aufrdumen
durch Library-BS

Exokernelperformanz

e Was macht Exokern-Architekturen adaptiv(er)?

— Abstraktionen und Mechanismen des Betriebssystems
kénnen den Erfordernissen der Anwendungen angepasst
werden

— (erwiinschtes) Ergebnis: betrichtliche
Performanzsteigerungen (vgl. komplementéire Ziel-NFE:
Performanz, Echtzeitfdhigkeit, Wartbarkeit, Sparsamkeit)

Performanzstudien
1. Aegis mit Library-BS ExOS (MIT: Dawson Engler, Frans
Kaashoek)

Xok mit Library-BS ExOS (MIT)
Nemesis (Pegasus-Projekt, EU)
XOmB (U Pittsburgh)

BAR o

Aegis/ExOSals erweiterte Machbarkeitsstudie [Engler+95]

1. machbar: sehr effiziente Exokerne

e Grundlage: begrenzte Anzahl einfacher Systemaufrufe
(GréB8enordnung “10) und Kernel-interne Primitiven
(,,Pseudo-Maschinenanweisungen”), die enthalten sein
miissen

2. machbar: sicheres Hardware-Multiplexing auf niedriger
Abstraktionsebene (,,low-level”) mit geringem Overhead

3. traditionelle Abstraktionen (VMM, IPC) auf Anwendungsebene
effizient implementierbar — einfache Erweiterbarkeit,
Spezialisierbarkeitbzw. Ersetzbarkeit dieser Abstraktionen

4. fiir Anwendungen: hochspezialisierte Implementierungen von
Abstraktionen generierbar, die genau auf Funktionalitdt und
Performanz-Anforderungen dieser Anwendung zugeschnitten

5. geschiitzte Kontrollflussiibergabe: als IPC-Primitive im
Aegis-Kernel, 7-mal schnellerals damals beste Implementierung
(vgl. [Liedtke95], Kap. 3)

6. Ausnahmebehandlung bei Aegis: 5-mal schneller als bei damals
bester Implementierung

7. durch Aegis moglich: Flexibilitdt von ExOS, die mit
Mikrokernel-Systemen nicht erreichbar ist:

e Bsp. VMM: auf Anwendungsebene implementiert, wo diese
sehr einfach mit DSM-Systemen u. Garbage-Kollektoren
verkniipfbar

8. Aegis erlaubt Anwendungen Konstruktion effizienter
IPC-Primitiven (ApKernel: nicht vertrauenswiirdige
Anwendungen kénnen keinerlei spezialisierte IPC-Primitiven
nutzen, geschweige denn selbst implementieren)

Xok/ExOS

praktische Weiterentwicklung von Aegis: Xok

e fiir x86-Hardware implementiert

e Kernel-Aufgaben (wie gehabt): Multiplexing von Festplatte,
Speicher, Netzwerkschnittstellen, ...

e Standard Library-BS (wie bei Aegis): ExOS

— ,,Unix as a Library”

— Plattform fiir unmodifizierte Unix-Anwendungen (csh, perl,
gee, telnet, ftp, ...)

e z.B. Library-BS zum Dateisystem-Management: C-FFS
— hochperformant (im Vergleich mit
Makrokernel-Dateisystem-Management)
— Abstraktionen und Operationen auf Exokernel-Basis (u.a.):
Inodes, Verzeichnisse, physische Dateirelokation(—
zusammenhéngendes Lesen)
— Secure Bindings fiir Metadaten-Modifikation
e Forschungsziele:

— Aegis: Proof-of-Concept

— XOK: Proof-of-Feasibility (Performanz)
.

Zwischenfazit: Exokernelarchitektur

o Ziele:

Advanced Operating Systems

— Performanz, Sparsamkeit: bei genauer Kenntnis der
Hardware ermoglicht deren direkte
BenutzungAnwendungsentwicklern Effizienzoptimierung

— Wartbarkeit: Hardwareabstraktionen sollen flexibel an
Anwendungsdominen anpassbar sein, ohne das B

modifizieren/wechseln zu miissen

— Echtzeitfahigkeit: Zeitverhaltendes Gesamtsystems durch
direkte Steuerung der Hardware weitestgehend durch
(Echtzeit-) Anwendungen kontrollierbar

— User-Space:anwendungsspezifische Hardwareabstraktionen
im User-Space implementiert
— Kernel-Space:nur Multiplexing und Schutz der

HW-Schnittstellen
— in der Praxis: kooperativer Ressourcenentzug zwischen

Kernel, Lib. OS
e Ergebnisse:

— hochperformanteHardwarebenutzung durch spezialisierte
Anwendungen

— funktional kleiner Exokernel(— Sparsamkeit, Korrektheit
des Kernelcodes)

— flexible Nutzung problemgerechterHW-Abstraktionen (
readymade Lib. OS)

— keine Isolation von Anwendungen (— Parallelisierbarkeit:
teuer und mit schwachen Garantien; — Robustheit und
Sicherheit der Anwendungen: nicht umsetzbar)

Virtualisierung
e Ziele (zur Erinnerung):
— Adaptivitét
— Wartbarkeit, Sicherheit, Robustheit

— — auf gleicher Hardware mehrere unterschiedliche
Betriebssysteme ausfithrbar machen

o Idee:

Ziele von Virtualisierung

e Adaptivitdt: (&hnlich wie bei Exokernen)

— konnen viele unterschiedliche Betriebssysteme - mit jeweils
unterschiedlichen Eigenschaften ausgefiihrt werden damit
kénnen: Gruppen von Anwendungen auf dhnliche Weise
jeweils unterschiedliche Abstraktionen etc. zur Verfiigung
gestellt werden

e Wartbarkeit:
— Anwendungen - die sonst nicht gemeinsam auf gleicher
Maschine lauffihig - auf einer phyischenMaschine

ausfithrbar
— Okonomische Vorteile: Cloud-Computing, Wartbarkeit von

Legacy-Anwendungen
e Sicherheit:
— Isolation von Anwendungs-und Kernelcode durch getrennte
Adressriume (wie z.B. bei Mikrokern-Architekturen)
— somit moglich:
1. Einschréinkung der Fehlerausbreitung — angreifbare
Schwachstellen
2. Uberwachung der Kommunikation zwischen
Teilsystemen
— dariiber hinaus: Sandboxing (vollstindig von logischer
Ablaufumgebung isolierte Software, typischerweise
Anwendungen — siehe z.B. Cloud-Computing)

e Robustheit:
— siehe Sicherheit!

Architekturvarianten - drei unterschiedliche Prinzipien:

1. Typ-1 - Hypervisor (frither: VMM - ,,Virtual MachineMonitor”)
2. Typ-2 - Hypervisor
3. Paravirtualisierung

19/24

Typ-1 - Hypervisor

L]
e Idee des Typ- 1 - Hypervisors:

— Kategorien traditioneller funktionaler Eigenschaften von

1. Multiplexing & Schutz der Hardware (ermdoglicht
Multiprozess-Betrieb)

2. abstrahierte Maschine** mit ,,angenehmerer”
Schnittstelle als die reine Hardware (z.B. Dateien,
Sockets, Prozesse, ...)

e Typ- 1 - Hypervisor trennt beide Kategorien:

— lauft wie ein Betriebssystem unmittelbar iiber der Hardware

— bewirkt Multiplexing der Hardware, liefert aber keine
erweiterte Maschine** an Anwendungsschicht —
,,Multi-Betriebssystem-Betrieb”

e Bietet mehrmals die unmittelbare Hardware-Schnittstelle an,
wobei jede Instanz eine virtuelle Maschine jeweils mit den
unverinderten Hardware-Eigenschaften darstellt (Kernel u. User
Mode, Ein-/Ausgaben usw.).

e Urspriinge: Time-Sharing an Grofirechnern

— Standard-BS auf IBM-Grofrechner System/360: OS/360

— reines Stapelverarbeitungs-Betriebssystem (1960er Jahre)

— Nutzer (insbes. Entwickler) strebten interaktive
Arbeitsweise an eigenem Terminal an — timesharing (MIT,
1962: CTSS)

* IBM zog nach: CP/CMS, spiter VM /370 — z/VM

% CP: Control Program — Typ- 1 - Hypervisor

% CMS: ConversationalMonitor System — Gast-BS

— CP lief auf ,,blanker” Hardware (Begriff geprigt: ,,bare
metal hypervisor”)

* lieferte Menge virtueller Kopiender
System/360-Hardware an eigentliches
Timesharing-System

* je eines solche Kopie pro Nutzer — unterschiedliche
BS lauffihig (da jede virtuelle Maschine exakte Kopie
der Hardware)

* in der Praxis: sehr leichtgewichtiges, schnelles
Einzelnutzer-BS als Gast — CMS (heute wire das
wenig mehr als ein Terminal-Emulator...)

e heute: Forderungen nach Virtualisierung von Betriebssystemen

— seit 1980er: universeller Einsatz des PC fiir Einzelplatz-
und Serveranwendungen — verdnderte Anforderungen an
Virtualisierung

— Wartbarkeit: vor allem 6konomische Griinde:

1. Anwendungsentwicklung und -bereitstellung:
verschiedene Anwendungen in Unternehmen, bisher
auf verschiedenen Rechnern mit mehreren (oft
verschiedenen) BS, auf einem Rechner entwickeln und
betreiben (Lizenzkosten!)

2. Administration: einfache Sicherung, Migration
virtueller Maschinen

3. Legacy-Software

— spéter: Sicherheit, Robustheit —
Cloud-Computing-Anwendungen

e ideal hierfiir: Typ- 1 - Hypervisor

— /Gast-BS angenehm wartbar

— v Softwarekosten beherrschbar
— v Anwendungen isolierbar

Hardware-Voraussetzungen

o Voraussetzungen zum Einsatz von Typ-1-HV

— Ziel: Nutzung von Virtualisierung auf PC-Hardware

— systematische Untersuchung der Virtualisierbarkeit von
Prozessoren bereits 1974 durch Popek & Goldberg
[Popek&Goldberg74]

— Ergebnis:

* Gast-BS (welches aus Sicht der CPU im User Mode -
also unprivilegiert 1lduft) muss sicher sein kénnen, dass
privilegierte Instruktionen (Maschinencode im Kernel)
ausgefiihrt werden

* dies geht nur, wenn tatsédchlich der HV diese
Instruktionen ausfiihrt!

* dies geht nur, wenn CPU bei jeder solchen Instruktion
im Nutzermodus Kontextwechsel zum HV ausfiihren,
welcher Instruktion emuliert!

e virtualisierbare Prozessoren bis ca. 2006:

— VIBM-Architekturen(bekannt: PowerPC, bis 2006
Apple-Standard)
— XIntel x86-Architekturen (386, Pentium, teilweise Core i)

Privilegierte Instruktionen ohne Hypervisor
e kennen wir schon: Instruktion fiir Systemaufrufe

1. User Mode: Anwendung bereitet Befehl und Parameter vor

2. User Mode: Privilegierte Instruktion (syscall/Trap - Interrupt) —
CPU veranlasst Kontext-und Privilegierungswechsel, Ziel:
BS-Kernel

3. Kernel Mode: BS-Dispatcher (Einsprungpunkt fiir

Kernel-Kontrollfluss) behandelt Befehl und Parameter, ruft
weitere privilegierte Instruktionen auf (z.B. EA-Code)

.
Privilegierte Instruktionen mit Typ- 1 - Hypervisor(1)
e zum Vergleich: Instruktion fiir Systemaufrufe des Gast-BS

1. User Mode: Anwendung bereitet Befehl und Parameter vor

2. User Mode: Trap — Kontext-und Privilegierungswechsel, Ziel:
Typ-1-HV

3. Kernel Mode: HV-Dispatcher ruft Dispatcher im Gast-BS auf

4. User Mode: BS-Dispatcher behandelt Befehl und Parameter, ruft
weitere privilegierte Instruktionenauf (z.B. EA-Code) —
Kontext-und Privilegierungswechsel, Ziel: Typ-1-HV

5. Kernel Mode: HV fiihrt privilegierte Instruktionen anstelle des
Gast-BS aus

Sensible und privilegierte Instruktionen: Beobachtungen an
verschiedenen Maschinenbefehlssétzen: [Popek& Goldberg74]

o \exists Menge an Maschinenbefehlen, die nur im Kernel Mode
ausgefiihrt werden diirfen (Befehle zur Realisierung von E/A,
Manipulation der MMU, ...)

— — sensible Instruktionen

o 3\exists$ Menge an Maschinenbefehlen, die Wechsel des
Privilegierungsmodus ausldsen (x86: Trap), wenn sie im User
Mode ausgefiihrt werden

— — privilegierte Instruktionen

e Prozessor ist virtualisierbarfalls (notw. Bed.): sensible
Instruktionen \subseteq privilegierte Instruktionen

e Folge: jeder Maschinenbefehl, der im Nutzermodus nicht erlaubt
ist, muss einen Privilegierungswechsel auslésen (z.B. Trap
generieren)

e kritische Instruktionen = sensible Instruktionen \ privilegierte
Instruktionen

— Befehle, welche diese Bedingung verletzen — Existenz im
Befehlssatz fiihrt zu nicht-virtualisierbarem Prozessor

Advanced Operating Systems

e Beispiele fiir sensible Instruktionen bei Intel x86:

— hlt: Befehlsabarbeitung bis zum néchsten Interrupt stoppen

— invlpg: TLB-Eintrag fiir Seite invalidieren
— lidt: IDT (interrupt descriptor table) neu laden
— mov auf Steuerregistern

e Beispiel: Privilegierte Prozessorinstruktionen

— Bsp.: write - Systemaufruf

— Anwendungsprogramm schreibt String in Puffer eines
Ausgabegeriits ohne Nutzung der libc Standard-Bibliothek:
asm (int $0x80"); /* interrupt 80 (trap) */

— Interrupt-Instruktion veranlasst Prozessor zum
Kontextwechsel: Kernelcode im privilegierten Modus
ausfiihren

Vergleich: Privilegierte vs. sensible Instruktionen
.

Folgen fiir Virtualisierung

privilegierte Instruktionen bei virtualisierbaren Prozessoren
e bei Ausfiihrung einer privilegierten Instruktion in virtueller
Maschine: immer Kontrollflussiibergabe an im Kernel-Modus
laufende Systemsoftware - hier Typ-1-HV

e HV kann (anhand des virtuellen Privilegierungsmodus) feststellen:

1. ob sensible Anweisung durch Gast-BS
2. oder durch Nutzerprogramm (Systemaufruf!) ausgelost

e Folgen:

1. privilegierte Instruktionen des Gast-Betriebssystems
werden ausgefithrt — ,,trap-and-emulate”

2. Einsprung in Betriebssystem, hier also Einsprung in
Gast-Betriebssystem — Upcall durch HV

e privilegierte Instruktionen bei nicht virtualisierbaren Prozessoren

— solche Instruktionen typischerweise ignoriert!
Intel-Architektur ab 386

dominant im PC-und Universalrechnersegment ab 1980er

keine Unterstiitzung fiir Virtualisierung ...

kritische Instruktionen im User Mode werden von CPU ignoriert
auBerdem: in Pentium-Familie konnte Kernel-Code explizit
feststellen, ob er im Kernel- oder Nutzermodus lauft — Gast-BS
trifft (implementierungsabhéngig) evtl. fatal fehlerhafte
Entscheidungen

e Diese Architekturprobleme (bekannt seit 1974) wurden 20 Jahre
lang im Sinne von Riickwértskompatibilitiat auf
Nachfolgeprozessoren iibertragen ...

— erste virtualisierungsfihige Intel-Prozessorenfamilie (s.
[Adams2006]): VT, VT-x® (2005)
— dito fiir AMD: SVM, AMD-V®) (auch 2005)

Forschungsarbeit 1990er Jahre

e verschiedene akademische Projekte zur Virtualisierung bisher
nicht virtualisierbarer Prozessoren

e erstes und vermutlich bekanntestes: DISCO- Projekt der
University of Stanford

e Resultat: letztlich VMware (heute kommerziell) und
Typ-2-Hypervisors...

Typ-2-Hypervisor

Virtualisierung ohne Hardwareunterstiitzung:

e keine Moglichkeit, trap-and-emulate zu nutzen
e keine Moglichkeit, um

20/24

1. korrekt (bei sensiblen Instruktionen im Gast-Kernel) den
Privilegierungsmodus zu wechseln
2. den korrekten Code im HV auszufiihren

Ubersetzungsstrategie in Software:

o vollstindige Ubersetzung des Maschinencodes, der in VM
ausgefiihrt wird, in Maschinencode, der im HV ausgefiihrt wird

e praktische Forderung: HV sollte selbst abstrahierte
HW-Schnittstelle zur Ausfiihrung des (komplexen!)
Ubersetzungscodes zur Verfiigung haben (z.B. Nutzung von
Geriitetreibern)

e — Typ-2-HV als Kompromiss:

— korrekte Ausfithrung von virtualisierter Software auf

virtualisierter HW .
— beherrschbare Komplexitéit der Implementierung

aus Nutzersicht

e liuft als gewodhnlicher Nutzer-Prozess auf Host-Betriebssystem
(z.B. Windows oder Linux)

e VMware bedienbarwie physischer Rechner (bspw. erwartet
Bootmedium in virtueller Reprédsentation eines physischen
Laufwerks)

e persistente Daten des Gast-BS auf virtuellem Speichermedium (
tatséchlich: Image-Datei aus Sicht des Host-Betriebssystems)

Mechanismus: Code-Inspektion

e Bei Ausfithrung eines Bindrprogramms in der virtuellen Maschine
(egal ob Bootloader, Gast-BS-Kernel, Anwendungsprogramm):
zunéchst inspiziert Typ-2-HV den Code nach Basisblocken

— Basisblock: Befehlsfolge, die mit privilegierten Befehlen
oder solchen Befehlen abgeschlossen ist, die den
Kontrollfluss dndern (sichtbar an Manipulation des
Programm-Zihlers eip), z.B. jmp, call, ret.

e Basisblécke werden nach sensiblen Instruktionen abgesucht

e diese werden jeweils durchAufruf einer HV-Prozedur ersetzt, die
jeweilige Instruktion behandelt

e gleiche Verfahrensweise mit letzter Instruktion eines Basis-Blocks

Mechanismus: Binary Translation (Bindrcodeiibersetzung)

e modifizierter Basisblock: wird innerhalbdes HVin
Cachegespeichert und ausgefiihrt

e Basisblock ohne sensible Instruktionen: lauft unter Typ-2-HV
exakt so schnell wie unmittelbar auf Hardware (weil er auch
tatsdchlich unmittelbar auf der Hardware lduft, nur eben im
HV-Kontext)

e sensible Instruktionen: nach dargestellter Methode abgefangen
und emuliert — dabei hilft jetzt das Host-BS (z.B. durch eigene
Systemaufrufe, Geritetreiberschnittstellen)

Mechanismus: Caching von Basisblocken

e HV nutzt zwei parallel arbeitende Module (Host-BS-Threads!):

— Translator: Code-Inspektion, Binary Translation
— Dispatcher: Basisblock-Ausfiihrung

zusétzliche Datenstruktur: Basisblock-Cache

Dispatcher: sucht Basisblock mit jeweils nidchster auszufithrender
Befehlsadresse im Cache; falls miss — suspendieren (zugunsten
Translator)

Translator: schreibt Basisblocke in Basisblock-Cache

Annahme: irgendwann ist Grofiteil des Programms im Cache,
dieses lduft dann mit nahezu Original-Geschwindigkeit
(theoretisch)

Performanzmessungen

e zeigen gemischtes Bild: Typ2-HV keinesfalls so schlecht, wie einst
erwartet wurde

e qualitativer Vergleich mit virtualisierbarer Hardware
(Typl-Hypervisor):

e ,.trap-and-emulate,,: erzeugt Vielzahl von Traps —
Kontextwechsel zwischen jeweiliger VM und HV

e insbesondere bei Vielzahl an VMs sehr teuer: CPU-Caches, TLBs,
Heuristiken zur spekulativen Ausfiihrung werden verschmutzt

e wenn andererseits sensible Instruktionen durch Aufruf von
VMware-Prozeduren innerhalb des ausfithrenden Programms
ersetzt: keine Kontextwechsel-Overheads

Studie: (von Vmware) [Adams& Agesen06]

e last-und anwendungsabhingig kann Softwarelésung sogar
Hardwarelosung iibertreffen

e Folge: viele moderne Typl-HV benutzen aus Performanzgriinden
ebenfalls Binary Translation

Paravirtualisierung
Funktionsprinzip

. unterscheidet sich prinzipiell von Typ-1/2-Hypervisor
wesentlich: Quellcode des Gast-Betriebssystems modifiziert
sensible Instruktionen: durch Hypervisor-Calls ersetzt
Folge: Gast-Betriebssystem arbeitet jetzt vollstindig wie
Nutzerprogramm, welches Systemaufrufe zum Betriebssystem
(hier dem Hypervisor) ausfiihrt
e dazu:

— Hypervisor: muss geeignetes Interface definieren (HV-Calls)

— — Menge von Prozedur-Aufrufen zur Benutzung durch
Gast-Betriebssystem

— bilden eine HV-API als Schnittstelle fiir
Gast-Betriebssysteme (nicht fiir Nutzerprogramme!)

e mehr dazu: Xen
Verwandtschaft mit Mikrokernel-Architekturen

o Geht man vom Typ-1-HV noch einen Schritt weiter ...
— und entfernt alle sensiblen Instruktionen aus
Gast-Betriebssystem ...
— und ersetzt diese durch Hypervisor-Aufrufe, um
Systemdienste wie E/A zu benutzen, ...
— hat man praktisch den Hypervisor in Mikrokernel
transformiert.

e ... und genau das wird auch schon gemacht: $L"4$Linux (TU
Dresden)

— Basis: stringente $L"4\mu$ Kernel-Implementierung
(Typ-1-HV-artiger Funktionsumfang)

— Anwendungslaufzeitumgebung: paravirtualisierter
Linux-Kernel als Serverprozess

— Ziele: Isolation (Sicherheit, Robustheit), Echtzeitfdhigkeit
durch direktere HW-Interaktion (vergleichbar
Exokernel-Ziel)

Zwischenfazit Virtualisierung

o Ziele: Adaptivitit komplementéir zu...

— Wartbarkeit : 6konomischer Betrieb von Cloud-und
Legacy-Anwendungen ohne dedizierte Hardware

— Sicherheit : sicherheitskritische Anwendungen kénnen
vollstdndig von nichtvertrauenswiirdigen Anwendungen
(und untereinander) isoliert werden

— Robustheit : Fehler in VMs (= Anwendungsdoménen)
kénnen nicht andere VMs beeintrichtigen

o Idee: drei géngige Prinzipien:

— Typ-1-HV: unmittelbares HW-Multiplexing,
trap-and-emulate

Advanced Operating Systems

— Typ-2-HV: HW-Multiplexing auf Basis eines Host-OS,
binarytranslation

— Paravirtualisierung: Typ-1-HV fiir angepasstes Gast-OS,
kein trap-and-emulate nétig — HV #hnelt μKern

Ergebnisse:

— v'VMs mit individuell anpassbarer Laufzeitumgebung

— VisolierteVMs

— Vkontrollierbare VM-Interaktion (untereinander und mit
HW)

— Xkeine hardwarespezifischen Optimierungen aus VM heraus
méglich — Performanz, Echtzeitfihigkeit, Sparsamkeit!

Container

Ziele:

Idee:

Adaptivitdt , im Dienste von ...
.. Wartbarkeit: einfachen Entwicklung, Installation,
Rekonfiguration durch Kapselung von

— Anwendungsprogrammen
— * durch sie benutzte Bibliotheken
- * Instanzen bestimmter BS-Ressourcen
. Portabilitdt: Betrieb von Anwendungen, die lediglich von
einem bestimmten BS-Kernel abhingig sind (ndmlich ein solcher,
der Container unterstiitzt); insbesondere hinsichtlich:

— Abhéngigkeitskonflikten (Anwendungen und Bibliotheken)
— fehlenden Abhiingigkeiten (Anwendungen und Bibliotheken)
— Versions-und Namenskonflikten

. Sparsamkeit: problemgerechtes ,,Packen,, von Anwendungen in
Container — Reduktion an Overhead: selten (oder gar nicht)
genutzter Code, Speicherbedarf, Hardware,

private Sichten (Container) bilden = private
User-Space-Instanzen fiir verschiedene Anwendungsprogramme
Kontrolle dieser Container i.S.v. Multiplexing, Unabhingigkeit
und API: BS-Kernel

somit keine Form der BS-Virtualisierung, eher:
,,User-Space-Virtualisierung,,

Anwendungsfille fiir Container

Anwendungsentwicklung:

— konfliktfreies Entwickeln und Testen unterschiedlicher
Software, fiir unterschiedliche Zielkonfigurationen

BS-User- Space
Anwendungsbetrieb und -administration:

— Entschérfung von ,,dependency hell,,

— einfache Migration, einfaches Backup von Anwendungen
ohne den (bei Virtualisierungsimages als Ballast
auftretenden) BS-Kernel

— einfache Verteilung generischer Container fiir bestimmte
Aufgaben

— = Kombinationen von Anwendungen

Anwendungsisolation? — Docker

Zwischenfazit: Container

21/24

Ziele: Adaptivitdt komplementér zu...

— Wartbarkeit : Vermeidung von Administrationskosten fiir
Laufzeitumgebung von Anwendungen

— Portabilitdt : Vereinfachung von Abhéngigkeitsverwaltung

— Sparsamkeit : Optimierung der Speicher-und
Verwaltungskosten fiir Laufzeitumgebung von
Anwendungen

Idee:

— unabhéngige User-Space-Instanz fiir jeden einzelnen
Container

— Aufgaben des Kernels: Unterstiitzung der
Containersoftware bei Multiplexing und Herstellung der
Unabhéngigkeitdieser Instanzen

Ergebnisse:

— Vvereinfachte Anwendungsentwicklung

— Vvereinfachter Anwendungsbetrieb

— XInfrastruktur nostig iiber (lokale) Containersoftware
hinaus, um Containern zweckgerecht bereitzustellen und zu
warten

— Xkeine vollsténdige Isolationmdoglich

Beispielsysteme (Auswahl)

Virtualisierung: VMware, VirtualBox
Paravirtualisierung: Xen

Exokernel: Nemesis, MirageOS, RustyHermit
Container: Docker, LupineLinux

Hypervisor

VMware

”... ist Unternehmenin PaloAlto, Kalifornien (USA)
gegriindet 1998 von 5 Informatikern
stellt verschiedene Virtualisierungs-Softwareprodukte her:

1. VMware Workstation

— war erstes Produkt von VMware (1999)

— mehrere unabhéngige Instanzen von x86- bzw.
x86-64-Betriebssystemen auf einer Hardware
betreibbar

VMware Fusion: dhnliches Produkt fiir Intel
Mac-Plattformen

VMware Player: (eingestellte) Freeware fiir
nichtkommerziellen Gebrauch

VMware Server (eingestellte Freeware, ehem. GSX Server)
VMware vSphere (ESXi)

— Produkte 1 ...
— Produkte 4 ...
— Produkte 1 ...

bei VMware-Installation: spezielle vin- Treiber in
Host-Betriebssystem eingefiigt

diese ermdoglichen: direkten Hardware-Zugriff

durch Laden der Treiber: entsteht ,,Virtualisierungsschicht”
(VMware-Sprechweise)

oo W N

3: fiir Desktop-Systeme
5: fiir Server-Systeme
4: Typ-2-Hypervisor

— Typl- Hypervisor- Architektur
— Anwendung nur bei VMware ESXi
— Entsprechende Produkte in Vorbereitung

VirtualBox

Virtualisierungs-Software fiir x86- bzw. x86-64-Betriebssysteme
fiir Industrie und ,,Hausgebrauch” (urspriinglich: Innotek , dann
Sun , jetzt Oracle)

frei verfiigbare professionelle Lésung, als Open Source Software
unter GNU General Public License(GPL) version 2. ...
(gegenwirtig) lauffihig auf Windows, Linux, Macintosh und

Solaris Hosts . .
unterstiitzt groBe Anzahl von Gast-Betriebssystemen: Windows

(NT 4.0, 2000, XP, Server 2003, Vista, Windows 7),
DOS/Windows 3.x, Linux (2.4 and 2.6), Solaris and OpenSolaris ,
0OS/2 , and OpenBSD u.a.

reiner Typ-2-Hypervisor

Paravirutalisierung: Xen

entstanden als Forschungsprojekt der University of Cambridge
(UK), dann XenSource Inc., danach Citrix, jetzt: Linux
Foundation (,,self-governing”)

frei verfiigbar als Open Source Software unter GNU General
Public License (GPL)
lauffihig auf Prozessoren der Typen x86, x86-64, PowerPC, ARM,

MIPS
unterstiitzt groBe Anzahl von Gast-Betriebssystemen: FreeBSD,

GNU/Hurd/Mach, Linux, MINIX, NetBSD, Netware,
OpenSolaris, OZONE, Plan 9

,,Built for the cloud before it was called cloud.”
Citrix)

bekannt fiir Paravirtualisierung

unterstiitzt heute auch andere Virtualisierungs-Prinzipien

(Russel Pavlicek,

: Architektur

Gast-BSe laufen in Xen Doménen (,,dom_i”, analog VM_i)
es existiert genau eine, obligatorische, vertrauenswiirdige
Doméine: dom_0

Aufgaben (Details umseitig):

— Bereitstellen und Verwalten der virtualisierten Hardware
iir andere Doménen (Hypervisor-API, Scheduling-Politiken
fiir Hardware-Multiplexing)

— Hardwareverwaltung/-kommunikation fiir paravirtualisierte
Gast-BSe (Geritetreiber)

— Interaktionskontrolle (Sicherheitspolitiken)

dom_0 im Detail: ein separates, hochkritisch administriertes,
vertrauenswiirdiges BS mit eben solchen Anwendungen (bzw.
Kernelmodulen) zur Verwaltung des gesamten virtualisierten
Systems

— es existieren hierfiir spezialisierte Variantenvon Linux,
BSD, GNU Hurd

: Sicherheit

Sicherheitsmechanismusin Xen: Xen Security Modules (XSM)
illustriert, wie (Para-) Typ-1-Virtualisierung von BS die NFE
Sicherheit unterstiitzt

PDP: Teil des vertrauenswiirdigen BS in dom_0, PEPs: XSMs
im Hypervisor

Beispiel: Zugriff auf Hardware

— Sicherheitspolitik-Integration, Administration, Auswertung:
dom_0

Beispiel: Inter-Domé&nen-Kommunikation
— Interaktionskontrolle (Aufgaben wie oben): dom_0

— Beispiel: VisorFlow
— selber XSM kontrolliert Kommunikation fiir zwei Domé&nen

Exokernel
Nemesis

Betriebssystemaus EU-Verbundprojekt ,,Pegasus,, zur
Realisierung eines verteilten multimediafdhigen Systems (1.
Version: 1994/95)

Entwurfsprinzipien:

1. Anwendungen: sollen Freiheit haben, Betriebsmittel in fiir
sie geeignetster Weise zu nutzen (= Exokernel-Prinzip)
2. Realisierung als sog. vertikal strukturiertes Betriebssystem:

— weitaus meiste Betriebssystem-Funktionalitit
innerhalb der Anwendungen ausgefiihrt (=
Exokernel-Prinzip)

— Echtzeitanforderungen durch Multimedia —
Vermeidung von Client-Server-Kommunikationsmodell
wegen schlecht beherrschbarer zeitlicher
Verzogerungen (neu)

MirageOS + Xen

Spezialfall: Exokernel als paravirtualisiertes BS auf Xen
Ziele : Wartbarkeit (Herkunft: Virtualisierungsarchitekturen ...)

https://www.flyn.org/projects/VisorFlow/

Advanced Operating Systems

— Okonomischer HW-Einsatz
— Unterstiitzung einfacher Anwendungsentwicklung
— nicht explizit: Unterstiitzung von Legacy-Anwendungen!

e Idee: ,,Unikernel” — eine Anwendung, eine API, ein Kernel
e umfangreiche Dokumentation, Tutorials, ... — ausprobieren
e Unikernel - Idee

— Architekturprinzip:
— in MirageOS:

e Ergebnis: Kombination von Vorteilen zweier Welten

— Virtualisierungs vorteile: Sicherheit, Robustheit (— Xen -
Prinzip genau einer vertrauenswiirdigen, isolierten Domé&ne
$dom_0%)

— Exokernelvorteile: Wartbarkeit, Sparsamkeit

— nicht: Exokernelvorteil der hardwarenahen
Anwendungsentwicklung... (— Performanz und
Echzeitfihigkeit)

Container: Docker

e Idee: Container fiir einfache Wartbarkeit von
Linux-Anwendungsprogrammen ...
. entwickeln
testen
— ... konfigurieren
— ... portieren — Portabilitéit

e Besonderheit: Container kdénnen - unabhéngig von ihrem
Einsatzzweck - wie Software-Repositories benutzt, verwaltet,
aktualisiert, verteilt ... werden

e Management von Containers: Docker Client — leichtgewichtiger
Ansatz zur Nutzung der Wartbarkeitsvorteile von Virtualisierung

e Forsetzung unter der OCI (Open Container Initiative)

— ,,Docker does a nice job [...] for a focused purpose, namely
the lightweight packaging and deployment of applications.”
(Dirk Merkel, Linux Journal)

e Implementierung der Containertechnik basierend auf
Linux-Kernelfunktionen:
— Linux Containers (LXC): BS-Unterstiitzung fiir
Containermanagement
— cgroups: Accounting/Beschrinkung der
Ressourcenzuordnung
— union mounting: Funktion zur logischen Reorganisation
hierarchischer Dateisysteme
.

Performanz und Parallelitit

Motivation
e Performanz: Wer hiitte gern einen schnell(er)en Rechner...?
e Wer braucht schnelle Rechner:

— Hochleistungsrechnen, HPC (,,high
performancecomputing”)

* wissenschaftliches Rechnen(z.B. Modellsimulation
natiirlicher Prozesse,
Radioteleskop-Datenverarbeitung)

* Datenvisualisierung(z.B. Analysen grofier Netzwerke)

* Datenorganisation-und speicherung(z.B.
Kundendatenverarbeitung zur Personalisierung von
Werbeaktivitidten, Biirgerdatenverarbeitung zur
Personalisierung von Geheimdienstaktivitéiten)

— nicht disjunkt dazu: kommerzielle Anwendungen

* ,,Big Data”: Dienstleistungen fiir Kunden, die o. g.
Probleme auf gigantischen Eingabedatenmengen zu
16sen haben (Software wie Apache Hadoop)

* Wettervorhersage

— anspruchsvolle Multimedia- Anwendungen

* Animationsfilme
* VR-Rendering

22/24

Performanzbegriff

e Performance: The degree to which a system or component
accomplishes its designated functions within given constraints,
such as speed, accuracy, or memory usage. (IEEE)

e Performanz im engeren Sinne dieses Kapitels: Minimierung der
fiir korrekte Funktion (= Losung eines Berechnungsproblems) zur
Verfiigung stehenden Zeit.

e oder technischer: Maximierung der Anzahl pro Zeiteinheit
abgeschlossener Berechnungen.

Roadmap

e Grundlegende Erkenntnis: Performanz geht nicht (mehr) ohne
Parallelitit — Hochleistungsrechnen = hochparalleles Rechnen
e daher in diesem Kapitel: Anforderungen hochparallelen Rechnens
an ...
— Hardware: Prozessorarchitekturen
— Systemsoftware: Betriebssystemmechanismen
— Anwendungssoftware: Parallelisierbarkeitvon Problemen

e BS-Architekturen anhand von Beispielsystemen:

— Multikernel: Barrelfish
— verteilte Betriebssysteme

Hardware-Voraussetzungen
e Entwicklungstendenzen der Rechnerhardware:

— Multicore-Prozessoren: seit ca. 2006 (in groSerem Umfang)
— Warum neues Paradigma fiir Prozessoren? bei
CPU-Taktfrequenz >> 4 GHz: z.Zt. physikalische Grenze,
u.a. nicht mehr sinnvoll handhabbare Abwéarme
— Damit weiterhin:
1. Anzahl der Kerne wichst nicht linear
2. Taktfrequenz wichst asymptotisch, nimmt nur noch
marginal zu

Performanz durch Parallelisierung ...
Folgerungen

1. weitere Performanz-Steigerung von Anwendungen: primér durch
Parallelitéit (aggressiverer) Multi-Threaded-Anwendungen

2. erforderlich: Betriebssystem-Unterstiitzung — Scheduling,
Sychronisation

3. weiterhin erforderlich: Formulierungsmdoglichkeiten (Sprachen),
Compiler, verteilte Algorithmen ... — hier nicht im Fokus

... auf Prozessorebene
Vorteile von Multicore-Prozessoren

1. moglich wird: Parallelarbeit auf Chip-Ebene — Vermeidung
der Plagen paralleler verteilter Systeme

2. bei geeigneter Architektur: Erkenntnisse und Software aus Gebiet
verteilter Systeme als Grundlage verwendbar

3. durch gemeinsame Caches (architekturabhiingig): schnellere
Kommunikation (speicherbasiert), billigere Migration von
Aktivitdten kann méglich sein

4. hohere Energieeffizienz: mehr Rechenleistung pro Chipfliche,
geringere elektrische Leistungsaufnahme — weniger
Gesamtabwirme, z.T. einzelne Kerne abschaltbar (vgl.
Sparsamkeit , mobile Gerite)

5. Baugrofle: geringeres physisches Volumen

Nachteile von Multicore-Prozessoren

1. durch gemeinsam genutzte Caches und Busstrukturen: Engpésse
(Bottlenecks) méglich
2. zur Vermeidung thermischer Zerstérungen: Lastausgleich
zwingend erforderlich! (Ziel: ausgeglichene Lastverteilung auf
einzelnen Kernen)
3. zum optimalen Einsatz zwingend erforderlich:
1. Entwicklung Hardwarearchitektur

2. zusitzlich: Entwicklung geeigneter Systemsoftware
3. zusitzlich: Entwicklung geeigneter Anwendungssoftware

Multicore-Prozessoren

o Sprechweise in der Literatur gelegentlich uniibersichtlich...
e daher: Terminologie und Abkiirzungen:

— MC ...multicore(processor)

— CMP ...chip-level multiprocessing, hochintegrierte Bauweise
fir ,,MC”

— SMC ...symmetric multicore — SMP ... symmetric
multi-processing

— AMC ...asymmetric (auch: heterogeneous) multicore —
AMP ... asymmetric multi-processing

— UP ...uni-processing , Synonym zu singlecore(SC) oder
uniprocessor

Architekturen von Multicore-Prozessoren

e A. Netzwerkbasiertes Design

— Prozessorkerne des Chips u. ihre lokalen Speicher (oder
Caches): durch Netzwerkstruktur verbunden

— damit: grofte Ahnlichkeit zu traditionellen verteilten
Systemen

— Verwendung: bei Vielzahl von Prozessorkernen
(Skalierbarkeit!)

— Beispiel: Intel Teraflop-Forschungsprozessor Polaris (80
Kerne als 8x10-Gitter)

e B. Hierarchisches Design

— mehrere Prozessor-Kerne teilen sich mehrere baumartig
angeordnete Caches
— meistens:
* jeder Prozessorkern hat eigenen L1-Cache
* L2-Cache, Zugriff auf (externen) Hauptspeicher u.
Grofiteil der Busse aber geteilt

— Verwendung: typischerweise Serverkonfigurationen
— Beispiele:

+ IBM Power

* Intel Core 2, Core i

* Sun UltraSPARCT1 (Niagara)

e C. Pipeline-Design

— Daten durch mehrere Prozessor-Kerne schrittweise
verarbeitet . .
— durch letzten Prozessor: Ablage im Speichersystem

— Verwendung:
* Graphikchips
* (hochspezialisierte) Netzwerkprozessoren
— Beispiele: Prozessoren X10 u. X11 von Xelerator zur
Verarbeitung von Netzwerkpaketen in Hochleistungsroutern
(X11: bis zu 800 Pipeline-Prozessorkerne)

Symmetrische u. asymmetrische Multicore-Prozessoren

e symmetrische Multicore-Prozessoren (SMC)

— alle Kerne identisch, d.h. gleiche Architektur und gleiche
Fahigkeiten
— Beispiele:
* Intel Core 2 Duo
* Intel Core 2 Quad
* ParallaxPropeller

asymmetrische MC-Prozessoren (AMC)

e Multicore-Architektur, jedoch mit Kernen unterschiedlicher
Architektur und/oder unterschiedlichen Fihigkeiten

e Beispiel: Kilocore:

— 1 Allzweck-Prozessor (PowerPC)
- * 256 od. 1024 Datenverarbeitungsprozessoren

https://mirage.io/wiki/learning

Advanced Operating Systems

Superskalare Prozessoren
e Bekannt aus Rechnerarchitektur: Pipelining

— parallele Abarbeitung von Teilen eines Maschinenbefehls in
Pipeline-Stufen
— ermdglicht durch verschiedene Funktionseinheiten eines
Prozessors fiir verschiedene Stufen:
* Control Unit (CU)
* ArithmeticLogicUnit (ALU)
* Float Point Unit (FPU)
* Memory Management Unit (MMU)
* Cache
— sowie mehrere Pipeline-Register
e superskalare Prozessoren: solche, bei denen zur Bearbeitung einer
Pipeling-Stufe erforderlichen Funktionseinheiten n-fach vorliegen
o Ziel:
— Skalarprozessor (mit Pipelining): 1 Befehl pro Takt
(vollstédndig) bearbeitet
— Superskalarprozessor: bis zu n Befehle pro Taktbearbeitet

e Verbereitung heute: universell (bis hin zu allen
Desktop-Prozessorfamilien)

Parallelisierung in Betriebssystemen
e Basis fiir alle Parallelarbeit aus BS-Sicht: Multithreading
e wir erinnern uns ...:

— Kernel-Level-Threads (KLTs): BS implementiert Threads
— Scheduler kann mehrere Threads nebenldufig planen —
Parallelitdt moglich

— User-Level-Threads (ULTs): Anwendung implementiert
Threads — keine Parallelitdt moglich!

e grundlegend fiir echt paralleles Multithreading:

— parallelisierungsfihige Hardware

— kausal unabhéngige Threads

— passendes (und korrekt eingesetztes!) Programmiermodell,
insbesondere Synchronisation!

— — Programmierer + Compiler

Vorlaufiges Fazit:

e BS-Abstraktionen miissen Parallelitdt unterstiitzen (Abstraktion
nebenldufiger Aktivitdten: KLTSs)
e BS muss Synchronisationsmechanismen implementieren

Synchronisations- und Sperrmechanismen

e Synchronisationsmechanismen zur Nutzung

— ... durch Anwendungen — Teil der API
— ... durch den Kernel (z.B. Implementierung
Prozessmanagement, E/A, ...)

e Aufgabe: Verhinderung konkurrierender Zugriffe auf logische oder
physische Ressourcen

— Vermeidung von raceconditions
— Herstellung einer korrekten Ordnung entsprechend
Kommunikationssemantik (z.B. ,,Schreiben vor Lesen”)

e (alt-) bekanntes Bsp.: Reader-Writer-Problem
Erinnerung: Reader-Writer-Problem

o Begriffe: (bekannt)

— wechselseitiger Ausschluss (mutual exclusion)
— kritischer Abschnitt (critical section)

e Synchronisationsprobleme:

— Wie verhindern wir ein write in vollen Puffer?
— Wie verhindern wir ein read aus leerem Puffer?

23/24

— Wie verhindern wir, dass auf ein Element wahrend des read
durch ein gleichzeitiges write zugegriffen wird? (Oder
umgekehrt?)

Sperrmechanismen (Locks)

e Wechselseitiger Ausschluss ...

— ... ist in nebenldufigen Systemen zwingend erforderlich

— ... ist in echt parallelen Systemen allgegenwirtig

— ... skaliert duflerst unfreundlich mit Code-Komplexitdt —
(monolithischer) Kernel-Code!

o Mechanismen in Betriebssystemen: Locks
e Arten von Locks am Beispiel Linux:

— Big Kernel Lock (BKL)

* historisch (1996-2011): lockkernel(); ... unlockkernel();
* ineffizient durch massiv gestiegene Komplexitit des
Kernels
— atomic-Operationen
— Spinlocks
— Semaphore (Spezialform: Reader/Writer Locks)

atomic*

e Bausteine der komplexeren Sperrmechanismen:

— Granularitét: einzelne Integer- (oder sogar Bit-) Operation

— Performanz: mittels Assembler implementiert, nutzt
Atomaritéts garantiender CPU (TSL - Anweisungen:
,,test-set-lock”)

e Benutzung:

— atomic_* Geschmacksrichtungen: read, set, add, sub, inc,
dec u. a.
— keine explizite Lock-Datenstruktur — Deadlocks durch

Mehrfachsperrung syntaktisch unmdéglich

— definierte Linge des kritischen Abschnitts (genau diese eine

Operation) — unnétiges Sperren sehr preiswert

Zusammenfassung

Funktionale und nichtfunktionale Eigenschaften

e Funktionale Eigenschaften: beschreiben, was ein
(Software)-Produkt tun soll

e Nichtfunktionale Eigenschaften: beschreiben, wie funktionale
Eigenschaften realisiert werden, also welche sonstigen
Eigenschaftendas Produkt haben soll ... unterteilbar in:

1. Laufzeiteigenschaften (zur Laufzeit sichtbar)
2. Evolutionseigenschaften (beim Betrieb sichtbar:
Erweiterung, Wartung, Test usw.)
Roadmap (... von Betriebssystemen)
Sparsamkeit und Effizienz

Robustheit und Verfiigbarkeit

Sicherheit
Echtzeitfihigkeit

Adaptivitit
Performanzund Parallelitét

Sparsamkeit und Effizienz

e Sparsamkeit: Die Eigenschaft eines Systems, seine Funktion mit
minimalem Ressourcenverbrauch auszuiiben.

e Effizienz: Der Grad, zu welchem ein System oder eine seiner
Komponenten seine Funktion mit minimalem
Ressourcenverbrauch ausiibt. — Ausnutzungsgrad begrenzter
Ressourcen

e Die jeweils betrachtete(n) Ressource(n) muss /(miissen) dabei
spezifiziert sein!

e sinnvolle Moglichkeiten bei Betriebssystemen:

1. Sparsamer Umgang mit Energie , z.B. energieeffizientes
Scheduling

2. Sparsamer Umgang mit Speicherplatz (Speichereffizienz)

3. Sparsamer Umgang mit Prozessorzeit

4

Sparsamkeit mit Energie

e Sparsamkeit mit Energie als heute extrem wichtigen Ressource,
mit nochmals gesteigerter Bedeutung bei mobilen bzw.
vollstdndig autonomen Gerédten Manahmen:

1. Hardware-Ebene: momentan nicht oder nicht mit maximaler
Leistung benétigte Ressourcen in energiesparenden Modus

bringen: abschalten, Standby, Betrieb mit verringertem
Energieverbrauch (abwégen gegen verminderte Leistung).
(Geeignete Hardware wurde/wird ggf. erst entwickelt)

2. Software-Ebene: neue Komponenten entwickeln, die in der Lage
sein miissen:

e Bedingungenzu erkennen, unter denen ein energiesparender
Modus moglich ist;

e Steuerungs-Algorithmen fiir Hardwarebetrieb so zu
gestalten, dass Hardware-Ressourcen moglichst lange in
einem energiesparenden Modus betrieben werden.

e Energie-Verwaltungsstrategien: energieeffizientes Scheduling
zur Vermeidung von Unfairness und Prioritdtsumkehr

e DBeispiele: energieeffizientes Magnetfestplatten-Prefetching,
energiebewusstes RR-Scheduling

Sparsamkeit mit Speicherplatz

e Betrachtet: Sparsamkeit mit Speicherplatz mit besonderer
Wichtigkeit fiir physisch beschriankte, eingebettete und autonome
Gerite

e Mafinahmen Hauptspeicherauslastung:
1. Algorithmus und Strategie z.B.:

— Speicherplatz sparende Algorithmen zur Realisierung
gleicher Strategien

2. Speicherverwaltung von Betriebssystemen:
— physische vs. virtuelle Speicherverwaltung
— speichereffiziente Ressourcenverwaltung
— Speicherbedarfdes Kernels
— direkte Speicherverwaltungskosten
e Mafinahmen Hintergrundspeicherauslastung:

1. Speicherbedarf des Betriebssystem-Images

2. dynamische SharedLibraries

3. VMM-Auslagerungsbereich

4. Modularitdt und Adaptivitit des Betriebssystem-Images

. Nicht betrachtet: Sparsamkeit mit Prozessorzeit — 99%
Uberschneidung mit NFE Performanz

Robustheit und Verfiigbarkeit

e Robustheit: Zuverldssigkeit unter Anwesenheit externer Ausfille
e fault, aktiviert — error, breitet sich aus — failure

Robustheit

e Erhchung der Robustheit durch Isolation:
— Mafinahmen zur Verhinderung der Fehlerausbreitung:

1. Adressraumisolation: Mikrokernarchitekturen,
2. kryptografische HW-Unterstiitzung: Intel SGX und
3. Virtualisierungsarchitekturen

e Erhohung der Robustheit durch Behandlung von Ausféllen:
Micro-Reboots

Vorbedingung fiir Robustheit: Korrektheit

Advanced Operating Systems

e Korrektheit: Eigenschaft eines Systems sich gemé&f seiner
Spezifikation zu verhalten (unter der Annahme, dass bei dieser
keine Fehler gemacht wurden).

e MaBnahmen (nur angesprochen):

1. diverse Software-Tests:

e konnen nur Fehler aufspiiren, aber keine Fehlerfreiheit
garantieren!

2. Verifizierung:

e Durch umfangreichen mathematischen Apparat wird
Korrektheit der Software bewiesen, .
e Aufgrund der Komplexitit ist GroBe verifizierbarer

Systeme (bisher?) begrenzt.
o Betriebssystem-Beispiel: verifizierter Mikrokern selh

Verfiigbarkeit

e Verfiighbarkeit: Der Anteil an Laufzeit eines Systems, in dem
dieses seine spezifizierte Leistung erbringt.
e angesprochen: Hochverfiigbare Systeme
e MafBinahmen zur Erhéhung der Verfiigbarkeit:
1. Robustheitsmainahmen
2. Redundanz
3. Redundanz
4. Redundanz
5. Ausfallmanagement

Sicherheit
e Sicherheit (IT-Security): Schutz eines Systems gegen Schiden
durch zielgerichtete Angriffe, insbesondere in Bezug auf die
Informationen, die es speichert, verarbeitet und kommuniziert.
e Sicherheitsziele:
Vertraulichkeit (Confidentiality)
Integritit (Integrity)
Verfiigbarkeit (Availability)
Authentizitit (Authenticity)
Verbindlichkeit (Non-repudiability)

o Wi

Security Engineering

e Sicherheitsziele — Sicherheitspolitik — Sicherheitsarchitektur —
Sicherheitsmechanismen
e Sicherheitspolitik: Regeln zum Erreichen eines Sicherheitsziels.
— hierzu formale Sicherheitsmodelle:
— IBAC, TE, MLS
— DAC, MAC

e Sicherheitsmechanismen: Implementierung der Durchsetzung einer
Sicherheitspolitik.

— Zugriffssteuerungslisten(ACLs)
— SELinux

e Sicherheitsarchitektur: Platzierung, Struktur und Interaktion von
Sicherheitsmechanismen.

— wesentlich: Referenzmonitorprinzipien

— RM1: Unumgehbarkeit — vollstiandiges Finden aller
Schnittstellen

— RM2: Manipulationssicherheit — Sicherheit
einerSicherheitspolitik selbst

— RMa3: Verifizierbarkeit — wohlstrukturierte und per
Designkleine TCBs

24/24

Echtzeitfihigkeit

e Echtzeitfihigkeit: Fahigkeit eines Systems auf eine Eingabe
innerhalb eines spezifizierten Zeitintervalls eine korrekte Reaktion
hervorzubringen.

e Maximum dieses relativen Zeitintervalls: Frist d

1. echtzeitfihige Scheduling-Algorithmen fiir Prozessoren
e zentral: garantierte Einhaltung von Fristen
e wichtige Probleme: Prioritdtsumkehr, Uberlast, kausale
Abhingigkeit
2. echtzeitfihige Interrupt-Behandlung
o zweiteilig:asynchron registrieren, geplant bearbeiten
3. echtzeitfahige Speicherverwaltung

e Primirspeicherverwaltung, VMM (Pinning)
e Sckundéirspeicherverwaltung, Festplattenscheduling

Adaptivitat
o Adaptivitdt: Eigenschaft eines Systems, so gebaut zu sein, dass es
ein gegebenes (breites) Spektrum nichtfunktionaler Eigenschaften
unterstiitzt.
e Beobachtung: Adaptivitit i.d.R. als komplementir und
synergetisch zu anderen NFE:

— Sparsamkeit

— Robustheit

— Sicherheit

— Echzeitfdahigkeit

— Performanz
— Wartbarkeit und Portierbarkeit

Adaptive Systemarchitekturen

e Zielstellungen:

— Exokernel: { Adaptivitdt } U { Performanz,
Echtzeitfiahigkeit, Wartbarkeit, Sparsamkeit }

— Virtualisierung: { Adaptivitit } U { Wartbarkeit,
Sicherheit, Robustheit }

— Container: { Adaptivitit } U { Wartbarkeit, Portabilitéit,
Sparsamkeit }

Performanz und Parallelitét
e Performanz (wie hier besprochen): Eigenschaft eines Systems, die
fiir korrekte Funktion (= Berechnung) benéttigte Zeit zu
minimieren.
e hier betrachtet: Kurze Antwort-und Reaktionszeiten

1. vor allen Dingen: Parallelisierung auf Betriebssystemebene
zur weiteren Steigerung der Performanz/Ausnutzung von
Multicore-Prozessoren(da Steigerung der
Prozessortaktfrequenz kaum noch méglich)

2. weiterhin: Parallelisierung auf Anwendungsebene zur
Verringerung der Antwortzeiten von Anwendungen und
Grenzen der Parallelisierbarkeit(fiir Anwendungen auf
einem Multicore-Betriebssystem).

Mechanismen, Architekturen, Grenzen der Parallelisierung

e Hardware:

— Multicore-Prozessoren
— Superskalaritat

o Betriebssystem:

— Multithreading(KLTs) und Scheduling
— Synchronisation und Kommunikation
— Lastangleichung

e Anwendung(sprogrammierer):

— Parallelisierbarkeiteines Problems
— optimaler Prozessoreneinsatz, Effizienz

Synergetische und kontrire Eigenschaften
e Normalerweise:

— Eine nichtfunktionale Eigenschaft bei IT-Systemen meist
nicht ausreichend

— Beispiel: Was niitzt ein Echtzeit-Betriebssystem - z.B.
innerhalb einer Flugzeugsteuerung - wenn es nicht auch
verlasslich arbeitet?

o In diesem Zusammenhang interessant:

— Welche nichtfunktionalen Eigenschaften mit Mafinahmen
erreichbar, die in gleiche Richtung zielen, bei welchen
wirken Maflnahmen eher gegenldufig?

— Erstere sollen synergetische, die zweiten kontrire (also in
Widerspruch zueinander stehende) nichtfunktionale
Eigenschaften genannt werden.

— Zusammenhang nicht immer eindeutig und offensichtlich,
wie z.B. bei: ,,Sicherheit kostet Zeit.” (d.h. Performanz und
Sicherheit sind nichtsynergetische Eigenschaften)

Notwendige NFE-Paarungen

e Motivation: Anwendungen (damit auch Betriebssysteme) fiir
bestimmte Einsatzgebiete brauchen oft mehrere nichtfunktionale
Eigenschaften gleichzeitig - unabhéngig davon, ob sich diese
synergetisch oder nichtsynergetisch zueinander verhalten.

o Beispiele:

— Echtzeit und Verlésslichkeit: ,,SRU”-Systeme an potentiell
gefihrlichen Einsatzgebieten (Atomkraftwerk,
Flugzeugsteuerung, Hinderniserkennung an Fahrzeugen, ...)

— Echtzeit und Sparsamkeit: Teil der eingebetteten Systeme

— Robustheit und Sparsamkeit: unter entsprechenden
Umweltbedingungen eingesetzte autonome Systeme, z.B.
smart-dust-Systeme

Uberblick: NFE und Architekturkonzepte

e V... Zieleigenschaft

e (V) ... synergetische Eigenschaft

e X... kontrdare Eigenschaft

e Leere Zellen: keine pauschale Aussage méglich.

Fazit: Breites und offenes Forschungsfeld — werden Sie aktiv!

	Funktionale und nichtfunktionale Eigenschaften
	Hardwarebasis
	Betriebssystemarchitektur
	Ressourcenverwaltung
	Betriebssystemabstraktionen
	Betriebssysteme als Softwareprodukte

	Sparsamkeit und Effizienz
	Motivation
	Energieeffizienz
	Energieeffiziente Dateizugriffe
	Prefetching-Mechanismus
	Energieeffizientes Prozessormanagement
	Systemglobale Energieeinsparungsmaßnahmen

	Speichereffizienz
	Hauptspeicherauslastung
	Hintergrundspeicherauslastung

	Architekturentscheidungen
	Makrokernel (monolithischer Kernel)
	Mikrokernel
	Architekturkonzepte im Vergleich

	Beispiel-Betriebssysteme
	TinyOS
	RIOT

	Robustheit und Verfügbarkeit
	Motivation
	Allgemeine Begriffe
	Robustheitsbegriff
	Fehler und Ausfälle ...
	... und ihre Vermeidung

	Fehlerhafter Zustand
	Fehlerausbreitung und (externer) Ausfall

	Isolationsmechanismen
	Strukturierte Programmierung
	Adressraumisolation

	Mikrokernelarchitektur
	Modularer Makrokernel vs. Mikrokernel
	Mach
	L4

	3.5 Micro-Reboots
	Beispiel-Betriebssystem: MINIX
	Verfügbarkeit
	QNX Neutrino: Hochverfügbares Echtzeit-BS

	Sicherheit
	Motivation
	Terminologie
	Sicherheitsziele
	Sicherheitspolitiken
	Traditionell: DAC, IBAC
	Modern: MAC, MLS

	Autorisierungsmechanismen
	Traditionell: ACLs, SUID
	Modern: SELinux

	Isolationsmechanismen
	Sicherheitsarchitekturen
	Referenzmonitorprinzip
	Trusted Computing Base (TCB)

	Echtzeitfähigkeit
	Motivation
	Terminologie
	Charakteristika von Echtzeit-Prozessen
	Periodische Prozesse
	Aperiodische Prozesse
	Parameter von Echtzeit-Prozessen

	Echtzeitfähige Betriebssysteme
	Echtzeitscheduling
	Earliest Deadline First (EDF)
	Vergleich: EDF vs. RM
	RC Algorithmus
	Umgang mit gemischten Prozessmengen
	Prioritätsumkehr
	Überlast
	Echtzeit-Interruptbehandlung
	Echtzeit-Speicherverwaltung
	Kommunikation und Synchronisation

	Architekturen und Beispiel-Betriebssysteme

	Adaptivität
	Motivation
	Adaptivitätsbegriff
	Roadmap
	Exokernelarchitektur
	Exokernelmechanismen
	Secure Binding
	Visible Resource Revocation
	Abort - Protokoll
	Exokernelperformanz

	Virtualisierung
	Typ-1 - Hypervisor
	Typ-2-Hypervisor
	Paravirtualisierung

	Container
	Hypervisor
	Paravirutalisierung: Xen
	Exokernel
	Container: Docker

	Performanz und Parallelität
	Motivation
	Performanzbegriff
	Roadmap
	Hardware-Voraussetzungen
	Performanz durch Parallelisierung ...
	... auf Prozessorebene
	Multicore-Prozessoren
	Superskalare Prozessoren

	Parallelisierung in Betriebssystemen
	Synchronisations- und Sperrmechanismen

	Zusammenfassung
	Funktionale und nichtfunktionale Eigenschaften
	Sparsamkeit und Effizienz
	Robustheit und Verfügbarkeit
	Sicherheit
	Echtzeitfähigkeit
	Adaptivität
	Performanz und Parallelität
	Synergetische und konträre Eigenschaften
	Notwendige NFE-Paarungen

