Disclaimer

Aufgaben aus dieser Vorlage stammen aus der Vorlesung Logik und Logikprogrammierung und wurden zu Übungszwecken verändert oder anders formuliert! Für die Korrektheit der Lösungen wird keine Gewähr gegeben.

1. Definitionen und Sätze

(a) Der Korrektheitssatz der Aussagenlogik für den Wahrheitswertebereich B lautet...

Antwort: Für jede Menge von Formeln Γ und jede Formel φ gilt $\Gamma \vdash \varphi \Rightarrow \Gamma \vdash_B \varphi$.

(b) Eine Menge von Formeln Γ heißt erfüllbar, wenn...

Antwort: Sei Γ eine Menge von Formeln. Γ heißt erfüllbar, wenn es eine passende B-Belegung B gibt mit $B(\gamma) = 1_B$ für alle $\gamma \in \Gamma$.

(c) Der Satz von Cook lautet...

Antwort: Die Erfüllbarkeit einer endlichen Menge Γ ist NP-vollständig.

(d) Zwei Formeln α und β heißen äquivalent, wenn...

Antwort: Zwei Formeln α und β heißen äquivalent ($\alpha \equiv \beta$), wenn für alle passenden B-Belegungen β gilt: β

(e) Der Kompaktheitssatz der Aussagenlogik lautet...

Antwort: Sei Γ eine u.U. unendliche Menge von Formeln. Dann gilt Γ unerfüllbar $\iff \exists \Gamma' \subseteq \Gamma$ endlich: Γ' unerfüllbar

(f) Eine Horn Klausel ist eine Formel der Form

Antwort: Eine Hornklausel hat die Form $(\neg \bot \land p_1 \land p_2 \land ... \land p_n) \rightarrow q$ für $n \ge 0$, atomare Formeln $p_1, p_2, ..., p_n$ und q atomare Formel oder $q = \bot$. Eine Hornformel ist eine Konjunktion von Hornklauseln.

2. Wahrheitswertebereiche

(a) Werte die Formel $\varpi_a = \neg p \land \neg \neg p$ im Heytingschen Wahrheitswertebereich $H_{\mathbb{R}}$ aus für die $H_{\mathbb{R}}$ -Belegung B mit $B(p) = \mathbb{R} \setminus \{0\}$

Antwort: $B_{H_{mathbb{R}}}(\neg p \wedge \neg \neg p) = Inneres(\mathbb{R}/p) \cap p = 1$

(b) Überprüfe ob die Formel $\varphi_B = (\neg p \to \neg p) \to p$ eine K_3 -Tautologie ist. Ist φ_b eine $B_{\mathbb{R}}$ Tautologie?

Ant	wort:		
p	$\neg p$	$\phi = (\neg p \to \neg p)$	$\phi \to p$
0	1	1	0
$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$
Ĩ	Õ	1	$\tilde{1}$

(c) Überprüfe ob die semantische Folgeung $\{p \to q, q \to r\} \Vdash_B r \to \neg p$ gilt.

Ant	wor	t:					
p	q	r	$\neg p$	$\Gamma_1 = p \to q$	$\Gamma_2 = q \to r$	$\Phi = r \to \neg p$	$\Gamma \Vdash \Phi$
0	0	0	1	1	1	1	✓
0	0	1	1	1	1	1	1
0	1	0	1	1	0	1	
0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	
1	0	1	0	0	1	0	
1	1	0	0	1	0	1	
1	1	1	0	1	1	0	X
Folg	erur	ig gi	lt nich	nt	,		

3. Erfüllbarkeit

(a) Überprüfe mittels Markierungsalgorithmus, ob die Formel $\varphi_a = (\neg p \lor q) \land (t \lor \neg s) \land (\neg r \lor s \lor \neg q) \land r \land (\neg p \lor t) \land \neg s \land (\neg r \lor p)$ erfüllbar ist.

Antwort:

- $\neg \varphi_a = (p \land \neg q) \lor (\neg t \land s) \lor (r \land \neg s \land q) \lor \neg r \lor (p \land \neg t) \lor s \lor (r \land \neg p)$
- $\bullet\,$ Horn Klauseln
 - 1. $q \rightarrow p$
 - $2. \ t \to s$
 - 3. $s \to r \land q$
 - $4. r \rightarrow \bot$
 - 5. $t \rightarrow p$
 - 6. $\neg \bot \rightarrow s$
 - 7. $p \rightarrow r$
- Markieren
 - 1. für 6.: s
 - 2. für 3.: r,q
 - 3. für $4.+1.: \perp, p$
 - 4. für 7.: r
 - 5. Terme 2 und 5 bleiben übrig \rightarrow terminiert mit "unerfüllbar"
- $\neg \varphi_a$ unerfüllbar $\Rightarrow \varphi_a$ erfüllbar
- (b) Überprüfe mittels SLD Resolution, ob die Formel $\varphi_b = (r \wedge p) \vee \neg t \vee (p \wedge \neg q) \vee \neg p \vee (\neg r \wedge q \wedge t)$ eine Tautologie ist

Antwort:

- Horn Klauseln
 - 1. $\neg \bot \rightarrow r \land p$
 - 2. $t \to \bot$
 - 3. $q \rightarrow p$
 - 4. $p \rightarrow \bot$
 - 5. $r \to q \wedge t$
- \bullet Markieren
 - 1. für 2.+3.: $M_0 = \{p, t\}$
 - 2. für 3.: $M_1 = \{q, t\}$
 - 3. für 5.: $M_2 = \{r\}$
 - 4. für 4.: $M_3 = \{r, p\}$
 - 5. für 1.: $M_4 = \emptyset$
- $M_4 = \varnothing \Rightarrow \varphi_b$ unerfüllbar
- 4. Monotone Formeln: Eine aussagenlogische Formel φ heißt monoton, falls für alle zu φ passenden B-Belegungen B_1, B_2 mit $B_1(p_i) \leq B_2(p_i)$ für alle $i \in \mathbb{N}$ gilt $B_1(\varphi) \leq B_2(\varphi)$. Beispielsweise sind $p_1 \wedge p_2$ und $\neg \neg p_1$ monoton.

 \Rightarrow nicht monoton

(a) Entscheide, welche der Formeln $\varphi = p_1 \wedge (p_2 \to p_3), \psi = \neg p_1 \to p_2$ monoton sind.

Antwort: Teste für B-Belegung mit Boolschem Wahrheitswertebereich $p_1 \mid p_2 \mid p_3 \mid p_2 \rightarrow p_3 \mid \varphi = p_1 \land (p_2 \rightarrow p_3)$

				, , ,,
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

p_1	p_2	$ \neg p_1$	$\psi = \neg p_1 \to p_2$	_	
0	0	1	0		
Ω	1 1	1 1	1 1		***

(b) Zeige per vollständiger Induktion über den Formelaufbau, dass aussagenlogische Formel
n in denen weder \neg noch \rightarrow vorkommen, monoton sind.

Antwort:

- 5. Definitionen und Sätze: Sei \sum eine Signatur. Verfollständige die folgenden Definitionen und Sätze.
 - (a) Es gilt $\Delta \vdash \varphi$ für eine Σ -Formel φ und eine Menge Δ von Σ -Formeln, falls

Antwort: Seien Δ eine Menge von Formeln und φ eine Formel. Dann gilt $\Delta \vdash \varphi \Leftrightarrow \Delta \Vdash_B \varphi$ Insbesondere ist eine Formel genau dann eine B-Tautologie, wenn sie ein Theorem ist.

(b) Der Vollständigkeitssatz der Prädikatenlogik lautet...

Antwort: Sei Γ eine Menge von Σ -Formeln und φ eine Σ -Formel. Dann gilt $\Gamma \Vdash \varphi \Rightarrow \Gamma \vdash \varphi$. Insbesondere ist jede allgemeingültige Formel ein Theorem.

(c) Der Satz von Löwenheim-Skolem lautet...

Antwort: Sei Γ erfüllbare und höchstens abzählbar unendliche Menge von Σ -Formeln. Dann existiert ein höchstens abzählbar unendliches Modell von Γ .

(d) Die (elementare) Theorie einer \sum -Struktur A ist

Antwort: Eine \sum -Struktur ist ein Tupel $A = (U_A, (f^A)_{f \in \Omega}, (R^A)_{R \in Rel})$, wobei

- \bullet U_A eine nichtleere Menge, das Universum,
- $R^A \supseteq U_A^{ar(R)}$ eine Relation der Stelligkeit ar(R) für $R \in Rel$ und
- $f^A: U_A^{ar(f)} \to U_A$ eine Funktion der Stelligkeit ar(f) für $f \in \Omega$ ist.
- 6. Natürliches Schließen
 - (a) Gebe die Regeln $(\forall -I)$, $(\exists -E)$ und (GfG) inklusive Bedingung an

Antwort:

 $\varphi[x:=t]: \frac{\forall x \varphi}{\varphi[x:=t]}$ Bedingung: über keine Variable aus t wird in φ quantifiziert

 $\exists x\varphi:\frac{\varphi[x:=t]}{\exists x\varphi}$ Bedingung: über keine Variable in t wird in φ quantifiziert

 $(GfG): \frac{\varphi[x:=s]}{\varphi[x:=t]} \stackrel{s=t}{=} \text{Bedingung: """}$ über keine Variable aus s oder t wird in φ quantifiziert

(b) Zeige, dass $\forall x \exists y (f(x) = y)$ ein Theorem ist, indem du eine entsprechende Deduktion angibst

Antwort:

(c) Zeige, dass $\exists x \forall y (f(x) = y)$ nicht allgemeingültig ist

Antwort:

(d) Zeige, dass die Formel aus c) erfüllbar ist

Antwort:

- 7. Prädikatenlogische Definierbarkeit: Betrachte im folgenden Graphen als \sum -Struktur, wobei \sum eine Signatur mit einem zweistelligen Relationssymbol E ist.
 - (a) Betrachte den (kommt noch) Graphen und die \sum -Formel $\varphi_a = \forall x \exists y \exists z (((E(x,y) \land E(y,z)) \lor (E(y,x) \land E(z,x))) \land y \neq z)$. Gebe eine Kante an, sodass G mit dieser zusätzlichen Kante als \sum_a -Struktur ein Modell der Formel φ_a ist. Begründe deine Antwort.

Antwort:

(b) Betrachte die folgenden (kommen noch) Graphen G_1 und G_2 . Gebe einen \sum -Satz φ_b an, so dass $G_1 \Vdash \varphi_b$ und $G_2 \not\Vdash \varphi_b$ gilt.

Antwort:

(c) Gebe einen \sum -Satz φ_c an, so dass für alle \sum -Strukturen A genau dann $A \Vdash \varphi_c$ gilt, wenn E^A eine Äquivalenzrelation ist (d.h. reflexiv, symmetrisch und transitiv).

Antwort:

- 8. Normalformeln und Unifikatoren
 - (a) Betrachte die Formel $\varphi = \forall x (\exists y (R(x,y) \land \neg \exists x (R(y,x))))$. Gebe eine Formel ψ_1 in Pränexform an, die äquivalent zu φ ist und eine Formel ψ_2 in Skolemform, die erfüllbarkeitsäquivalent zu φ ist.

Antwort:

- $\forall x(\exists y(R(x,y) \land \neg \exists x(R(y,x))))$
- $\forall x(\exists x_2 \exists y(R(x,y) \land \neg R(y,x_2)))$
- $\forall x(\exists x_2 \exists y(R(x,y) \land \neg R(y,x_2)))$
- $\forall x \exists x_2 \exists y (R(x, y \land \neg R(y, x_2)))$ (Pränexform)
- $\forall x (R(x,y) \land \neg R(g(x),h(x)))[x_2 := h(x)][y := g(x)]$
- $\forall x (R(x,y) \land \neg R(g(x),h(x)))$ (Skolemform)
- (b) Sei \sum eine Signatur mit zweistelligem Relationssymbol R, zweistelligem Funktionssymbol f, einstelligem Funktionssymbol g und Konstanten a, b. Ermittle mit dem Unifikationsalgorithmus, ob die atomare Formel unifizierbar ist und gebe einen allgemeinsten Unifikator an, falls dieser existiert.

$$(R(x, f(y, g(a))), R(a, f(g(x), y)))$$

Antwort:		
$arphi_1\sigma$	$\varphi_2\sigma$	σ
R(x, f(y, g(a)))	R(a, f(g(x), y))	id
R(a, f(y, g(a)))	R(a, f(g(x), y))	id[x := a]
R(a, f(g(x), g(a)))	R(a, f(g(x), g(x)))	id[x := a][y := g(x)]
Terminiert nicht unif	izierbar	

(c) Sei \sum eine Signatur mit zweistelligem Relationssymbol R, zweistelligem Funktionssymbol f, einstelligem Funktionssymbol g und Konstanten a, b. Ermittle mit dem Unifikationsalgorithmus, ob die atomare Formel unifizierbar ist und gebe einen allgemeinsten Unifikator an, falls dieser existiert.

Antwort:		
$arphi_1\sigma$	$arphi_2\sigma$	σ
R(f(g,x),y)	R(f(y,z),z))	id
R(f(y,x),y)	R(f(y,z),z))	id[y := y]
Terminiert nicht	t unifizierbar	

- 9. Gegeben sei folgende Wissensbasis:
 - über(rot, orange).
 - über(orange, gelb).
 - über(gelb, grün).
 - über(grün, blau).
 - über(blau, violett).
 - top(X): $"uber(_, X)$, !, fail.
 - $top(\underline{\ })$.
 - $oben(X):=\ddot{u}ber(X,), top(X).$

Wie antwortet ein Prolog System mit dieser Wissensbasis auf die folgenden Fragen:

(a) ?-top(grün).

Antwort: {gelb}, true

(b) ?-top(X).

Antwort: {rot, orange, gelb, grün, blau }, false

(c) ?-top(rot).

Antwort: {}, false

(d) ?-oben(grün).

Antwort: false

(e) ?-oben(X).

Antwort: {rot}, true

(f) ?-oben(rot).

Antwort: true

- 10. Man implementiere folgende Prädikate in Form von Prolog Klauseln
 - (a) Das Prädikat parition(L, E, Kl, Gr) soll eine gegebene Liste ganzer Zahlen L in zwei Teillisten partitionieren.
 - ullet die Liste Kl aller Elemente aus L, welche kleiner oder gleich E sind und
 - \bullet die Liste Gr aller Elemente aus L, welche größer als E sind

Beispiel: ?-parition([1,2,3,4,5,6], 3, Kl, Gr).

- Kl = [1, 2, 3]
- Gr = [4, 5, 6]

Antwort:

```
% delete Funktion
\begin{array}{lll} \texttt{delete}(\_, & [\ ], & [\ ])\,. \\ \texttt{delete}(X, & [X|Xs]\,, & Xs)\,. \end{array}
delete(X, [Y|Ys], [Y|Zs]) :-
    delete(X, Ys, Zs).
% append Funktion
append ([ ], Xs, Xs).
\mathrm{append}\left(\left[X\middle|Xs\right],\ Ys\,,\ \left[X\middle|Zs\right]\right)\ :-
    append(Xs, Ys, Zs).
% partition Funktion
partition ([ ], E, Kl, Gr).
partition ([K|R], E, Kl, Gr):-
   K<E,
    \begin{array}{ll} \operatorname{append}\left(K,\ Kl\,,\ Kl\,\right),\\ \operatorname{partition}\left(R,\ E,\ Kl\,,\ Gr\,\right). \end{array}
partition ([K|R], E, Kl, Gr):-
   K > E,
    append(K, Gr, Gr),
    partition (R, E, Kl, Gr).
```

(b) Das Prädikat merge(L1, L2, L) soll zwei sortierte Listen mit ganzen Zahlen L1 und L2 zu einer sortierten Liste L verschmelzen.

(c) Das Prädikat listmerge(ListenListe, L) bekommt eine Liste sortierter Listen ListenListe und soll sie zu einer sortierten Liste L verschmelzen. Das in Aufgabe b) definierte Prädikat merge kann dabei verwendet werden.

```
Antwort:

| listmerge([], L). |
| listmerge([K|R], L):- |
| merge(K, L, L2), |
| listmerge(R, L2).
```

(d) Das Prädikat $am_groesten(L, Max)$ soll das größte Element Max einer Zahlenliste L ermitteln. Falls L leer ist, soll "nein" geantwortet werden.

```
Antwort:

am_groesten([], Max):-
    fail.

am_groesten([K|R], Max):-
    K>Max,
    am_groesten(R, K).

am_groesten([K|R], Max):-
    K=<Max,
    am_groesten(R, Max).
```

- (e) Das Prädikat $am_kuerzesten(ListenListe, L)$ soll aus einer Liste von ListenListe die kürzeste Liste L ermitteln. Dies soll möglichst effizient geschehen:
 - Gestalte die Prozedur rechtsrekursiv
 - Sehe davon ab, Listenlängen explizit zu ermitteln. Ermittle diese mit einem Hilfsprädikat kuerzer_als(L1, L2)
 - Höre mit der Suche auf, sobald eine leere Liste gefunden wurde. Kürzer geht nicht

Falls ListenListe leer ist, soll "nein" geantwortet werden.

```
 \begin{array}{l} \textbf{Antwort:} \\ & \text{am\_kuerzesten} \left( \left[ \right] \;,\;\; L \right). \\ & \text{am\_kuerzesten} \left( \left[ K,R \right] \;,\;\; L \right) :- \\ & \text{kuerzer\_als} \left( K,L \right) \;, \\ & \text{am\_kuerzesten} \left( R,\;\; K \right). \\ & \text{am\_kuerzesten} \left( \left[ K,R \right] \;,\;\; L \right) :- \\ & \text{! kuerzer\_als} \left( K,L \right) \;, \\ & \text{am\_kuerzesten} \left( R,\;\; L \right). \\ \end{array}
```

- 11. Ein binärer Suchbaum mit natürlichen Zahlen in den Knoten sei in Prolog wie folgt als strukturierter Term repräsentiert:
 - leerer Baum: nil
 - nichtlerer Baum: baum(Wurzel, LinkerUnterbaum, RechterUnterbaum)

Beispiel Baum mit Wurzel 6, Wurzel 4 im linken Unterbaum, Wurzel 7 im rechten Unterbaum und 2,4 und 9 als Blätter: baum(6, baum(4, baum(2, nil, nil), baum(5, nil, nil)), baum(7, nil, baum(0, nil, nil))). Man implementiere folgende Prädikate in Prolog

(a) Das Prädikat enthalten(Baum, Zahl) bekommt einen binären Suchbaum Baum sowie eine Zahl Zahl und soll entscheiden, ob diese Zahl in Baum enthalten ist und die Antwort "ja" oder "nein" liefern.

```
baum(nil).
baum(Wurzel, Links, Rechts):-
baum(Links),
baum(Rechts).

ist_knoten(X, baum(X, Links, Rechts)).
ist_knoten(X, baum(Y, Links, Rechts)):-
ist_knoten(X, Links).
ist_knoten(X, Links).
ist_knoten(X, baum(Y, Links, Rechts)):-
ist_knoten(X, Rechts).
enhalten(baum(X, Links, Rechts), X).
enhalten(baum(Y, Links, Rechts), X):-
```

```
\begin{array}{c} \text{enthalten}\,(\,\text{Links}\;,\;\;X)\,.\\ \text{enthalten}\,(\,\text{baum}\,(\,Y,\;\;\text{Links}\;,\;\;\text{Rechts}\,)\;,\;\;X)\!:-\\ \text{enthalten}\,(\,\text{Rechts}\;,\;\;X)\,. \end{array}
```

(b) Das Prädikat flatten(Baum, Liste) soll aus einem gegebenen Suchbaum Baum die Liste Liste aller der im Baum enthaltenen Zahlen in aufsteigender sortierter Reihenfolge liefern.