
Advanced Operating Systems

Funktionale und nichtfunktionale Eigenschaften
• Anforderungen (Requirements): Funktionale und nichtfunktionale

Eigenschaften (eines Produkts, z.B. Softwaresystems) entstehen
durch Erfüllung von funktionalen und nichtfunktionalen
Anforderungen

• funktionale Eigenschaft: was ein Produkt tun soll
• nichtfunktionale Eigenschaft (NFE): wie ein Produkt dies tun soll
• andere Bezeichnungen nichtfunktionaler Eigenschaften

– Qualitäten bzw. Qualitätsattribute (eines
Software-Produkts)

– Non-functional requirements/properties
– Constraints
– Quality of service(QoS) requirements

• im Englischen: nichtfunktionale Eigenschaften eines Systems etc.
informell auch als seine ,,ilities” bezeichnet

• im Deutschen: (,,itäten”, ,,barkeiten”, ... möglich)

Hardwarebasis
• Einst: Einprozessor-Systeme
• Heute: Mehrprozessor-/hochparallele Systeme
• neue Synchronisationsmechanismen erforderlich
• → unterschiedliche Hardware und deren Multiplexing aufgrund

unterschiedlicher nichtfunktionaler Eigenschaften

Betriebssystemarchitektur
• Einst: Monolithische und Makrokernel-Architekturen
• Heute: Mikrokernel(-basierte) Architekturen
• Exokernelbasierte Architekturen ( Library-Betriebssysteme )
• Virtualisierungsarchitekturen
• Multikernel-Architekturen
• → unterschiedliche Architekturen aufgrund unterschiedlicher

nichtfunktionaler Eigenschaften

Ressourcenverwaltung
• Einst: Batch-Betriebssysteme, Stapelverarbeitung von Jobs

(FIFO)
• Heute: Echtzeitgarantien für Multimedia und Safety-kritische

Anwendungen
• echtzeitfähige Scheduler, Hauptspeicherverwaltung,

Ereignismanagement, Umgang mit Überlast und Prioritätsumkehr
...

• → unterschiedliche Ressourcenverwaltung aufgrund
unterschiedlicher nichtfunktionaler Eigenschaften

Betriebssystemabstraktionen
• zusätzliche Abstraktionen und deren Verwaltung zur ...

– Reservierung von Ressourcen ( → eingebettete Systeme)
– Realisierung von QoS-Anforderungen ( →

Multimediasysteme)
– Erhöhung der Ausfallsicherheit ( → verfügbarkeitskritische

Systeme)
– Schutz vor Angriffen und Missbrauch ( →

sicherheitskritische Systeme)
– flexiblen und modularen Anpassen des Betriebssystems ( →

hochadaptive Systeme)

• → höchst diverse Abstraktionen von Hardware aufgrund
unterschiedlicher nichtfunktionaler Eigenschaften

Betriebssysteme als Softwareprodukte
• Betriebssystem:

– eine endliche Menge von Quellcode
– ein komplexes Softwareprodukt

• Anforderungen an Nutzung und Pflege → Evolutionseigenschaften
• können für Betriebssysteme höchst speziell sein

(Korrektheitsverifikation, Wartung, Erweiterung, ...)

• → spezielle Anforderungen an das Softwareprodukt
Betriebssystem aufgrund unterschiedlicher nichtfunktionaler
Eigenschaften

NFE von Betriebssystemen
Funktionale Eigenschaften (= Funktionen, Aufgaben) ...

• Betriebssysteme: sehr komplexe Softwareprodukte
• Ein Grund hierfür: besitzen Reihe von differenzierten Aufgaben -

also funktionale Eigenschaften

Grundlegende funktionale Eigenschaften von Betriebssystemen:

1. Hardware-Abstraktion (Anwendungen/Programmierern eine
angenehme Ablaufumgebung auf Basis der Hardware
bereitstellen)

2. Hardware-Multiplexing (gemeinsame Ablaufumgebung zeitlich
oder logisch getrennt einzelnen Anwendungen zuteilen)

3. Hardware-Schutz (gemeinsame Ablaufumgebung gegen Fehler
und Manipulation durch Anwendungen schützen)

Nichtfunktionale Eigenschaften (Auswahl) von Betriebssystemen:

• Laufzeiteigenschaften

– Sparsamkeit und Effizienz
– Robustheit
– Verfügbarkeit
– Sicherheit (Security)
– Echtzeitfähigkeit
– Adaptivität
– Performanz

• Evolutionseigenschaften

– Wartbarkeit
– Portierbarkeit
– Offenheit
– Erweiterbarkeit

Klassifizierung: Nichtfunktionale Eigenschaften unterteilbar in:

1. Laufzeiteigenschaften (execution qualities)

• zur Laufzeit eines Systems beobachtbar
• Beispiele: ,,security” (Sicherheit), ,,usability”

(Benutzbarkeit), ,,performance” (Performanz), ...

2. Evolutionseigenschaften (evolution qualities)

• charakterisieren (Weiter-) Entwicklung- und Betrieb eines
Systems

• Beispiele: ,,testability” (Testbarkeit), ,,extensibility”
(Erweiterbarkeit) usw.

3. liegen in statischer Struktur eines Softwaresystems begründet

Inhalte der Vorlesung
Auswahl sehr häufiger NFE von Betriebssystemen:

• Sparsamkeit und Effizienz
• Robustheit
• Verfügbarkeit
• Sicherheit (Security)
• Echtzeitfähigkeit
• Adaptivität
• Performanz

Diskussion jeder Eigenschaft

• Motivation, Anwendungsgebiete, Begriffsdefinition
• Mechanismen und Abstraktionen des Betriebssystems
• unterstützende Betriebssystem-Architekturkonzepte
• ein typisches Beispiel-Betriebssystem

Sparsamkeit und Effizienz
Motivation
Sparsamkeit (Arbeitsdefinition): Die Eigenschaft eines Systems, seine
Funktion mit minimalem Ressourcenverbrauchauszuüben.
Hintergrund: sparsamer Umgang mit einem oder mehreren
Ressourcentypen = präziser: Effizienz bei Nutzung dieser Ressourcen
Effizienz: Der Grad, zu welchem ein System oder eine seiner
Komponenten seine Funktion mit minimalem Ressourcenverbrauch
ausübt. (IEEE)
Entwurfsentscheidungen für BS:

1. Wie muss bestimmter Ressourcentyp verwaltet werden, um
Einsparungen zu erzielen?

2. Welche Erweiterungen/Modifikationen des Betriebssystems (z.B.
neue Funktionen, Komponenten, ...) sind hierfür notwendig?

Konkretisierung: Ressource, welche sparsam verwendet wird.
Beispiele:

• mobile Geräte: Sparsamkeit mit Energie
• kleine Geräte, eingebettete Systeme:

– Sparsamkeit mit weiteren Ressourcen, z.B. Speicherplatz
– Betriebssystem (Kernel + User Space): geringer

Speicherbedarf
– optimale Speicherverwaltung durch Betriebssystem zur

Laufzeit

• Hardwareoptimierungen im Sinne der Sparsamkeit:

– Baugrößenoptimierung(Platinen-und Peripheriegerätegröße)
– Kostenoptimierung(kleine Caches, keine MMU, ...)
– massiv reduzierte HW-Schnittstellen (E/A-Geräte,

Peripherie, Netzwerk)

Mobile und eingebettete Systeme (eine kleine Auswahl)

• mobile Rechner-Endgeräte

– Smartphone, Smartwatch
– Laptop-/Tablet-PC

• Weltraumfahrt und -erkundung
• Automobile

– Steuerung von Motor-und Bremssystemen
– Fahrsicherheit
– Insasseninformation (und -unterhaltung)
– (teil-) autonomes Fahren

• verteilte Sensornetze (WSN)
• Chipkarten
• Multimedia-und Unterhaltungselektronik

– eBookReader
– Spielkonsolen
– Digitalkameras

Beispiel: Weltraumerkundung

• Cassini-Huygens (1997-2017)

– Radionuklidbatterien statt Solarzellen
– Massenspeicher: SSDs statt Magnetbänder

• Rosetta (2004-2016)

– 31 Monate im Energiesparmodus

• Opportunity (2003-2019)

– geplante Missionsdauer: 90 d
– Missionsdauer insgesamt: >> 5000 d

• Hayabusa (2003-2010)

– Beschädigung der Energieversorgung
– Energiesparmodus: um 3 Jahre verzögerte Rückkehr

• Voyager 1 (1977 bis heute)

– erste Flugphase: periodisch 20 Monate Standby, 20 Stunden
Messungen

– liefert seit 40 Jahren Daten
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Energieeffizienz
Hardwaremaßnahmen

• zeitweiliges Abschalten/Herunterschalten momentan nicht
benötigter Ressourcen, wie

1. Laufwerke: CD/DVD, ..., Festplatte
2. Hauptspeicherelemente
3. (integrierte/externe) Peripherie: Monitor, E/A-Geräte, ...

Betriebssystemmechanismen

1. Dateisystem-E/A:energieeffizientes Festplatten-Prefetching(2.2.1)
2. CPU-Scheduling: energieeffizientes Scheduling(2.2.2)
3. Speicherverwaltung:minimale Leistungsaufnahme

durchSpeicherzugriffe mittels Lokalitätsoptimierung [DGMB07]
4. Netzwerk:energiebewusstes Routing
5. Verteiltes Rechnen auf Multicore-Prozessoren:

temperaturabhängige Lastverteilung
6. ...

Energieeffiziente Dateizugriffe
Hardwarebedingungen: Magnetplatten (HDD), Netzwerkgeräte,
DRAM-ICs,... sparen nur bei relativ langen Inaktivitätsintervallen
Energie.

• Aufgabe: Erzeugen kurzer, intensiver Zugriffsmuster → lange
Inaktivitätsintervalle (für alle Geräte mit geringem
Energieverbrauch im Ruhezustand)

• Beobachtung bei HDD-Geräten: i.A. vier Zustände mit
absteigendem Energieverbrauch:

1. Aktiv: einziger Arbeitszustand
2. Idle (Leerlauf): Platte rotiert, aber Plattenelektronik

teilweise abgeschaltet
3. Standby: Rotation abgeschaltet
4. Sleep: gesamte restliche Elektronik abgeschaltet

• ähnliche, noch stärker differenzierte Zustände bei DRAM (vgl.
[DGMB07] )

Energiezustände beim Betrieb von Festplatten:

•
• Schlussfolgerung: durch geringe Verlängerungen des idle -

Intervalls kann signifikant der Energieverbrauch reduziert werden.

Prefetching-Mechanismus

• Prefetching (,,Speichervorgriff”, vorausschauendes Lesen) &
Caching

– Standard-Praxis bei moderner Datei-E/A
– Voraussetzung: Vorwissen über benötigte Folge von

zukünftigen Datenblockreferenzen (z.B. Blockadressen für
bestimmte Dateien, gewonnen durch Aufzeichnung früherer
Zugriffsmuster beim Start von Anwendungen -Linux:
readahead syscall)

– Ziel: Performanzverbesserungdurch Durchsatzerhöhung u.
Latenzzeit-Verringerung

– Idee: Vorziehen möglichst vieler E/A-Anforderungen an
Festplatte + zeitlich gleichmäßige Verteilung der
verbleibenden

– Umsetzung: Caching (Zwischenspeichern) dieser
vorausschauend gelesenen Blöcke in ungenutzten
Hauptspeicherseitenrahmen ( pagecache )

• Folge: Inaktivitätsintervalle überwiegend sehr kurz →
Energieeffizienz ...?

• Zugriffsoperation: (durch Anwendung)

– access(x) ... greife (lesend/schreibend) auf den Inhalt von
Festplattenblock x im Page Cache zu

• Festplattenoperationen:

– fetch(x) ... hole Block x nach einem access(x) von Festplatte
– prefetch(x) ... hole Block x ohne access(x) von Festplatte
– beide Operationen schreiben x in einen freien Platz des

Festplattencaches; falls dieser voll ist ersetzen sie einen der
Einträge gemäß fester Regeln → Teil der (Pre-)
Fetching-Strategie

• Beispiel für solche Strategien: Anwendung ...

– mit Datenblock-Referenzstrom A, B, C, D, E, F, G, ...
– mit konstanter Zugriffsdauer: 10 Zeiteinheiten je

Blockzugriff
– Cache-Kapazität: 3 Datenblöcke
– Zeit zum Holen eines Blocks bei Cache-Miss: 1 Zeiteinheit

• Beispiel: Traditionelles Prefetching

– Fetch-on-demand-Strategie (kein vorausschauendes Lesen)
– Strategie entsprechend Prefetching- Regeln nach Cao et al.

[CFKL95] (= traditionelle Disk-Prefetching- Strategie)
– traditionelle Prefetching-Strategie: bestimmt

∗ wann ein Datenblock von der Platte zu holen ist
(HW-Zustand aktiv )

∗ welcher Block zu holen ist
∗ welcher Block zu ersetzen ist

– Regeln für diese Strategie:

1. Optimales Prefetching: Jedes prefetch sollte den
nächsten Block im Referenzstrom in den Cache
bringen, der noch nicht dort ist.

2. Optimales Ersetzen: Bei jedem ersetzenden prefetch
sollte der Block überschrieben werden, der am
spätesten in der Zukunft wieder benötigt wird.

3. ,,Richte keinen Schaden an”: Überschreibe niemals
Block A um Block B zu holen, wenn A vor B benötigt
wird.

4. Erste Möglichkeit: Führe nie ein ersetzendes prefetch
aus, wenn dieses schon vorher hätte ausgeführt
werden können.

• Energieeffizientes Prefetching

– Optimale Ersetzungsstrategie und 3 unterschiedliche
Prefetching-Strategien:

– Fetch-on-demand-Strategie:

∗ Laufzeit: 66 ZE für access(A) ... access(F) , 7
Cache-Misses

∗ Disk-Idle-Zeit: 6 Intervalle zu je 10 ZE

– Strategie entsprechend Prefetching-Regeln [CFKL95]
(traditionelle Disk-Prefetching-Strategie):

∗ Laufzeit: 61 ZE für access(A) ... access(F) , 1
Cache-Miss

∗ Disk-Idle-Zeit: 5 Intervalle zu je 9 ZE und 1 Intervall
zu 8 ZE (= 53 ZE)

– Energieeffiziente Prefetching-Strategie, die versucht Länge
der Disk-Idle-Intervalle zu maximieren:

∗ gleiche Laufzeit und gleiche Anzahl Cache-Misses wie
traditionelles Prefetching

∗ Disk-Idle-Zeit: 2 Intervalle zu 27 bzw. 28 ZE (= 55
ZE)

• Auswertung: Regeln für energieeffiziente Prefetching-Strategie
nach Papathanasiou elal.: [PaSc04]

1. Optimales Prefetching: Jedes prefetch sollte den nächsten
Block im Referenzstrom in den Cache bringen, der noch
nicht dort ist.

2. Optimales Ersetzen: Bei jedem ersetzenden prefetch sollte
der Block überschrieben werden, der am spätesten in der
Zukunft wieder benötigt wird.

3. ,,Richte keinen Schaden an”: Überschreibe niemals Block A
um Block B zu holen, wenn A vor B benötigt wird.

4. Maximiere Zugriffsfolgen: Führe immer dann nach einem
fetch oder prefetch ein weiteres prefetch aus, wenn Blöcke
für eine Ersetzung geeignet sind. (i.S.v. Regel 3)

5. Beachte Idle-Zeiten: Unterbrich nur dann eine
Inaktivitätsperiode durch ein prefetch , falls dieses sofort
ausgeführt werden muss, um einen Cache-Miss zu
vermeiden.

Allgemeine Schlussfolgerungen

1. Hardware-Spezifikation nutzen: Modi, in denen wenig Energie
verbraucht wird

2. Entwicklung von Strategien, die langen Aufenthalt in
energiesparenden Modi ermöglichen , und dabei
Leistungsparameter in vertretbarem Umfang reduzieren

3. Implementieren dieser Strategien in Betriebssystemmechanismen
zur Ressourcenverwaltung

Energieeffizientes Prozessormanagement

Hardware-Gegebenheiten

• z.Zt. meistgenutzte Halbleitertechnologie für Prozessor-Hardware:
CMOS ( Complementary Metal Oxide Semiconductor)

• Komponenten für Energieverbrauch: $P = P {switching} +
P {leakage} + ...$

– $P {switching}$: für Schaltvorgänge notwendige Leistung
– $P {leakage}$: Verlustleistung durch verschiedene

Leckströme
– ...: weitere Einflussgrößen (technologiespezifisch)

Hardwareseitige Maßnahmen Schaltleistung:
$P {switching}$

• Energiebedarf kapazitiver Lade-u. Entladevorgänge während des
Schaltens

• für momentane CMOS-Technologie i.A. dominanter Anteil am
Energieverbrauch

• Einsparpotenzial: Verringerung von

1. Versorgungsspannung (quadratische Abhängigkeit!)
2. Taktfrequenz

• Folgen:

1. längere Schaltvorgänge
2. größere Latenzzwischen Schaltvorgängen

• Konsequenz: Energieeinsparung nur mit Qualitätseinbußen(direkt
o. indirekt) möglich

– Anpassung des Lastprofils ( Zeit-Last-Kurve? Fristen
kritisch? )

– Beeinträchtigung der Nutzererfahrung( Reaktivität
kritisch? Nutzungsprofil? )

Verlustleistung: $P {leakage}$

• Energiebedarf baulich bedingter Leckströme
• Fortschreitende Hardware-Miniaturisierung → zunehmender

Anteil von $P {leakage}$ an P
• Beispielhafte Größenordnungen zum Einsparpotenzial: |

Schaltkreismaße | Versorgungsspannung | $P {leakage}/P$ | |
--------------- | ------------------- | --------------- | | 180 nm | 2,5 V | 0, |
| 70 nm | 0,7 V | 0, | | 22 nm | 0,4 V | > 0,5 |

• Konsequenz: Leckströme kritisch für energiesparenden
Hardwareentwurf
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Regelspielraum: Nutzererfahrung

• Nutzererwartung: wichtigstes Kriterium zur (subjektiven)
Bewertung von auf einem Rechner aktiven Anwendungen durch
Nutzer → Nutzerwartung bestimmt Nutzererfahrung

• Typ einer Anwendung

– entscheidet über jeweilige Nutzererwartung

1. Hintergrundanwendung (z.B. Compiler); von
Interesse: Gesamt-Bearbeitungsdauer, Durchsatz

2. Echtzeitanwendung(z.B. Video-Player, MP3-Player);
von Interesse: ,,flüssiges” Abspielen von Video oder
Musik

3. Interaktive Anwendung (z.B. Webbrowser); von
Interesse: Reaktivität, d.h. keine (wahrnehmbare)
Verzögerung zwischen Nutzer-Aktion und
Rechner-Reaktion

– Insbesondere kritisch: Echtzeitanwendungen, interaktive
Anwendungen

Reaktivität

• Reaktion von Anwendungen

– abhängig von sog. Reaktivität des Rechnersystems ≈
durchschnittliche Zeitdauer, mit der Reaktion eines
Rechners auf eine (Benutzerinter-) Aktion erfolgt

• Reaktivität: von Reihe von Faktoren abhängig, z.B.:

1. von Hardware an sich
2. von Energieversorgung der Hardware (wichtig z.B.

Spannungspegel an verschiedenen Stellen)
3. von Software-Gegebenheiten (z.B. Prozess-Scheduling,

Speichermanagement, Magnetplatten-E/A-Scheduling,
Vorgänge im Fenstersystem, Arten des Ressourcen-Sharing
usw.)

Zwischenfazit: Nutzererfahrung

• bietet Regelspielraum für Hardwareparameter ( → Schaltleistung)
→ Versorgungsspannung, Taktfrequenz

• Betriebssystemmechanismen zum energieeffizienten
Prozessormanagement müssen mit Nutzererfahrung(jeweils
erforderlicher Reaktivität) ausbalanciert werden (wie solche
Mechanismen wirken: 2.2.3)

• Schnittstelle zu anderen NFE:

– Echtzeitfähigkeit
– Performanz
– Usability
– ...

Energieeffizientes Scheduling

• so weit besprochen: Beschränkung des durchschnittlichen
Energieverbrauchs eines Prozessors

• offene Frage zum Ressourcenmultiplexing: Energieverbrauch eines
Threads/Prozesses?

• Scheduling-Probleme beim Energiesparen:

1. Fairness (der Energieverteilung)?
2. Prioritätsumkehr?

• Beispiel: Round Robin (RR) mit Prioritäten (Hoch, Mittel,
Niedrig)

• Problem 1: Unfaire Energieverteilung

– Beschränkung des Energieverbrauchs (durch
Qualitätseinbußen, schlimmstenfalls Ausfall)ab einem
oberen Schwellwert $E {max}$

– Problem: energieintensive Threads behindern alle
nachfolgenden Threads trotz gleicher Priorität →
Fairnessmaß von RR (gleiche Zeitscheibenlänge T )
untergraben

–
– Problem 2: energieintensive Threads niedrigerer Priorität

behindern später ankommende Threads höherer Priorität

Energiebewusstes RR: Fairness

• Begriffe:

– $E iˆ{budget}$ ... Energiebudget von $t i$
– $E iˆ{limit}$ ... Energielimit von $t i$
– $P {limit}$ ... Leistungslimit: maximale

Leistungsaufnahme [Energie/Zeit]
– $T$ ... resultierende Zeitscheibenlänge

• Strategie 1: faire Energieverteilung (einheitliche Energielimits)

– $1\leq i\leq 4: E iˆ{limit} = P {limit}* T$
– (Abweichungen = Wichtung der Prozesse → bedingte

Fairness)

Energiebewusstes RR: Reaktivität

• faire bzw. gewichtete Aufteilung begrenzter Energie optimiert
Energieeffizienz

• Problem: lange, wenig energieintensive Threads verzögern
Antwort-und Wartezeiten kurzer, energieintensiver Threads

– Lösung im Einzelfall: Wichtung per $E iˆ{limit}$
– globale Reaktivität ( → Nutzererfahrung bei interaktiven

Systemen) ...?

• Strategie 2: maximale Reaktivität ( → klassisches RR)

Energiebewusstes RR: Reaktivität und Fairness

• Problem: sparsame Threads werden bestraft durch Verfallen des
ungenutzten Energiebudgets

• Idee: Ansparen von Energiebudgets → mehrfache Ausführung
eines Threads innerhalb einer Scheduling-Periode

• Strategie 3: Reaktivität, dann faire Energieverteilung

Implementierungsfragen

• Scheduling-Zeitpunkte?

– welche Accounting-Operationen (Buchführung über
Budget)?

– wann Accounting-Operationen?
– wann Verdrängung?

• Datenstrukturen?

– ... im Scheduler → Warteschlange(n)?
– ... im Prozessdeskriptor?

• Kosten ggü. klassischem RR? (durch Prioritäten...?)
• Pro:

– Optimierung der Energieverteilung nach
anwendungsspezifischen Schedulingzielen( → Strategien)

– Berücksichtigung von prozessspezifischen
Energieverbrauchsmustern möglich:fördert Skalierbarkeit
i.S.v. Lastadaptivität, indirekt auch Usability ( →
Nutzererfahrung)

• Kontra:

– zusätzliche sekundäre Kosten: Energiebedarf des
Schedulers, Energiebedarf zusätzlicher Kontextwechsel,
Implementierungskosten (Rechenzeit, Speicher)

– Voraussetzung hardwareseitig: Monitoring des
Energieverbrauchs (erforderliche/realisierbare
Granularität...? sonst: Extrapolation?)

• generelle Alternative: energieintensive Prozesse verlangsamen
→ Regelung der CPU-Leistungsparameter (Versorgungsspannung)
(auch komplementär zum Schedulingals Maßnahme nach

Energielimit-Überschreitung)

• Beispiel: Synergie nichtfunktionaler Eigenschaften

– Performanz nur möglich durch Parallelität →
Multicore-Hardware

– Multicore-Hardware nur möglich mit Lastausgleich und
Lastverteilungauf mehrere CPUs

– dies erfordert ebenfalls Verteilungsstrategien:
,,Energy-aware Scheduling” (Linux-Strategie zur
Prozessorallokation -nicht zeitlichem Multiplexing!)

Systemglobale Energieeinsparungsmaßnahmen
• Traditionelle Betriebssysteme: Entwurf so, dass zu jedem

Zeitpunkt Spitzen-Performanzangestrebt
• Beobachtungen:

– viele Anwendungen benötigen keine Spitzen-Performanz
– viele Hardware-Komponenten verbringen Zeit in

Leerlaufsituationen bzw. in Situationen, wo keine
Spitzen-Performanz erforderlich

• Konsequenz (besonders für mobile Systeme) :

– Hardware mit Niedrigenergiezuständen(Prozessoren und
Magnetplattenlaufwerke, aber auch DRAM,
Netzwerkschnittstellen, Displays, ...)

– somit kann Betriebssystem Energie-Management
realisieren

Hardwaretechnologien

• DPM: Dynamic Power Management

– versetzt leerlaufende/unbenutzte Hardware-Komponenten
selektiv in Zustände mit niedrigem Energieverbrauch

– Zustandsübergänge durch Power-Manager (in Hardware)
gesteuert, dem bestimmte DPM- Strategie (Firmware)
zugrunde liegt, um gutes Verhältnis zwischen
Performanz/Reaktivität und Energieeinsparung zu erzielen

• DVS: Dynamic Voltage Scaling

– effizientes Verfahren zur dynamischen Regulierungvon
Taktfrequenz gemeinsammit Versorgungsspannung

– Nutzung quadratischer Abhängigkeitder dynamischen
Leistung von Versorgungsspannung

– Steuerung/Strategien: Softwareunterstützungnotwendig!

Dynamisches Energiemanagement (DPM)- Strategien (Klassen)
bestimmt, wann und wie lange eine Hardware-Komponente sich in
Energiesparmodusbefinden sollte

• Greedy: Hardware-Komponente sofort nach Erreichen des
Leerlaufs in Energiesparmodus, ,,Aufwecken” durch neue
Anforderung

• Time-out: Energiesparmodus erst nachdem ein definiertes
Intervall im Leerlauf, ,,Aufwecken” wie bei Greedy-Strategien

• Vorhersage: Energiesparmodus sofort nach Erreichen des
Leerlaufs, wenn Heuristik vorhersagt,dass Kosten gerechtfertigt

• Stochastisch: Energiesparmodus auf Grundlage eines
stochastischen Modells

Spannungsskalierung (DVS)

• Ziel: Unterstützung von DPM-Strategien durch Maßnahmen auf
Ebene von Compiler, Betriebssystem und Applikationen:

– Compiler

∗ kann Informationen zur Betriebssystem-Unterstützung
bezüglich Spannungs-Einstellung in
Anwendungs-Code einstreuen,

∗ damit zur Laufzeit Informationen über jeweilige
Arbeitslast verfügbar

• Betriebssystem (prädiktives Energiemanagement)
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– kann Benutzung verschiedener Ressourcen (Prozessor usw.)
beobachten

– kann darüber Vorhersagen tätigen
– kann notwendigen Performanzbereich bestimmen

• Anwendungen

– können Informationen über jeweils für sie notwendige
Performanz liefern

• → Kombination mit energieefizientemScheduling!

Speichereffizienz
• ... heißt: Auslastung des verfügbaren Speichers

– oft implizit: Hauptspeicherauslastung (memoryfootprint)
– besonders für kleine/mobile Systeme:

Hintergrundspeicherauslastung

• Maße zur Konkretisierung:

– zeitliche Dimension: Maximum vs. Summe genutzten
Speichers?

– physischer Speicherverwaltung? → Belegungsanteil pAR
– virtuelle Speicherverwaltung? → Belegungsanteil vAR

• Konsequenzen für Ressourcenverwaltung durch BS:

– Taskverwaltung (Accounting, Multiplexing, Fairness, ...)
– Programmiermodell, API (besonders: dynamische

Speicherreservierung)
– Sinnfrage und ggf. Strategien virtueller Speicherverwaltung

(VMM)

• Konsequenzen für Betriebssystem selbst:

– minimaler Speicherbedarfdurch Kernel
– minimale Speicherverwaltungskosten (durch obige

Aufgaben)

Hauptspeicherauslastung
•

Problem: externe Fragmentierung

•
• Lösungen:

– First Fit, Best Fit, WorstFit, Buddy
– Relokation

• Kompromissloser Weg: kein Multitasking!

Problem: interne Fragmentierung

•
• Lösung:

– Seitenrahmengröße verringern
– Tradeoff: dichter belegte vAR → größere Datenstrukturen

für Seitentabellen!

• direkter Einfluss des Betriebssystems auf Hauptspeicherbelegung:

– → Speicherbedarf des Kernels
– statische(Minimal-) Größe des Kernels (Anweisungen +

Daten)
– dynamischeSpeicherreservierung durch Kernel
– bei Makrokernel: Speicherbedarf von Gerätecontrollern

(Treibern)!

weitere Einflussfaktoren: Speicherverwaltungskosten

• VMM: Seitentabellengröße → Mehrstufigkeit
• Metainformationen über laufende Programme: Größe von

Taskkontrollblöcken( Prozess-/Threaddeskriptoren ...)
• dynamische Speicherreservierung durch Tasks

Beispiel 1: sparsam Prozesskontrollblock (PCB,
Metadatenstruktur des Prozessdeskriptors) eines kleinen
Echtzeit-Kernels (,,DICK”):

Beispiel 2: eher nicht sparsam Linux Prozesskontrollblock
(taskstruct):

Hintergrundspeicherauslastung
Einflussfaktoren des Betriebssystems:

• statische Größe des Kernel-Images, welches beim Bootstrapping
gelesen wird

• statische Größe von Programm-Images (Standards wie ELF)
• statisches vs. dynamisches Einbinden von Bibliotheken: Größe

von Programmdateien
• VMM: Größe des Auslagerungsbereichs (inkl. Teilen der

Seitentabelle!) für Anwendungen
• Modularisierung (zur Kompilierzeit) des Kernels: gezielte

Anpassung an Einsatzdomäne möglich
• Adaptivität (zur Kompilier-und Laufzeit) des Kernels: gezielte

Anpassung an sich ändernde Umgebungsbedingungen möglich (
→ Cassini-Huygens-Mission)

Architekturentscheidungen
• bisher betrachtete Mechanismen: allgemein für alle BS gültig
• ... typische Einsatzgebiete sparsamer BS: eingebettete Systeme
• eingebettetes System: (nach [Manl94] )

– Computersystem, das in ein größeres technisches System,
welches nicht zur Datenverarbeitung dient,physisch
eingebunden ist.

– Wesentlicher Bestandteil dieses größeren Systems
hinsichtlich seiner Entwicklung, technischer Ausstattung
sowie seines Betriebs.

– Liefert Ausgaben in Form von
(menschenlesbaren)Informationen,
(maschinenlesbaren)Daten zur Weiterverarbeitung und
Steuersignalen.

• BS für eingebettete Systeme: spezielle, anwendungsspezifische
Ausprägung der Aufgaben eines ,,klassischen” Universal-BS

– reduzierter Umfang von HW-Abstraktion, generell:
hardwarenähere Ablaufumgebung

– begrenzte (extrem: gar keine) Notwendigkeit von
HW-Multiplexing & -Schutz

• daher eng verwandte NFE: Adaptivitätvon sparsamen BS
• sparsame Betriebssysteme:

– energieeffizient ˜ geringe Architekturanforderungen an
energieintensive Hardware (besonders CPU, MMU,
Netzwerk)

– speichereffizient ˜ Auskommen mit kleinen Datenstrukturen
(memory footprint)

• Konsequenz: geringe logische Komplexität des
Betriebssystemkerns

• sekundär: Adaptivität des Betriebssystemkerns

Makrokernel (monolithischer Kernel)
• User Space:

– Anwendungstasks
– CPU im unprivilegiertenModus (Unix ,,Ringe” 1...3)
– Isolation von Tasks durch Programmiermodell(z.B.

Namespaces) oder VMM(private vAR)

• Kernel Space:

– Kernelund Gerätecontroller (Treiber)
– CPU im privilegierten Modus (Unix ,,Ring” 0)
– keine Isolation (VMM: Kernel wird in alle vAR

eingeblendet)

Mikrokernel
• User Space:

– Anwendungstasks, Kernel-und Treiber tasks (
Serverprozesse, grau)

– CPU im unprivilegiertenModus
– Isolation von Tasks durch VMM

• Kernel Space:

– funktional minimaler Kernel(µKernel)
– CPU im privilegierten Modus
– keine Isolation (Kernel wird in alle vAR eingeblendet)

Architekturkonzepte im Vergleich
• Makrokernel:

– 3vglw. geringe Kosten von Kernelcode (Energie, Speicher)
– 3VMM nicht zwingend erforderlich
– 3Multitasking ( → Prozessmanagement!)nicht zwingend

erforderlich
– 7Kernel (inkl. Treibern) jederzeit im Speicher
– 7Robustheit, Sicherheit, Adaptivität

• Mikrokernel:

– 3Robustheit, Sicherheit, Adaptivität
– 3Kernelspeicherbedarf gering, Serverprozesse nur wenn

benötigt ( → Adaptivität)
– 7hohe IPC-Kosten von Serverprozessen
– 7Kontextwechselkosten von Serverprozessen
– 7VMM, Multitasking i.d.R. erforderlich

Beispiel-Betriebssysteme
TinyOS

• Beispiel für sparsame BS im Bereich eingebetteter Systeme
• verbreitete Anwendung: verteilte Sensornetze (WSN)
• ,,TinyOS” ist ein quelloffenes, BSD-lizenziertes Betriebssystem
• das für drahtlose Geräte mit geringem Stromverbrauch, wie sie in

– Sensornetzwerke, ( → Smart Dust)
– Allgegenwärtiges Computing,
– Personal Area Networks,
– intelligente Gebäude,
– und intelligente Zähler.

• Architektur:

– grundsätzlich: monolithisch (Makrokernel) mit
Besonderheiten:

– keine klare Trennung zwischen der Implementierung von
Anwendungen und BS (wohl aber von deren funktionalen
Aufgaben!)

– → zur Laufzeit: 1 Anwendung + Kernel

• Mechanismen:

– kein Multithreading, keine echte Parallelität
– → keine Synchronisation zwischen Tasks
– → keine Kontextwechsel bei Taskwechsel
– Multitasking realisiert durch Programmiermodell
– nicht-präemptives FIFO-Scheduling
– kein Paging → keine Seitentabellen, keine MMU

• in Zahlen:

– Kernelgröße: 400 Byte
– Kernelimagegröße: 1 - 4 kByte
– Anwendungsgröße: typisch ca. 15 kB,

Datenbankanwendung: 64 kB

• Programmiermodell:

– BS und Anwendung werden als Ganzes übersetzt: statische
Optimierungen durch Compilermöglich (Laufzeit,
Speicherbedarf)

– Nebenläufigkeit durch ereignisbasierte Kommunikation zw.
Anwendung und Kernel
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∗ → command: API-Aufruf, z.B. EA-Operation (vglb.
Systemaufruf)

∗ → event: Reaktion auf diesen durch Anwendung
– sowohl commands als auch events : asynchron

Beispieldeklaration:

RIOT
[RIOT-Homepage: http://www.riot-os.org]

• ebenfalls sparsames BS,optimiert für anspruchsvollere
Anwendungen (breiteres Spektrum)

• ,,RIOT ist ein Open-Source-Mikrokernel-basiertes Betriebssystem,
das speziell für die Anforderungen von Internet-of-Things-Geräten
(IoT) und anderen eingebetteten Geräten entwickelt wurde.”

– Smartdevices,
– intelligentes Zuhause, intelligente Zähler,
– eingebettete Unterhaltungssysteme
– persönliche Gesundheitsgeräte,
– intelligentes Fahren,
– Geräte zur Verfolgung und Überwachung der Logistik.

• Architektur:

– halbwegs: Mikrokernel
– energiesparendeKernelfunktionalität:

∗ minimale Algorithmenkomplexität
∗ vereinfachtes Threadkonzept → keine

Kontextsicherung erforderlich
∗ keine dynamische Speicherallokation
∗ energiesparende Hardwarezustände vom Scheduler

ausgelöst (inaktive CPU)

– Mikrokerneldesign unterstützt komplementäre NFE:
Adaptivität, Erweiterbarkeit

– Kosten: IPC (hier gering!)

• Mechanismen:

– Multithreading-Programmiermodell
– modulare Implementierung von Dateisystemen, Scheduler,

Netzwerkstack

• in Zahlen:

– Kernelgröße: 1,5 kByte
– Kernelimagegröße: 5 kByte

Implementierung

• ... kann sich jeder mal ansehen (keine spezielle Hardware,
beliebige Linux-Distribution, FreeBSD, macOSX mit git ):

• startet interaktive Instanz von RIOT als ein Prozess des Host-BS
• Verzeichnis RIOT: Quellenzur Kompilierung des Kernels,

mitgelieferte Bibliotheken, Gerätetreiber, Beispielanwendungen;
z.B.:

– RIOT/core/include/thread.h: Threadmodell,
Threaddeskriptor

– RIOT/core/include/sched.h,
– RIOT/core/sched.c: Implementierung des (einfachen)

Schedulers

• weitere Infos: riot-os.org/api

Robustheit und Verfügbarkeit
Motivation

• allgemein: verlässlichkeitskritischeAnwendungsszenarien
• Forschung in garstiger Umwelt
• Weltraumerkundung
• hochsicherheitskritische Systeme:

– Rechenzentren von Finanzdienstleistern
– Rechenzentren von Cloud-Dienstleistern

• hochverfügbare System:

– all das bereits genannte
– öffentliche Infrastruktur(Strom, Fernwärme, ...)

• HPC (high performancecomputing)

Allgemeine Begriffe
• Verlässlichkeit, Zuverlässigkeit (dependability)
• übergeordnete Eigenschaft eines Systems [ALRL04]
• Fähigkeit, eine Leistungzu erbringen, der man berechtigterweise

vertrauen kann
• Taxonomie: umfasst entsprechend Definition die

Untereigenschaften

1. Verfügbarkeit (availability)
2. Robustheit (robustness, reliability
3. (Funktions-) Sicherheit (safety)
4. Vertraulichkeit (confidentiality)
5. Integrität (integrity)
6. Wartbarkeit (maintainability) (vgl.: evolutionäre

Eigenschaften)

• 1., 4. & 5. auch Untereigenschaften von IT-Sicherheit (security)
• → nicht für alle Anwendungen sind alle Untereigenschaften

erforderlich

Robustheitsbegriff
• Teil der primären Untereigenschaften von Verlässlichkeit:

Robustheit (robustness, reliability)
• Ausfall: beobachtbare Verminderung der Leistung, die ein System

tatsächlich erbringt, gegenüber seiner als korrekt spezifizierten
Leistung

• Robustheit: Verlässlichkeit unter Anwesenheit externer Ausfälle
(= Ausfälle, deren Ursache außerhalb des betrachteten Systems
liegt)

• im Folgenden: kurze Systematik der Ausfälle ...

Fehler und Ausfälle ...
• Fehler → fehlerhafter Zustand → Ausfall
• grundlegende Definitionen dieser Begriffe (ausführlich: [ALRL04,

AvLR04] ):

– Ausfall (failure): liegt vor, wenn tatsächliche Leistung(en),
die ein System erbringt, von als korrekt spezifizierter
Leistung abweichen

– fehlerhafter Zustand ( error ): notwendige Ursacheeines
Ausfalls (nicht jeder error muss zu failure führen)

– Fehler ( fault ): Ursache für fehlerhaften Systemzustand (
error ), z.B. Programmierfehler

•

... und ihre Vermeidung
• Umgang mit ...

– faults:
∗ Korrektheit testen
∗ Korrektheit beweisen( → formale Verifikation)

– errors:
∗ Maskierung, Redundanz
∗ Isolationvon Subsystemen
∗ → Isolationsmechanismen

– failures:
∗ Ausfallverhalten (neben korrektem Verhalten)

spezifizieren
∗ Ausfälle zur Laufzeit erkennen und Folgen beheben,

abschwächen...
∗ → Micro-Reboots

Fehlerhafter Zustand
• interner und externer Zustand (internal & external state)

– externer Zustand (einer Systems oder Subsystems): der Teil
des Gesamtzustands, der an externer Schnittstelle (also für
das umgebende (Sub-) System) sichtbar wird

– interner Zustand: restlicher Teilzustand
– (tatsächlich) erbrachte Leistung: zeitliche Folge externer

Zustände

• Beispiele für das System ( Betriebssystem-) Kernel :

– Subsysteme: Dateisystem, Scheduler, E/A, IPC, ...,
Gerätetreiber

– fault : Programmierfehler im Gerätetreiber
– externer Zustand des Treibers (oder des Dateisystems,

Schedulers, E/A, IPC, ...) ⊆ interner Zustand des Kernels

Fehlerausbreitung und (externer) Ausfall

• Wirkungskette: -[X] Treiber-Programmierfehler (fault) -[X]
fehlerhafter interner Zustand des Treibers (error)

– Ausbreitung dieses Fehlers ( failure des Treibers)
– = fehlerhafter externer Zustand des Treibers
– = fehlerhafter interner Zustand des Kernels( error )
– = Kernelausfall!( failure )

� Auswirkung: fehlerhafter interner Zustand eines weiteren
Kernel-Subsystems (z.B. error des Dateisystems)

• → Robustheit: Isolationsmechanismen•

Isolationsmechanismen
• im Folgenden: Isolationsmechanismen für robuste Betriebssysteme

– durch strukturierte Programmierung
– durch Adressraumisolation

• es gibt noch mehr: Isolationsmechanismen für sichere
Betriebssysteme

– all die obigen...
– durch kryptografische Hardwareunterstützung: Enclaves
– durch streng typisierte Sprachen und managed code
– durch isolierte Laufzeitumgebungen: Virtualisierung

Strukturierte Programmierung
Monolithisches BS... in historischer Reinform:

• Anwendungen
• Kernel
• gesamte BS-Funktionalität
• programmiert als Sammlung von Prozeduren
• jede darf jede davon aufrufen
• keine Modularisierung
• keine definierten internen Schnittstellen

Monolithisches Prinzip

• Ziel: Isolation zwischen Anwendungen und Betriebssystem
• Mechanismus: Prozessor-Privilegierungsebenen ( user space und

kernel space )
• Konsequenz für Strukturierung des Kernels: Es gibt keine

Strukturierung des Kernels ...
• ... jedenfalls fast: Ablauf eines Systemaufrufs (Erinnerung)

Strukturierte Makrokernarchitektur

• Resultat: schwach strukturierter (monolithischer) Makrokernel
• – nach [TaWo05], S. 45
• Weiterentwicklung:
• Schichtendifferenzierung ( layered operating system )
• Modularisierung (Bsp.: Linux-Kernel) | Kernelcode | |

------------------------- | | VFS | | IPC, Dateisystem | | Scheduler,
VMM | | Dispatcher, Gerätetreiber |

• Modularer Makrokernel:
• alle Kernelfunktionen in Moduleunterteilt (z.B. verschiedene

Dateisystemtypen) → Erweiterbarkeit, Wartbarkeit,
Portierbarkeit

• klar definierte Modulschnittstellen(z.B. virtualfilesystem, VFS )
• Module zur Kernellaufzeit dynamisch einbindbar ( →

Adaptivität)
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Fehlerausbreitung beim Makrokernel

• strukturierte Programmierung:
• 3Wartbarkeit
• 3Portierbarkeit
• 3Erweiterbarkeit
• O (begrenzt) Adaptivität
• O (begrenzt) Schutz gegen statische Programmierfehler: nur

durch Compiler (z.B. C private, public)
• 7kein Schutz gegen dynamische Fehler
• → Robustheit...?
• nächstes Ziel: Schutz gegen Laufzeitfehler... →

Laufzeitmechanismen

Adressraumisolation
• zur Erinnerung: private virtuelle Adressräume zweier Tasks

($i\not= j$)
• private virtuelle vs. physischer Adresse

Private virtuelle Adressräume und
Fehlerausbreitung

• korrekte private vAR ˜ kollisionsfreie Seitenabbildung!
• Magie in Hardware: MMU (BS steuert und verwaltet...)
• Robustheit: Was haben wir von privaten vAR?

– 3nichtvertrauenswürdiger (i.S.v. potenziell nicht korrekter)
Code kann keine beliebigen physischen Adressen schreiben
(er erreicht sie ja nicht mal...)

– 3Kommunikation zwischen nvw. Code (z.B.
Anwendungstasks) muss durch IPC-Mechanismen explizit
hergestellt werden (u.U. auch shared memory)

∗ → Überwachung und Validierung zur Laufzeit möglich

– 3Kontrollfluss begrenzen: Funktionsaufrufe können i.A.
(Ausnahme: RPC) keine AR-Grenzen überschreiten

∗ → BS-Zugriffssteuerungkann nicht durch Taskfehler
ausgehebelt werden

∗ → unabsichtliche Terminierungsfehler(unendliche
Rekursion) erschwert ...

Was das für den Kernel bedeutet

• private virtuelle Adressräume

– gibt es schon so lange wie VMM
– gab es lange nur auf Anwendungsebene
– → keine Isolation zwischen Fehlern innerhalb des Kernels!

• nächstes Ziel: Schutz gegen Kernelfehler (Gerätetreiber)... →
BS-Architektur

Mikrokernelarchitektur
• Fortschritt ggü. Makrokernel:

– Strukturierungskonzept:

∗ strenger durchgesetzt durch konsequente Isolation
voneinander unabhängiger Kernel-Subsysteme

∗ zur Laufzeit durchgesetzt → Reaktion auf fehlerhafte
Zustände möglich!

– zusätzlich zu vertikaler Strukturierung des Kernels:
horizontale Strukturierungeingeführt

∗ → funktionale Einheiten: vertikal (Schichten)
∗ → isolierteEinheiten: horizontal (private vAR)

• Idee:

– Kernel (alle BS-Funktionalität) → µKernel (minimale
BS-Funktionalität)

– Rest (insbes. Treiber): ,,gewöhnliche” Anwendungsprozesse
mit Adressraumisolation

– Kommunikation: botschaftenbasierteIPC (auch client-server
operating system )

– Nomenklatur: Mikrokernelund Serverprozesse

Modularer Makrokernel vs. Mikrokernel
•
• minimale Kernelfunktionalität:
• keine Dienste, nur allgemeine Schnittstellenfür diese
• keine Strategien, nur grundlegende Mechanismenzur

Ressourcenverwaltung
• neues Problem: minimales Mikrokerneldesign
• ,,Wir haben 100 Leute gefragt...”: Wie entscheide ich das?
• – Ablauf eines Systemaufrufs

– schwarz: unprivilegierteInstruktionen
– blau:privilegierte Instruktionen
– rot:Übergang zwischen beidem (µKern → Kontextwechsel!)

Robustheit von Mikrokernen

• = Gewinn durch Adressraumisolation innerhalb des Kernels

– 3kein nichtvertrauenswürdiger Code im kernelspace , der
dort beliebige physische Adressen manipulieren kann

– 3Kommunikation zwischen nvw. Code (nicht zur zwischen
Anwendungstasks)muss durch IPC explizit hergestellt

werden → Überwachung und Validierung zur Laufzeit
– 3Kontrollfluss begrenzen: Zugriffssteuerung auch zwischen

Serverprozessen, zur Laufzeit unabhängiges
Teilmanagement von Code (Kernelcode) möglich (z.B.:
Nichtterminierung erkennen)

• Neu:

– 3nvw. BS-Code muss nicht mehr im kernelspace (höchste
Prozessorprivilegierung) laufen

– 3verbleibender Kernel (dessen Korrektheit wir annehmen):
klein, funktional weniger komplex, leichter zu entwickeln,
zu testen, evtl. formal zu verifizieren

– 3daneben: Adaptivitätdurch konsequentere
Modularisierung des Kernels gesteigert

Mach
• Mikrokernel-Design: Erster Versuch

– Carnegie Mellon University (CMU), School of Computer
Science 1985 - 1994

• ein wenig Historie

– UNIX (Bell Labs) - K. Thompson, D. Ritchie
– BSD (U Berkeley) - W. Joy
– System V - W. Joy
– Mach (CMU) - R. Rashid
– MINIX - A. Tanenbaum
– NeXTSTEP (NeXT) - S. Jobs
– Linux - L. Torvalds
– GNU Hurd (FSF) - R. Stallman
– Mac OS X (Apple) - S. Jobs

Mach: Ziele Entstehung

• Grundlage:

– 1975: Aleph(BS des ,,Rochester Intelligent Gateway”), U
Rochester

– 1979/81: Accent (verteiltes BS), CMU

• gefördert durch militärische Geldgeber:

– DARPA: Defense AdvancedResearch Projects Agency
– SCI: Strategic Computing Initiative

Ziele

• Mach 3.0 (Richard Rashid, 1989): einer der ersten praktisch
nutzbaren µKerne

• Ziel: API-Emulation( 6= Virtualisierung!)von UNIX und -Derivaten
auf unterschiedlichen Prozessorarchitekturen

• mehrere unterschiedliche Emulatoren gleichzeitig lauffähig

– Emulation außerhalb des Kernels
– jeder Emulator:

∗ Komponente im Adressraum des
Applikationsprogramms

∗ 1...n Server, die unabhängig von
Applikationsprogramm laufen

Mach-Server zur Emulation

•
• Emulation von UNIX-Systemen mittels Mach-Serverprozessen

µKernel-Funktionen

1. Prozessverwaltung
2. Speicherverwaltung
3. IPC-und E/A-Dienste, einschließlich Gerätetreiber

unterstützte Abstraktionen ( → API, Systemaufrufe):

1. Prozesse
2. Threads
3. Speicherobjekte
4. Ports (generisches, ortstransparentes Adressierungskonzept; vgl.

UNIX ,,everything is a file”)
5. Botschaften
6. ... (sekundäre, von den obigen genutzte Abstraktionen)

Architektur

•
• Systemaufrufkosten:

– IPC-Benchmark (1995): i486 Prozessor, 50 MHz
– Messung mit verschiedenen Botschaftenlängen( x - Werte)
– ohne Nutzdaten (0 Byte Botschaftenlänge): 115 µs

(Tendenz unfreundlich ...)

• Bewertung aus heutiger Sicht:

– funktional komplex
– 153 Systemaufrufe
– mehrere Schnittstellen, parallele Implementierungen für

eine Funktion
– → Adaptivität (Auswahl durch Programmierer)

• Fazit:

– zukunftsweisender Ansatz
– langsame und ineffiziente Implementierung

Lessons Learned

• erster Versuch:
• Idee des Mikrokernelsbekannt
• Umsetzung: Designkriterienweitgehend unbekannt
• Folgen für Performanz und Programmierkomfort: [Heis19]
• 7,,complex”
• 7,,inflexible”
• 7,,slow”
• wir wissen etwas über Kosten: IPC-Performanz,

Kernelabstraktionen
• wir wissen noch nichts über guten µKern-Funktionsumfangund

gute Schnittstellen...
• → nächstes Ziel!
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L4
• Made in Germany:

– Jochen Liedtke (GMD, ,,Gesellschaft für Mathematik und
Datenverarbeitung”), Betriebssystemgruppe (u.a.): J.
Liedtke, H. Härtig, W. E. Kühnhauser

– Symposium on Operating Systems Principles 1995 (SOSP
’95): ,,On µ-Kernel Construction” [Lied95]

• Analyse des Mach-Kernels:

1. falsche Abstraktionen
2. unperformanteKernelimplementierung
3. prozessorunabhängige Implementierung

– Letzteres: effizienzschädliche Eigenschaft eines
Mikrokernels

– Neuimplementierung eines (konzeptionell sauberen!)
µ-Kerns kaum teurer als Portierung auf andere
Prozessorarchitektur

L3 und L4

• Mikrokerne der 2. Generation
• zunächst L3, insbesondere Nachfolger L4: erste Mikrokerne der 2.

Generation
• vollständige Überarbeitung des Mikrokernkonzepts: wesentliche

Probleme der 1. Generation (z.B. Mach) vermieden
• Bsp.: durchschnittliche Performanz von User-Mode IPC in L3

ggü. Mach: Faktor 22 zugunsten L3

– heute: verschiedene Weiterentwicklungen von L4
(bezeichnet heute Familie ähnlicher Mikrokerne)

Mikrokernel-Designprinzipien

• Was gehört in einen Mikrokern?

– Liedtke: Unterscheidung zwischen Konzepten und deren
Implementierung

– bestimmende Anforderungen an beide:

∗ Konzeptsicht → Funktionalität,
∗ Implementierungssicht → Performanz

– → 1. µKernel-Generation: Konzept durch
Performanzentscheidungen aufgeweicht

– → Effekt in der Praxis genau gegenteilig: schlechte (IPC-)
Performanz!

,,The determining criterion used is functionality, not
performance. More precisely, a concept is tolerated inside
the µ-kernel only if moving it outside the kernel, i.e.
permitting competing implementations, would prevent the
implementation of the systems‘s required functionality .”
[Jochen Liedtke]

Designprinzipien für Mikrokernel-Konzept:

• → Annahmen hinsichtlich der funktionalen Anforderungen:

1. System interaktive und nicht vollständig vertrauenswürdige
Applikationen unterstützen ( → HW-Schutz, -Multiplexing),

2. Hardware mit virtueller Speicherverwaltung und Paging

Designprinzipien:

1. Autonomie: ,,Ein Subsystem (Server)muss so implementiert
werden können, dass es von keinem anderen Subsystem gestört
oder korrumpiert werden kann.”

2. Integrität: ,,Subsystem (Server) $S 1$ muss sich auf Garantien
von $S 2$ verlassen können. D.h. beide Subsysteme müssen
miteinander kommunizieren können, ohne dass ein drittes
Subsystem diese Kommunikation stören, fälschen oder abhören
kann.”

L4: Speicherabstraktion

• Adressraum: Abbildung, die jede virtuelle Seite auf einen
physischen Seitenrahmen abbildet oder als ,,nicht zugreifbar”
markiert

• Implementierung über Seitentabellen, unterstützt durch
MMU-Hardware

• Aufgabe des Mikrokernels (als gemeinsame obligatorische Schicht
aller Subsysteme): muss Hardware-Konzept des Adressraums
verbergen und durch eigenes Adressraum-Konzept überlagern
(sonst Implementierung von VMM-Mechanismen durch Server
unmöglich)

• Mikrokernel-Konzept des Adressraums:

– muss Implementierung von beliebigen virtuellen
Speicherverwaltungs-und -schutzkonzepten oberhalb des
Mikrokernels (d.h. in den Subsystemen) erlauben

– sollte einfach und dem Hardware-Konzept ähnlich sein

• Idee: abstrakte Speicherverwaltung

– rekursive Konstruktion und Verwaltung der Adressräume
auf Benutzer-(Server-)Ebene

– Mikrokernel stellt dafür genau drei Operationen bereit:

1. grant(x) - Server $S$ überträgt Seite $x$ seines AR in
AR von Empfänger $S‘$

2. map(x) - Server $S$ bildet Seite $x$ seines AR in AR
von Empfänger $S‘$ ab

3. flush(x) - Server $S$ entfernt (flusht) Seite x seines
AR aus allen fremden AR

Hierarchische Adressräume

• Rekursive Konstruktion der Adressraumhierarchie

– Server und Anwendungenkönnen damit ihren Klienten
Seiten des eigenen Adressraumes zur Verfügung stellen

– Realspeicher: Ur-Adressraum, vom µKernel verwaltet
– Speicherverwaltung(en), Paging usw.: vollständig außerhalb

des µ-Kernels realisiert

L4: Threadabstraktion

• Thread

– innerhalb eines Adressraumesablaufende Aktivität
– → Adressraumzuordnung ist essenziell für Threadkonzept

(Code + Daten)

∗ Bindung an Adressraum: dynamisch oder fest
∗ Änderung einer dynamischen Zuordnung: darf nur

unter vertrauenswürdiger Kontrolle erfolgen (sonst:
fremde Adressräume les- und korrumpierbar)

• Designentscheidung

– → Autonomieprinzip
– → Konsequenz: Adressraumisolation
– → entscheidender Grund zur Realisierung des

Thread-Konzepts innerhalb des Mikrokernels

IPC

• Interprozess-Kommunikation

– Kommunikation über Adressraumgrenzen:
vertrauenswürdig kontrollierte Aufhebung der Isolation

– → essenziell für (sinnvolles) Multitasking und -threading

• Designentscheidung

– → Integritätsprinzip
– → wir haben schon: vertrauenswürdige

Adressraumisolation im µKernel
– → grundlegendes IPC-Konzepts innerhalb des Mikrokernels

(flexibel und dynamisch durch Server erweiterbar, analog
Adressraumhierarchie)

Identifikatoren

• Thread-und Ressourcenbezeichner

– müssen vertrauenswürdig vergeben (authentisch und i.A.
persistent) und verwaltet(eindeutig und korrekt
referenzierbar)werden

– → essenziell für (sinnvolles) Multitasking und -threading
– → essenziell für vertrauenswürdige Kernel-und

Server-Schnittstellen

• Designentscheidung

– → Integritätsprinzip
– → ID-Konzept innerhalb des Mikrokernels (wiederum:

durch Server erweiterbar)

Lessons Learned

1. Ein minimaler Mikrokernel

• soll Minimalmenge an geeigneten Abstraktionenzur
Verfügung stellen:

• flexibel genug, um Implementierung beliebiger
Betriebssysteme zu ermöglichen

• Nutzung umfangreicher Mengeverschiedener
Hardware-Plattformen

2. Geeignete, funktional minimale Mechanismen im µKern:

• Adressraum mit map-, flush-, grant-Operation
• Threadsinklusive IPC
• eindeutige Identifikatoren

3. Wahl der geeigneten Abstraktionen:

• kritischfür Verifizierbarkeit ( → Robustheit), Adaptivität
und optimierte Performanz des Mikrokerns

4. Bisherigen µ-Kernel-Abstraktionskonzepte:

1. ungeeignete
2. zu viele
3. zu spezialisierte u. inflexible Abstraktionen

5. Konsequenzen für Mikrokernel-Implementierung

• müssen für jeden Prozessortyp neu implementiert werden
• sind deshalb prinzipiell nicht portierbar → L3-und

L4-Prototypen by J. Liedtke: 99% Assemblercode

6. innerhalb eines Mikrokernels sind

1. grundlegende Implementierungsentscheidungen
2. meiste Algorithmen u. Datenstrukturen

• von Prozessorhardware abhängig

• Fazit:

– Mikrokernelmit akzeptabler Performanz:
hardwarespezifische Implementierung minimalerforderlicher,
vom Prozessortyp unabhängiger Abstraktionen

Heutige Bedeutung

• nach Tod von J. Liedtke (2001) auf Basis von L4 zahlreiche
moderne BS

• L4 heute: Spezifikation eines Mikrokernels (nicht
Implementierung)

•
• Einige Weiterentwicklungen:
• TU Dresden (Hermann Härtig): Neuimplementierung in C++

(L4/Fiasco), Basis des Echtzeit-Betriebssystems DROPS, der
VirtualisierungsplattformNOVA (genauer: Hypervisor) und des
adaptiven BS-Kernels Fiasco.OC

• University ofNew South Wales (UNSW), Australien (Gernot
Heiser):

– Implementierung von L4 auf verschiedenen 64 -
Bit-Plattformen, bekannt als L4/MIPS, L4/Alpha

– Implementierung in C (Wartbarkeit, Performanz)
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– Mit L4Ka::Pistachio bisher schnellste Implementierung von
botschaftenbasierterIPC (2005: 36 Zyklen auf
Itanium-Architektur)

– seit 2009: seL4, erster formal verifizierter BS-Kernel (d.h.
mathematisch bewiesen, dass Implementierung funktional
korrekt ist und nachweislich keinen Entwurfsfehler enthält)

Zwischenfazit

• Begrenzung von Fehlerausbreitung ( → Folgen von errors ):
• konsequent modularisierte Architektur aus Subsystemen
• Isolationsmechanismen zwischen Subsystemen
• Konsequenzen für BS-Kernel:
• statische Isolation auf Quellcodeebene → strukturierte

Programmierung
• dynamische Isolation zur Laufzeit → private virtuelle

Adressräume
• Architektur, welche diese Mechanismen komponiert: Mikrokernel
• Was haben wir gewonnen?
• 3Adressraumisolation für sämtlichen nichtvertrauenswürdigen

Code
• 3keine privilegierten Instruktionen in nvw. Code (Serverprozesse)
• 3geringe Größe (potenziell: Verifizierbarkeit) des Kernels
• 3neben Robustheit: Modularitätund Adaptivitätdes Kernels
• Und was noch nicht?

– 7Behandlung von Ausfällen ( → abstürzende Gerätetreiber
...)

3.5 Micro-Reboots
• Beobachtungen am Ausfallverhalten von BS:
• Kernelfehler sind (potenziell) fatal für gesamtes System
• Anwendungsfehler sind es nicht
• → kleiner Kernel = geringeres Risiko von Systemausfällen
• → durch BS-Code in Serverprozessen: verbleibendes Risiko

unabhängiger Teilausfälle von BS-Funktionalität (z.B. FS,
Treiberprozesse, GUI, ...)

• Ergänzung zu Isolationsmechanismen:
• Mechanismen zur Behandlung von Subsystem-Ausfällen
• = Mechanismen zur Behandlung Anwendungs-, Server- und

Gerätetreiberfehlen
• → Micro-Reboots

Ansatz

• wir haben:
• kleinen, ergo vertrauenswürdigen (als fehlerfrei

angenommenen)µKernel
• BS-Funktionalität in bedingt vertrauenswürdigen Serverprozessen

(kontrollierbare, aber wesentlich größere Codebasis)
• Gerätetreiber und Anwendungen in nicht vertrauenswürdigen

Prozessen (nicht kontrollierbare Codebasis)
• wir wollen:
• Systemausfälle verhindern durch Vermeidung von errors im

Kernel → höchste Priorität
• Treiber-und Serverausfälle minimieren durch Verbergen ihrer

Auswirkungen → nachgeordnete Priorität (Best-Effort-Prinzip)
• Idee:

– Systemausfälle → µKernel
– Treiber-und Serverausfälle → Neustart durch spezialisierten

Serverprozess

Beispiel: Ethernet-Treiberausfall

•
• schwarz: ausfallfreie Kommunikation
• rot: Ausfall und Behandlung
• blau: Wiederherstellung nach Ausfall

Beispiel: Dateisystem-Serverausfall

•
• schwarz: ausfallfreie Kommunikation
• rot: Ausfall und Behandlung
• blau: Wiederherstellung nach Ausfall

Beispiel-Betriebssystem: MINIX
• Ziele:
• robustes Betriebssystems
• → Schutz gegen Sichtbarwerden von Fehlern(= Ausfälle) für

Nutzer
• Fokus auf Anwendungsdomänen: Endanwender-Einzelplatzrechner

(Desktop, Laptop, Smart*) und eingebettete Systeme
• Anliegen: Robustheit > Verständlichkeit > geringer HW-Bedarf
• aktuelle Version: MINIX 3.3.0

Architektur

• Kommunikationsschnittstellen ...

– ... für Anwendungen (weiß): Systemaufrufe im
POSIX-Standard

– ... für Serverprozesse (grau):

∗ untereinander: IPC (botschaftenbasiert)
∗ mit Kernel: spezielle MINIX-API (kernel calls), für

Anwendungsprozesse gesperrt

• Betriebssystem-Serverprozesse:
•
• Dateisystem (FS)
• Prozessmanagement (PM)
• Netzwerkmanagement (Net)
• Reincarnation Server (RS) → Micro-Reboots jeglicher

Serverprozesse
• (u. a.) ...
• Kernelprozesse:
• systemtask
• clocktask

Reincarnation Server

• Implementierungstechnik für Micro-Reboots:
• Prozesse zum Systemstart ( → Kernel Image): system, clock, init,

rs

– system, clock: Kernelprogramm
– init: Bootstrapping (Initialisierung von rs und anderer

BS-Serverprozesse), Fork der Login-Shell (und damit
sämtlicher Anwendungsprozesse)

– rs: Fork sämtlicher BS-Serverprozesse, einschließlich
Gerätetreiber

•

MINIX: Ausprobieren

• ausführliche Dokumentation
• vorkompiliertes Kernel-Image zum Installieren (VirtualBox,

VMWare, ...)

Verfügbarkeit
• komplementäre NFE zu Robustheit: Verfügbarkeit ( availability )

– Zur Erinnerung: Untereigenschaften von Verlässlichkeit

1. Verfügbarkeit (availability)
2. Robustheit (robustness, reliability)

• Beziehung:

– Verbesserung von Robustheit → Verbesserung von
Verfügbarkeit

– Robustheitsmaßnahmen hinreichend , nicht notwendig
(hochverfügbare Systeme können sehr wohl von Ausfällen
betroffen sein...)

• eine weitere komplementäre NFE:

– Robustheit → Sicherheit (security)

Allgemeine Definition: Der Grad, zu welchem ein System oder eine
Komponente funktionsfähig und zugänglich (erreichbar) ist,wann immer
seine Nutzung erforderlichist. (IEEE)
genauer quantifiziert:

• Der Anteil an Laufzeit eines Systems, in dem dieses seine
spezifizierte Leistung erbringt.

•
• Availability= Total Uptime/ Total Lifetime= MTTF / (MTTF +

MTTR)

– MTTR: Mean Time to Recovery ... Erwartungswert für
TTR

– MTTF: Mean Time to Failure ... Erwartungswert für TTF

• einige Verfügbarkeitsklassen: | Verfügbarkeit | Ausfallzeit pro
Jahr | Ausfallzeit pro Woche | | ------------- | -------------------- |
--------------------- | | 90% | > 1 Monat | ca. 17 Stunden | | 99% | ca.
4 Tage | ca. 2 Stunden | | 99,9% | ca. 9 Stunden | ca. 10 Minuten |
| 99,99% | ca. 1 Stunde | ca. 1 Minute | | 99,999% | ca. 5 Minuten
| ca. 6 Sekunden | | 99,9999% | ca. 2 Sekunden | << 1 Sekunde |

• Hochverfügbarkeitsbereich (gefeierte ,,five nines” availability)
• Maßnahmen:
• Robustheitsmaßnahmen
• Redundanz
• Ausfallmanagement

QNX Neutrino: Hochverfügbares Echtzeit-BS

Überblick QNX:

• Mikrokern-Betriebssystem
• primäres Einsatzfeld: eingebettete Systeme, z.B. Automobilbau
• Mikrokernarchitektur mit Adressraumisolation für Gerätetreiber
• (begrenzt) dynamische Micro-Rebootsmöglich
• → Maximierung der Uptime des Gesamtsystems

Hochverfügbarkeitsmechanismen:

1. ,,High-Avalability-Manager”: Laufzeit-Monitor, der Systemdienste
oder Anwendungsprozesse überwacht und neustartet →
µReboot-Server

2. ,,High-Availability-Client-Libraries”: Funktionen zur
transparenten automatischen Reboot für ausgefallene
Server-Verbindungen

Sicherheit
Motivation
Medienberichte zu IT-Sicherheitsvorfällen:

• 27.-28.11.2016: Ausfälle von über 900.000 Kundenanschlüssen der
Deutschen Telekom

– Bundesamt für Sicherheit in der Informationstechnik (BSI):
weltweiter Angriff auf ausgewählte Fernverwaltungsports
von DSL-Routern, um angegriffene Geräte mit
Schadsoftware zu infizieren

– Angreiferziel: Missbrauch der Hardware für eigentliche
Angriffe (Botnet)

• 15.05.-06.06.2019: Ransomware-Angriff zur Erpressung der Heise
Verlagsgruppe

– Infektion eines Rechners im lokalen Netz durch Malware in
eMail-Anhang (Trojaner)

– Täuschung des Nutzers: Schadcode mit
Administratorrechten ausgeführt (Spezialfall von Malware:
Root Kit)

– Malwareziel: Verschlüsselungvon Nutzerdaten
– Angreiferziel: Erspressungvon Lösegeld für Entschlüsselung

Was sichere Betriebssysteme erreichen können ... und was nicht: youtube
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Terminologie
Achtung zwei unterschiedliche ,,Sicherheiten”

1. Security (IT-Sicherheit, Informationssicherheit)

• Ziel: Schutz des Rechnersystems
• hier besprochen
• Systemsicherheit

2. Safety (Funktionale Sicherheit, Betriebssicherheit)

• Ziel: Schutz vor einem Rechnersystem
• an dieser Stelle nicht besprochen

Eine (unvollständige) Taxonomie:

•

Sicherheitsziele
Allgemeines Ziel von IT-Sicherheit i.S.v. Security ... ein Rechnersystem
sicher zu machen gegen Schäden durch zielgerichtete Angriffe,
insbesondere in Bezug auf die Informationen, die in solchen Systemen
gespeichert, verarbeitet und übertragen werden. (Programme sind somit
ebenfalls als Informationen zu verstehen.)
Cave! Insbesondere für Sicherheitsziele gilt: Daten $\not=$
Informationen
Sicherheitsziele: sukzessive Konkretisierungen dieser Allgemeinformel
hinsichtlich anwendungsspezifischer Anforderungen

Abstrakte Ziele:
1. Vertraulichkeit (Confidentiality)
2. Integrität (Integrity)
3. Verfügbarkeit (Availability)
4. Authentizität (Authenticity)
5. Verbindlichkeit = Nichtabstreitbarkeit (Non-repudiability)

Abstrakte Ziele dienen zur Ableitung konkreter Sicherheitsziele. Wir
definieren sie als Eigenschaften von gespeicherten oder übertragenen
Informationen ...

• Vertraulichkeit: ... nur für einen autorisierten Nutzerkreis
zugänglich (i.S.v. interpretierbar) zu sein.

• Integrität: ... vor nicht autorisierter Veränderung geschützt zu
sein.

• Verfügbarkeit: ... autorisierten Nutzern in angemessener Frist
zugänglich zu sein.

• Authentizität: ... ihren Urheber eindeutig erkennen zu können.
• Verbindlichkeit: ... sowohl integer als auch authentisch zu sein.

Schadenspotenzial
1. Vandalismus, Terrorismus

• reine Zerstörungswut

2. Systemmissbrauch

• illegitime Ressourcennutzung, Ziel i.d.R.: hocheffektive
Folgeangriffe

• Manipulationvon Inhalten ( → Desinformation)

3. (Wirtschafts-) Spionage und Diebstahl

• Verlust der Kontrolle über kritisches Wissen ( →
Risikotechnologien)

• immense wirtschaftliche Schäden ( → Technologieführer,
Patentinhaber)

• z.B. Diebstahl von industriellem Know-How

4. Betrug, persönliche Bereicherung

• wirtschaftliche Schäden

5. Sabotage, Erpressung

• Außerkraftsetzen lebenswichtiger Infrastruktur (z.B. schon
Registrierkassen)

• Erpressung von ausgewählten (oder schlicht großen ) Zielgruppen
durch vollendete, reversible Sabotage ( → Verschlüsselung von
Endanwenderinformationen)

Bedrohungen

1. Eindringlinge (intruders)

• im engeren Sinne menschliche Angreifer ( ,,Hacker” ), deren
Angriff eine technische Schwachstelleausnutzt ( exploit )

2. Schadsoftware (malicious software, malware)

• durch Ausnutzung einer (auch menschlichen) Schwachstelle
zur Ausführung gebrachte Programme, die (teil-)
automatisierte Angriffe durchführen

• Trojanische Pferde (trojan horses): scheinbar nützliche
Software, die verborgene Angriffsfunktionalität enthält

• Viren, Würmer (viruses, worms): Schadsoftware, die
Funktionalität zur eigenen Vervielfältigung und/oder
Modifikation beinhaltet

• Logische Bomben (logicbombs): Code-Sequenz in
trojanischen Pferden, deren Aktivierung an System-oder
Datumsereignisse gebunden ist

• Root Kits

3. Bots und Botnets

• (weit-) verteilt ausgeführte Schadsoftware
• eigentliches Ziel i.d.R. nicht das jeweils infizierte System

Professionelle Malware: Root Kit

• Programm-Paket, das unbemerkt Betriebssystem (und
ausgewählte Anwendungen) modifiziert, um Administratorrechte
zu erlangen

– Administrator-bzw. Rootrechte: ermöglichen Zugriff auf alle
Funktionen und Dienste eines Betriebssystems

– Angreifer erlangt vollständige Kontrolle des Systems und
kann

∗ Dateien (Programme) hinzufügen bzw. ändern
∗ Prozesse überwachen
∗ über die Netzverbindungen senden und empfangen
∗ bei all dem Hintertüren für Durchführung und

Verschleierung zukünftiger Angriffe platziere

– Ziele eines Rootkits:
∗ seine Existenz verbergen
∗ zu verbergen, welche Veränderungen vorgenommen

wurden
∗ vollständige und irreversible Kontrolle über BS zu

erlangen

• Ein erfolgreicher Root-Kit-Angriff ...

– ... kann jederzeit
– ... mit hochaktuellem und systemspezifischem Wissen über

Schwachstellen
– ... vollautomatisiert, also reaktiv unverhinderbar
– ... unentdeckbar
– ... nicht reversibel
– ... die uneingeschränkte Kontrolle über das Zielsystem

erlangen.

• Voraussetzung: eine einzige Schwachstelle...

Schwachstellen

1. Passwort (begehrt: Administrator-Passwörter...)

• ,,erraten”
• zu einfach, zu kurz, usw.
• Brute-Force-Angriffe mit Rechnerunterstützung
• Abfangen ( eavesdropping )

• unverschlüsselte Übertragung (verteilte Systeme) oder
Speicherung

2. Programmierfehler (Speicherfehler...!)

• im Anwenderprogrammen

• in Gerätemanagern
• im Betriebssystem

3. Mangelhafte Robustheit

• keine Korrektur fehlerhafter Eingaben
• buffer overrun/underrun (,, Heartbleed” )

4. Nichttechnische Schwachstellen

• physisch, organisatorisch, infrastrukturell
• menschlich ( → Erpressung, socialengineering )

Zwischenfazit

• Schwachstellen sind unvermeidbar
• Bedrohungen sind unkontrollierbar

– ... und nehmen tendeziellzu!

Beides führt zu operationellen Risiken beim Betrieb eines IT-Systems
→ Aufgabe der Betriebssystemsicherheit: Auswirkungen operationeller
Risiken reduzieren (wo diese nicht vermieden werden können...)
Wie dies geht: Security Engineering

Sicherheitspolitiken
• Herausforderung: korrekte Durchsetzung von Sicherheitspolitiken
• Vorgehensweise: Security Engineering

| | | ---------------------- |
----------------------------------------------------------------------------------------- | |
Sicherheitsziele | Welche Sicherheitsanforderungen muss das
Betriebssystem erfüllen? | | Sicherheitspolitik | Durch welche Strategien
soll es diese erfüllen? ( → Regelwerk) | | Sicherheitsmechanismen | Wie
implementiert das Betriebssystem seine Sicherheitspolitik? | |
Sicherheitsarchitektur | Wo implementiert das Betriebssystem seine
Sicherheitsmechanismen (und deren Interaktion)? |

Sicherheitspolitiken und -modelle Kritischfür korrekten
Entwurf, Spezifikation, Implementierung der
Betriebssystem-Sicherheitseigenschaften!
Begriffsdefinitionen:

• Sicherheitspolitik (Security Policy): Eine Menge von Regeln, die
zum Erreichen eines Sicherheitsziels dienen.

• Sicherheitsmodell (Security Model): Die formale Darstellung einer
Sicherheitspolitik zum Zweck

– der Verifikation ihrer Korrektheit
– der Spezifikation ihrer Implementierung.

Zugriffssteuerungspolitiken ... geben Regeln vor, welche
durch Zugriffssteuerungsmechanismen in BS durchgesetzt werden
müssen.
Zugriffssteuerung (access control): Steuerung, welcher Nutzer oder
Prozess mittels welcher Operationen auf welche BS-Ressourcen zugreifen
darf (z.B.: Anwender darf Textdateien anlegen, Administrator darf
Dateisysteme montieren und System-Logdateien löschen, systemd -
Prozess darf Prozessdeskriptoren manipulieren, ...)
Zugriffssteuerungspolitik: konkrete Regeln, welche die Zugriffssteuerung
in einem BS beschreiben
Zugriffssteuerungsmodell: Sicherheitsmodell einer
Zugriffssteuerungspolitik
Zugriffssteuerungsmechanismus: Implementierung einer
Zugriffssteuerungspolitik
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Beispiele für BS-Zugriffssteuerungspolitiken
klassifiziert nach Semantik der Politikregeln:

• IBAC (Identity-basedAccess Control): Politik spezifiziert, welcher
Nutzer an welchen Ressourcen bestimmte Rechte hat.

– Bsp.: ,,Nutzer Anna darf Brief.docx lesen, aber nicht
schreiben.”

• TE (Type-Enforcement): Politik spezifiziert Rechte durch
zusätzliche Abstraktion (Typen): welcher Nutzertyp an welchem
Ressourcentyp bestimmte Rechte hat.

– Bsp.: ,,Nutzer vom Typ Administrator dürfen Dateien vom
Typ Log lesen und schreiben.”

• MLS (Multi-Level Security): Politik spezifiziert Rechte, indem aus
Nutzern und Ressourcen hierarchische Klassen (Ebenen,
,,Levels”) gleicher Kritikalität im Hinblick auf Sicherheitsziele
gebildet werden.

– Bsp.: ,,Nutzer der Klasse nicht vertrauenswürdig dürfen
Dateien der Klasse vertraulich nicht lesen.”

• DAC (Discretionary Access Control, auch: wahlfreie
Zugriffssteuerung ): Aktionen der Nutzer setzen die
Sicherheitspolitik (oder wesentliche Teile davon) durch. Typisch:
Begriff des Eigentümers von BS-Ressourcen.

– Bsp.: ,,Der Eigentümer einer Datei bestimmt (bzw. ändert),
welcher Nutzer welche Rechte daran hat.”

• MAC (MandatoryAccess Control, auch: obligatorische
Zugriffssteuerung ): Keine Beteiligung der Nutzer an der
Durchsetzungeiner (zentral administrierten) Sicherheitspolitik.

– Bsp.: ,,Anhand ihres Dateisystempfads bestimmt das
Betriebssystem, welcher Nutzer welche Rechte an einer
Datei hat.”

Einige Beispiele ... ... und ein Verdacht Eindruck der
Effektivität von DAC: ,,[...] so the theory goes. By extension, yes, there
may be less malware, but that will depend on whether users keep UAC
enabled, which depends on whether developers write software that works
with it and that users stop viewing prompts as fast-clicking exercises and
actually consider whether an elevation request is legitimate.” (Jesper M.
Johansson, TechNet Magazine) [https://technet.microsoft.com/en-
us/library/2007.09.securitywatch.aspx, Stand:
10.11.2017]

Traditionell: DAC, IBAC
Auszug aus der Unix-Sicherheitspolitik:

• es gibt Subjekte (Nutzer, Prozesse) und Objekte (Dateien,
Sockets ...)

• jedes Objekt hat einen Eigentümer
• Eigentümer legen Zugriffsrechte an Objekten fest ( → DAC)
• es gibt drei Zugriffsrechte: read, write, execute
• je Objekt gibt es drei Klassen von Subjekten, für die individuell

Zugriffsrechte vergeben werden können: Eigentümer (,,u”),
Gruppe (,,g”), Rest der Welt (,,o”)

In der Praxis:

• identitätsbasierte (IBAC), wahlfreie Zugriffssteuerung (DAC)
• hohe individuelle Freiheit der Nutzer bei Durchsetzung der Politik
• hohe Verantwortung ( ,,Welche Nutzer werden jemals in Gruppe

vsbs sein...?” )

Modellierung: Zugriffsmatrix

• acm (access control matrix): Momentaufnahme der globalen
Rechteverteilung zu einem definierten ,,Zeitpunkt t”

• Korrektheitskriterium: Wie kann sich dies nach t möglicherweise
ändern...? (HRU-Sicherheitsmodell)[HaRU76]

Modellkorrektheit: Rechteausbreitung

• Änderungsbeispiel: kühnhauser nimmt krause in Gruppe vsbs auf
...

• Rechteausbreitung ( privilegeescalation ), hier verursacht durch
eine legale Nutzeraktion ( → DAC)

– (Sicherheitseigenschaft: HRU Safety , →
,,Systemsicherheit”)

Modern: MAC, MLS
Sicherheitspolitik der Windows UAC ( user account control):

• es gibt Subjekte (Prozesse) und Objekte (Dateisystemknoten)
• jedem Subjekt ist eine Integritätsklasse zugewiesen:

– Low: nicht vertrauenswürdig (z.B. Prozesse aus
ausführbaren Downloads)

– Medium: reguläre Nutzerprozesse, die ausschließlich
Nutzerdaten manipulieren

– High: Administratorprozesse, die Systemdaten
manipulieren können

– System: (Hintergrund-) Prozesse, die ausschließlich
Betriebssystemdienste auf Anwenderebene implementieren
(etwa der Login-Manager)

• jedem Objekt ist analog eine dieser Integritätsklassen zugewiesen
(Kritikalität von z.B. Nutzerdaten vs. Systemdaten)

• sämtliche DAC-Zugriffsrechte (die gibt es auch) müssen mit einer
Hierarchie der Integritätsklassen konsistent sein ( → ein bisschen
MAC)

• Nutzer können diese Konsistenzanforderung selektiv außer Kraft
setzen ( → DAC)

MAC-Modellierung: Klassenhierarchie Beispiel:
Modelliert durch Relation $\leq$: gleich oder kritischer als
$\leq={( High , Medium ), ( High , Low ), ( Medium , Low ), ( High ,
High ), ( Medium , Medium ), ( Low , Low )}$

• repräsentiert Kritikalität hinsichtlich des Sicherheitsziels
Integrität (Biba-Sicherheitsmodell) [Biba77]

• wird genutzt, um legale Informationsflüsse zwischen Subjekten
und Objekten zu modellieren → Schutz vor illegalem
Überschreiben

• leitet Zugriffsrechte aus Informationsflüssen ab:

– Prozess Datei: schreiben
– Prozess Datei: lesen

DAC-Modellierung: Zugriffsmatrix

Modellkorrektheit: Konsistenz

• Korrektheitskriterium: Garantiert die Politik, dass acm mit
$\leq$ jederzeit konsistent ist? ( BLP Security ) [BeLa76]

• elevation-Mechanismus: verändert nach Nutzeranfrage ( → DAC)
sowohl acm als auch $\leq\rightarrow$ konsistenzerhaltend?

• andere BS-Operationen: verändern unmittelbar nur acm (z.B.
mittels Dateisystemmanagement) → konsistenzerhaltend?

Autorisierungsmechanismen
Begriffsdefinitionen:

• Sicherheitsmechanismen: Datenstrukturen und Algorithmen,
welche die Sicherheitseigenschaften eines Betriebssystems
implementieren.

– → Sicherheitsmechanismen benötigt man zur Herstellung
jeglicher Sicherheitseigenschaften (auch jener, die in
unseren Modellen implizit angenommen werden!)

– Nutzerauthentisierung ( login - Dientsprogramm,
Passwort-Hashing, ...)

– Autorisierungsinformationen (Metainformationen über
Rechte, MLS-Klassen, TE-Typen, ...)

– Autorisierungsmechanismen (Rechteprüfung,
Politikadministration, ...)

– kryptografische Mechanismen
(Verschlüsselungsalgorithmen, Hashfunktionen, ...)

• Auswahl im Folgenden: Autorisierungsmechanismen und
-informationen

Traditionell: ACLs, SUID
Autorisierungsinformationen:

• müssen Subjekte (Nutzer) bzw. Objekte (Dateien, Sockets ...) mit
Rechten assoziieren → Implementierung der Zugriffsmatrix ( acm
), diese ist:

– groß ( → Dateianzahl auf Fileserver)
– dünn besetzt
– in Größe und Inhalt dynamisch veränderlich
– → effiziente Datenstruktur?

• Lösung: verteilte Implementierung der acm als Spaltenvektoren,
deren Inhalt in den Objekt-Metadaten repräsentiert wird:
Zugriffssteuerungslisten ( Access Control Lists , ACLs)

ACLs: Linux-Implementierung

• objektspezifischer Spaltenvektor = Zugriffssteuerungsliste
• Dateisystem-Metainformationen: implementiert in I-Nodes

ACLs: Linux-Implementierung Modell einer Unix acm ...
| | lesen | schreiben | ausführen | | --------------------- | ----- | --------- |
--------- | | Eigentümer (,,u”) | ja | ja | ja | | Rest der Welt (,,o”) | ja |
nein | ja | | Gruppe (,,g”) | ja | nein | ja |

• 3 - elementige Liste
• 3 - elementige Rechtemenge
• → 9 Bits
• dessen Implementierung kodiert in 16-Bit-Wort: 1 1 1 1 0 1 1 0 1
• ... und dessen Visualisierung in Linux:

Autorisierungsmechanismen: ACL-Auswertung
Subjekte = Nutzermenge eines Linux-Systems... besteht aus Anzahl
registrierter Nutzer

• jeder hat eindeutige UID (userID), z.B. integer- Zahl
• Dateien, Prozesse und andere Ressourcenwerden mit UID des

Eigentümersversehen

– bei Dateien: Teil des I-Nodes
– bei Prozessen: Teil des PCB (vgl. Grundlagen

,,Betriebssysteme”)
– standardmäßiger Eigentümer: derjenige, eine Ressource

erzeugt hat

Nutzergruppen (groups)

• jeder Nutzer wird durch Eintrag in einer Systemdatei (
/etc/group ) einer oder mehreren Gruppen zugeordnet( → ACL:
,, g ” Rechte)

Superuser oder root... hat grundsätzlich uneingeschränkte Rechte.

• UID = 0
• darf insbesondere alle Dateien im System lesen, schreiben,

ausführen; unabhängig von ACL
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ACL-Implementierung

• ACLs:

– in welchen Kerneloperationen?
– welche Kernelschnittstellen (Rechte prüfen, ändern)?
– welche Datenstrukturen, wo gespeichert?

• acm und ACLs:

– Vorteile der Listenimplementierung?
– Nachteile ggü. zentral implementierter Matrix? (DAC vs.

MAC, Administration, Analyse ...)

• → Übung 2

Nutzerrechte → Prozessrechte bisher:
Linux-Sicherheitspolitik formuliert Nutzerrechte an Dateien (verteilt
gespeichert in ACLs)
Durchsetzung: basiert auf Prozessrechten

• Annahme: Prozesse laufen mit UID des Nutzers, welcher sie
gestartet hat und repräsentieren Nutzerintention und
Nutzerberechtigungen i.S.d. Sicherheitspolitik

• technisch bedeutet dies: ein Nutzer beauftragt einen anderen
Prozess, sich zu dublizieren( fork() ) und das gewünschte
Programm auszuführen ( exec*() )

• Vererbungsprinzip:

Autorisierungsmechanismen: Set-UID konsequente
Rechtevererbung:

• Nutzer können im Rahmen der DAC-Politik ACLs manipulieren
• Nutzer können (i.A.) jedoch keine Prozess-UIDs manipulieren
• → und genau so sollte es gem. Unix-Sicherheitspolitik auch sein!

Hintergrund:

• Unix-Philosophie ,, everythingisa file ”: BS-Ressourcen wie
Sockets, IPC-Instanzen, E/A-Gerätehandler als Datei
repräsentiert → identische Schutzmechanismen zum regulären
Dateisystem

• somit: Autorisierungsmechanismen zur Begrenzung des Zugriffs
auf solche Geräte nutzbar (Bsp.: Zugriffe verschiedener Prozesse
auf einem Drucker müssen koordiniert, ggf. eingeschränkt werden)

• dazu muss

– root bzw. zweckgebundener Nutzer Eigentümer des
Druckers sein

– ACL als rw- --- --- gesetzt sein

Folge:

• Nutzerprozesse könnten z.B. nicht drucken ...

Lösung: Mechanismus zur Rechtedelegation

• implementiert durch ein weiteres ,,Recht” in ACL: SUID-Bit (,,
setUID” )

• Programmausführung modifiziert Kindprozess, so dass UID des
Programmeigentümers (im Bsp.: root ) seine Rechte bestimmt

• Technik: eine von UID abweichende Prozess-Metainformation ( →
PCB) effektive UID (eUID) wird tatsächlich zur Autorisierung
genutzt

• -rws rws r-x 1 root root 2 2011-10-01 16:00 print

Strategie für sicherheitskritische Linux-Programme

• Eigentümer: root
• SUID-Bit: gesetzt
• per eUID delegiert root seine Rechte an genau solche

Kindprozesse, die SUID-Programme ausführen

• Folge: Nutzerprozesse können Systemprogramme (und nur diese)
ohne permanente root - Rechte ausführen

Weiteres Beispiel: passwd

• ermöglicht Nutzern Ändern des (eigenen) Anmeldepassworts
• Schreibzugriff auf /etc/shadow (Password-Hashes) erforderlich ...

Schutz der Integrität anderer Nutzerpasswörter?
• Lösung: ‘-rws rws r-x 1 root root 1 2005-01-20 10:00 passwd$
• passwd - Programm (und nur dieses!) wird mit root-Rechten

ausgeführt ()... und passwd schreibt ja nur unseren eigenen
Passwort-Hash)

Beispiel passwd

• Problem: privilegierter Zugriff durch unprivilegierte Anwendung
• Standard Linux Lösung:

Modern: SELinux
• Ursprung

– Anfang 2000er Jahre: sicherheitsfokussiertes
Betriebssystemprojekt für US-amerikanische NSA [LoSm01]

– Implementierung des
(eigentlich)µKernel-Architekturkonzepts Flask

– heute: Open Source, Teil des mainline Linux Kernels

• Klassische UNIXoide: Sicherheitspolitik fest im Kernel
implementiert

– I-Nodes, PCBs, ACLs, UID, GID, SUID, ...

• Idee SELinux: Sicherheitspolitikals eigene BS-Abstraktion

– zentrale Datenstruktur für Regeln, die erlaubte Zugriffe auf
ein SELinux-System definiert

– erlaubt Modifikation und Anpassung an verschiedene
Sicherheitsanforderungen → NFE Adaptivität ...

SELinux-Sicherheitsmechanismen BS-Komponenten

• Auswertung der Sicherheitspolitik: Security- Server ,
implementiert als Linux-Kernelmodul(Technik: LSM, Linux
Security Module ); → entscheidet über alle Zugriffe auf alle
Objekte

• Durchsetzung der Sicherheitspolitik : LSM Hooks (generische
Anfrage-Schnittstellen in allen BS-Funktionen)

• Administration der Sicherheitspolitik: geschrieben in Textform,
muss zur Laufzeit in Security Server installiert werden

SELinux-Sicherheitspolitik Repräsentation der
Sicherheitspolitik:

• physisch: in spezieller Datei, die alle Regeln enthält (in
maschinenlesbarer Binärdarstellung), die der Kernel durchsetzen
muss

• diese Datei wird aus Menge von Quelldateien in einer
Spezifikationssprache für SELinux-Sicherheitspolitiken kompiliert

• diese ermöglicht anforderungsspezifische SELinux-Politiken:
können (und müssen) sich von einem SELinux-System zum
anderen wesentlich unterscheiden

• Politik wird während des Boot-Vorgangs in Kernel geladen

Politiksemantik Regeln einer SELinux-Sicherheitspolitiken,
Semantische Konzepte(Auswahl):

• Type Enforcement (TE)
• Typisierung von

– Subjekten: Prozesse
– Objekten der Klassen: Dateien, Sockets,

EA-Geräteschnittstellen, ...

• Rechte delegation durch Retypisierung(vgl. Unix-SUID!)
•

Autorisierungsinformationen Security Context:
Respräsentiert SELinux-Autorisierungsinformationen für jedes Objekt:

• Semantik:

– Prozess bash läuft (momentan) mit Typ shell t
– Datei shadow hat (momentan) den Typen shadow t.

Autorisierungsregeln ... werden systemweit festgelegt in
dessen Sicherheitspolitik ( → MAC):
Access Vector Rules

• definieren Autorisierungsregeln basierend auf
Subjek-/Objekttypen

• Zugriffe müssen explizit gewährt werden ( default-deny )
• Semantik: Erlaube( ”allow” ) ...

– jedem Prozess mit Typ shell t
– ausführenden Zugriff (benötigt die Berechtigung
{execute}),

– auf Dateien (also Objekte der Klassefile)
– mit Typ passwd exec t.

Autorisierungsmechanismen: passwd Revisited
Klassischer Anwendungsfall für SELinux-TE: Passwort ändern
Lösung: Retypisierung bei Ausführung

• Prozess wechselt in einen aufgabenspezifischen Typ passwd t
• → massiv verringertes Missbrauchspotenzial!
•

SELinux: weitere Politiksemantiken
• hier nur gezeigt: Überblick über TE
• außerdem relevant für SELinux-Politiken (und deren

Administration...):

– Einschränkung von erlaubten Typtransitionen (Welches
Programm darf mit welchem Typ ausgeführt werden?)

– weitere Abstraktionsschicht: rollenbasierte Regeln (RBAC)
– → Schutz gegen nicht vertrauenswürdige Nutzer (vs. nvw.

Software)

• Ergebnis:

– 3extrem feingranulare, anwendungsspezifische
Sicherheitspolitik zur Vermeidung von privilege escalation
Angriffen

– 3obligatorische Durchsetzung ( → MAC, zusätzlich zu
Standard-Unix-DAC)

– O Softwareentwicklung: Legacy-Linux-Anwendungen laufen
ohne Einschränkung, jedoch

– 7Politikentwicklung und -administrationkomplex!

Weitere Informationen zu SELinux →
MAC-Mechanismen ala SELinux sind heutzutage in vielerlei Software
bereits zu finden:

• Datenbanksoftware (SEPostgreSQL)
• Betriebssysteme für mobile Geräte (FlaskDroid)
• sehr wahrscheinlich: zukünftige, sicherheitsorientierte BS...

Isolationsmechanismen
• bekannt: Isolationsmechanismen für robuste Betriebssysteme

– strukturierte Programmierung
– Adressraumisolation

• nun: Isolationsmechanismen für sichere Betriebssysteme

– all die obigen...
– kryptografische Hardwareunterstützung: Intel SGX

Enclaves
– sprachbasiert:

∗ streng typisierte Sprachen und managed code :
Microsoft Singularity [HLAA05]

∗ speichersichere Sprachen (Rust) +
Adressraumisolation (µKernel): RedoxOS

– isolierte Laufzeitumgebungen: Virtualisierung (Kap. 6)
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Intel SGX
• SGX: Software Guard Extensions [CoDe16]
• Ziel: Schutz von sicherheitskritischen Anwendungen durch

vollständige, hardwarebasierte Isolation
• → strenggenommen kein BS-Mechanismus: Anwendungen müssen

dem BS nicht mehr vertrauen! (AR-Schutz, Wechsel von
Privilegierungsebenen, ...)

• Annahmen/Voraussetzungen:

1. sämtliche Software nicht vertrauenswürdig (potenziell
durch Angreifer kontrolliert)

2. Kommunikation mit dem angegriffenen System nicht
vertrauenswürdig (weder vertraulich noch verbindlich)

3. kryptografische Algorithmen (Verschlüsselung und
Signierung) sind vertrauenswürdig, also nicht für den
Angreifer zu brechen

4. Ziel der Isolation: Vertraulichkeit, Integrität und
Authentizität(nicht Verfügbarkeit) von Anwendungen
(Code) und den durch sie verarbeiteten Informationen

Enclaves
• Idee: geschützter Speicherbereich für Teilmenge der Seiten (Code

und Daten) einer Task: Enclave Page Cache (EPC)
• Prozessor (und nur dieser) ver-und entschlüsselt EPC-Seiten
•
• Enclaves: Erzeugung

– Erzeugen: App. → Syscall → BS-Instruktion an CPU
(ECREATE)

– Seiten hinzufügen: App. → Syscall → BS-Instruktion an
CPU (EADD)

∗ Metainformationen für jede hinzugefügte Seite als Teil
der EPC-Datenstruktur (u.a.: Enklave - ID,
Zugriffsrechte, vAR-Adresse)

– Initialisieren: App. → Syscall → BS-Instruktion an CPU
(EINIT)

∗ finalisiert gesamten Speicherinhalt für diese Enclave
∗ CPU erzeugt Hashwert = eindeutige Signatur des

Enclave - Speicherinhalts
∗ falls BS bis zu diesem Punkt gegen Integrität der

Anwendung verstoßen hat: durch Vergleich mit von
dritter Seite generiertem Hashwert feststellbar!

• Enclave - Zustandsmodell (vereinfacht) :
• Zugriff: App. → CPU-Instruktionen in User Mode (EENTER,

EEXIT)

– CPU erfordert, dass EPC-Seiten in vARder zugreifenden
Task

SGX: Licht und Schatten
• Einführung 2015 in Skylake - Mikroarchitektur
• seither in allen Modellen verbaut, jedoch nicht immer aktiviert
• Nutzer bislang: Demos und Forschungsprojekte, Unterstützung

durch einige Cloud-Anbieter, (noch) keine größeren Märkte
erschlossen

• Konzept hardwarebasierter Isolation ...

– 3liefert erstmals die Möglichkeit zur Durchsetzung von
Sicherheitspolitiken auf Anwendungsebene

– O setzt Vertrauen in korrekte (und nicht böswillige)
Hardwarevoraus

– O Dokumentation und Entwicklerunterstützung (im
Ausbau ...)

– 7schützt mittels Enclaves einzelne Anwendungen, aber
nicht das System

– 7steckt hinsichtlich praktischer Eigenschaften noch in den
Anfängen (vgl. µKernel...):

∗ Performanz [WeAK18]
∗ Speicherkapazität(max. Größe EPC: 128 MiB, davon

nur 93 MiBnutzbar)
∗ → komplementäre NFE: Speichereffizienz!

Sicherheitsarchitekturen
Sicherheitsarchitektur... ist die Softwarearchitektur (Platzierung,
Struktur und Interaktion) der Sicherheitsmechanismen eines IT-Systems.

• Voraussetzung zum Verstehen jeder Sicherheitsarchitektur:

– Verstehen des Referenzmonitorprinzips
– frühe Forschungen zu Betriebssystemsicherheit in

1970er-1980er Jahren durch US-Verteidigungsministerium
– Schlüsselveröffentlichung: Anderson-Report(1972)[Ande72]
– → fundamentalen Eigenschaften zur Charakterisierung von

Sicherheitsarchitekturen

• Begriffe des Referenzmonitorprinzips kennen wir schon:

– Abgrenzung passiver Ressourcen (in Form einzelner
Objekte, z.B. Dateien)

– von Subjekten (aktiven Elementen, z.B. laufenden
Programmen, Prozessen) durch Betriebssystem

Referenzmonitorprinzip
• Idee:

– → sämtliche Autorisierungsentscheidungen durch einen
zentralen (abstrakten) Mechanismus = Referenzmonitor

– Bewertet jeden Zugriffsversuch eines Subjekts auf Objekt
durch Anwendung einer Sicherheitspolitik (security policy)

∗ → vgl. SELinux

– somit: Architekturbeschreibung, wie Zugriffe auf
Ressourcen (z.B. Dateien) auf solche Zugriffe, die
Sicherheitspolitik erlaubt, eingeschränkt werden

• Autorisierungsentscheidungen

– basieren auf sicherheitsrelevanten Eigenschaften jedes
Subjekts und jedes Objekts

– einige Beispiele kennen wir schon:

∗ Nutzname, Unix-Gruppe
∗ Prozess-ID, INode-Nummer
∗ SELinux-Typ

• Architekturkomponenten in a nutshell:

Definierende Eigenschaften: Referenzmonitor ist eine
Architekturkomponenten, die

• (RM 1) bei sämtlichen Subjekt/Objekt-Interaktionen involviert
sind

– → Unumgehbarkeit ( total mediation )

• (RM 2) geschützt sind vor unautorisierter Manipulation

– → Manipulationssicherheit ( tamperproofness )

• (RM 3) hinreichend klein und wohlstrukturiert sind, um formalen
Analysemethoden zugänglich zu sein

– → Verifizierbarkeit ( verifyability )

Referenzmonitor in Betriebssystemen Nahezu alle
Betriebssysteme implementieren irgendeine Form eines Referenzmonitors
[Jaeg11] und können über Begriffe, wie

• Subjekte
• Objekte
• Regeln einer Sicherheitspolitik charakterisiert sowie auf
• Unumgehbarkeit
• Manipulationssicherheit
• Verifizierbarkeit ihrer Sicherheitsarchitektur hin untersucht

werden

Beispiel: Standard- Linux

• Subjekte (generell Prozesse)

– haben reale (und effektive) Nutzer-Identifikatoren (UIDs)

• Objekte (verschiedene Systemressourcen, genutzt für Speicherung,
Kommunikation: Dateien, Directories, Sockets, SharedMemory
usw.)

– haben ACLs (,,rwxrw----”)

• Regeln der Sicherheitspolitik, die durch den Referenzmonitor
(hier Kernel) unterstützt werden

– hart codiert, starr

• Sicherheitsattribute, die durch diese Regeln zur Prüfung genutzt
werden (z.B. Zugriffsmodi)

– Objekten zugeordnet
– modifizierbar

Man beurteile die Politikimplementierung in dieser Architektur bzgl.:

• Unumgehbarkeit
• Manipulationssicherheit
• Verifizierbarkeit

Referenzmonitorimplementierung: Flask ( Flask -
Architekturmodell)

SELinux-Architektur: Security Server

• Security Server: Laufzeitumgebung für Politik in Schutzdomäne
des Kerns

• Objektmanager: implementiert in allen BS-Dienstenmittels,,
Linux Security Module Framework ”

– jedes Subsystemvon SELinux , das zuständig für

1. Erzeugung neuer Objekte
2. Zugriff auf existierende Objekte

– Beispiele:

1. Prozess-Verwaltung (behandelte Objekte:
hauptsächlich Prozesse)

2. Dateisystem (behandelte Objekte: hauptsächlich
Dateien)

3. Networking/Socket-Subsystem (behandelte Objekte:
[verschiedene Typen von] Sockets)

4. u.a.

SELinux-Architektur: Objektklassen

• Objektmanager zur Verwaltung verschiedener Objektklassen
• spiegeln Diversität und Komplexität von Linux BS-Abtraktionen

wider:

– Dateisysteme: file, dir, fd, filesystem, ...
– Netzwerk: netif, socket, tcp socket, udp socket, ...
– IPC: msgq, sem, shm, ...
– Sonstige: process, system, ...
– ...

Dateisystem als Objektmanager

• Durch Analyse von Linux - Dateisystem und zugehöriger API
wurden zu überwachenden Objektklassen identifiziert:

– ergibt sich unmittelbar aus Linux-API:

∗ Dateien
∗ Verzeichnisse
∗ Pipes

– feingranularere Objektklassen für durch Dateien
repräsentierte Objekte (Unix-Prinzip: ,,everythingisa file”!):

∗ reguläre Dateien
∗ symbolische Links
∗ zeichenorientierte Geräte
∗ blockorientierte Geräte
∗ FIFOs
∗ Unix-Domain Sockets (lokale Sockets)
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• Permissions (Zugriffsrechte)
• für jede Objektklasse: Menge an Permissions definiert, um

Zugriffe auf Objekte dieser Klasse zu kontrollieren
• Permissions: abgeleitet aus Dienstleistungen, die

Linux-Dateisystem anbietet
• → Objektklassen gruppieren verschiedene Arten von

Zugriffsoperationen auf verschiende Arten von Objekten
• z.B. Permissions für alle ,,Datei”-Objektklassen (Auswahl ...):

read, write, append, create, execute, unlink
• für ,,Verzeichnis”-Objektklasse: add name, remove name,

reparant, search, rmdir

Trusted Computing Base (TCB)

Begriff zur Bewertung von Referenzmonitorarchitekturen: TCB ( Trusted
Computing Base )

• = die Hard-und Softwarefunktionen eines IT-Systems, die
notwendig und hinreichend sind, um alle Sicherheitsregeln
durchzusetzen.

• besteht üblicherweise aus

1. Laufzeitumgebung der Hardware(nicht E/A-Geräte)
2. verschiedenen Komponenten des Betriebssystem-Kernels
3. Benutzerprogrammen mit sicherheitsrelevanten Rechten

(bei Standard-UNIX/Linux-Systemen: diejenigen mit
root-Rechten)

• Betriebssystemfunktionen, die Teil der TCB sein müssen,
beinhalten Teile

– des Prozessmanagements
– des Speichermanagements
– des Dateimanagements
– des E/A-Managements
– alle Referenzmonitorfunktionen

Echtzeitfähigkeit
Motivation
Echtzeitbegriff: Was ist ein Echtzeitsystem?

Any system in which the time at which output is produced
is significant. This is usually because the input
corresponds to some movement in the physical world, and
the output has to relate to that same movement. The lag
from input time to output time must be sufficiently small
for acceptable timeliness. (The Oxford
DictionaryofComputing)

A real-time system is any information processing activity
or system which has to respond to externally generated
input stimuli within a finite and specified period. [Young
1982]

A real-time system is a system that is required to react to
stimuli from the environment (including the passage of
physical time) within time intervals dictated by the
environment. [Randall et.al. 1995]

Spektrum von Echtzeitsystemen:

1. Regelungssysteme: z.B. eingebettete Systeme (exakter:

Steuerungs-, Regelungs-u. Überwachungssysteme =
,,SRÜ”-Systeme)

2. Endanwender-Rechnersysteme: z.B. Multimediasysteme
3. Lebewesen: Menschen, Tiere

Beispiel Regelungssystem: ,,Fly-by-Wire”-Fluglage-Regelungssystem
(Schema)

1. Flugzeugbewegung
2. Sensoren + Einstellmöglichkeiten des Piloten

3. Echtzeit-Datenverarbeitung (durch Echtzeit-Rechnersystem)
4. Aktoren setzen Berechnung um
5. Einstellung von Regelflächen
6. Aerodynamik und Flug Mechanik führt zu Flugzeugbewegung (1.)

Beispiel Überwachungssysteme

• Luftraumüberwachung:

– Ortsfeste Radarstation
– Mobile Radarstation
– Tiefflieger-Erfassungsradar
– Flugplatzradar Netzfunkstellen
– Zentrale

• Umweltüberwachung: Stickstoffdioxidkonzentration über Europa
• Vorgeburtliche Gesundheitsüberwachung:

Herzschlagsüberwachungssystem für Mutter und Kind

Beispiel Multimediasystem

• zeitabhängige Datenwiedergabe
• Bildwiedergabe bei Mediendatenströmen
• Durchführung der Schritte durch Multimedia-Task binnen

$t {i+1} - t i$
• Frist für Rendering in Multimedia-Tasks: festgelegt durch

periodische Bildrate (24˜48 fps → 1/24 ... 1/48 s)
• → Berücksichtigung bei Scheduling, Interruptbehandlung,

Speicherverwaltung, ... erforderlich!

Zwischenfazit [Buttazzo97]

• Murphy‘s General Law: If something can go wrong, it will got
wrong.

• Murphy‘s Constant: Damage to an object is proportional to its
value.

• Johnson‘s First Law: If a system stops working, it will do it at
the worst possible time.

• Sodd‘sSecond Law: Sooner or later, the worst possible
combination of circumstances will happen.

Realisierung von Echtzeiteigenschaften: komplex und fragil!

Terminologie
bevor wir uns über Echtzeit-Betriebssystemen unterhalten:

1. Wie ist die Eigenschaft Echtzeit definiert?
2. Was sind (rechnerbasierte) Echtzeitsysteme?
3. Wie können Echtzeitanwendungen beschrieben werden?
4. Welche grundsätzlichen Typen von Echtzeitprozessen gibt

es/wodurch werden diese charakterisiert?

Antwortzeit:

• Alle Definitionen -die zitierten u. andere - betrachten eine
,,responsetime” (Antwortzeit, Reaktionszeit) als das Zeitintervall,
das ein System braucht, um (irgend)eine Ausgabe als Reaktion
auf (irgend)eine Eingabe zu erzeugen.

Frist

• Bei Echtzeitsystemen ist genau dieses $\Delta t$ kritisch, d.h. je
nach Art des Systems darf dieses auf keinen Fall zu groß werden.

• Genauer spezifizierbar wird dies durch Einführung einer Frist
(deadline, due time) $d$, die angibt bis zu welchem Zeitpunkt
spätestmöglich die Reaktion erfolgt sein muss, bzw. wie groß das
Intervall $\Delta t$ maximal sein darf.

Echtzeitfähigkeit und Korrektheit

• Wird genau dieses maximale Zeitintervall in die Spezifikation
eines Systems einbezogen, bedeutet dies, dass ein Echtzeitsystem
nur dann korrekt arbeitet, wenn seine Reaktion bis zur
spezifizierten Frist erfolgt.

• Die Frist trennt also korrektes von inkorrektem Verhalten des
Systems.

Harte und weiche Echtzeitsysteme

• Praktische Anwendungen erfordern oft Unterscheidung in harte
und weiche Echtzeitsysteme:

– hartes Echtzeitsystem: keine Frist darf jemals überschritten
werden (sonst: katastrophale Konsequenzen)

– weiches Echtzeitsystem: maßvolles (im spezifizierten Maß)

Überschreiten von Fristen tolerierbar

Charakteristika von Echtzeit-Prozessen
• reale Echtzeitanwendungen beinhalten periodische oder

aperiodische Prozesse (oder Mischung aus beiden)
• typische Unterscheidung:

– Periodische Prozesse

∗ zeitgesteuert (typisch: periodische Sensorauswertung)
∗ oft: kritische Aktivitäten → harte Fristen

– Aperiodische Prozesse

∗ ereignisgesteuert
∗ Abhängig von Anwendung: harte oder weiche Fristen,

ggf. sogar Nicht-Echtzeit

Periodische Prozesse
• bei Echtzeit-Anwendungen: häufigster Fall
• typisch für:

1. periodische Analyse von Sensor-Daten (z.B.
Umweltüberwachung)

2. Aktionsplanung (z.B. automatisierte Montage)
3. Erzeugung oder Verarbeitung einzelner Dateneinheiten

eines multimedialen Datenstroms
4. ...

• Prozessaktivierung

– ereignisgesteuert oder zeitgesteuert
– Prozesse, die Eingangsdaten verarbeiten: meist

ereignisgesteuert, z.B. wenn neues Datenpaket eingetroffen
– Prozesse, die Ausgangsdaten erzeugen: meist zeitgesteuert,

z.B. Ansteuerung von Roboteraktoren

Periodische Prozesse

• Fristen:

– hart oder weich (anwendungsabhängig)

∗ innerhalb einer Anwendung sind sowohl Prozesse mit
harten oder weichen Fristen möglich

∗ Frist: spätestens am Ende der aktuellen Periode,
möglich auch frühere Frist

• Modellierung:

– unendliche Folge identischer Aktivierungen: Instanzen,
aktiviert mit konstanter Rate (Periode)

• Aufgaben des Betriebssystems:

– WennalleSpezifikationeneingehaltenwerden-muss
Betriebssystem garantieren, dass

1. zeitgesteuerte periodische Prozesse: mit ihrer
spezifizierten Rate aktiviert werden und ihre Frist
einhalten können

2. ereignisgesteuerte periodische Prozesse: ihre Frist
einhalten können
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Aperiodische Prozesse
• typisch für

– unregelmäßig auftretende Ereignisse, z.B.:

∗ Überfahren der Spurgrenzen, Unterschreiten des
Sicherheitsabstands → Reaktion des
Fahrassistenzsystems

∗ Nutzereingaben in Multimediasystemen ( →
Spielkonsole)

• Prozessaktivierung

– ereignisgesteuert

• Fristen

– oft weich(aber anwendungsabhängig)

• Aufgabendes Betriebssystems

– bei Einhaltung der Prozessspezifikationen muss
Betriebssystem auch hier für Einhaltung der Fristen sorgen

• Modellierung

– bestehen ebenfalls aus (maximal unendlicher) Folge
identischer Aktivierungen (Instanzen); aber:
Aktivierungszeitpunkte nicht regelmäßig (möglich: nur
genau eine Aktivierung)

Parameter von Echtzeit-Prozessen
•
• $a i$: Ankunftszeitpunkt (arrival time); auch r ... request

time/release time

– Zeitpunkt, zu dem ein Prozess ablauffähig wird

• $s i$: Startzeitpunkt (start time)

– Zeitpunkt, zu dem ein Prozess mit der Ausführung beginnt

• $f i$: Beendigungszeitpunkt (finishing time)

– Zeitpunkt, an dem ein Prozess seine Ausführung beendet

• $d i$: Frist (deadline, due time)

– Zeitpunkt, zu dem ein Prozess seine Ausführung spätestens
beenden sollte

• $C i$: Bearbeitungszeit(bedarf) (computation time)

– Zeitquantum, das Prozessor zur vollständigen Bearbeitung
der aktuellen Instanz benötigt (Unterbrechungen nicht
eingerechnet)

•
• $L i$: Unpünktlichkeit (lateness): $L i= f i - d i$

– Zeitbetrag, um den ein Prozess früher oder später als seine
Frist beendet wird (wenn Prozess vor seiner Frist beendet,
hat $L i$ negativen Wert)

• $E i$: Verspätung (exceeding time, tardiness): $E i= max(0, L i)$

– Zeitbetrag, den ein Prozess noch nach seiner Frist aktiv ist

•
• $X i$: Spielraum (Laxity, Slacktime): $X i = d i - a i - C i$

– maximales Zeitquantum, um das Ausführung eines
Prozesses verzögert werden kann, damit dieser noch bis zu
seiner Frist beendet werden kann ($f i=d i$)

• außerdem:

– criticality: Parameter zur Beschreibung der Konsequenzen
einer Fristüberschreitung (typischerweise ,,hart” oder
,,weich”)

– $V i$ ...Wert (value): Parameter zum Ausdruck der
relativen Wichtigkeit eines Prozesses bezogen auf andere
Prozesse der gleichen Anwendung

Echtzeitfähige Betriebssysteme
• Hauptfragestellungen

1. Was muss BS zu tun, um Echtzeitprozesse zu ermöglichen?
Welche Teilprobleme müssen beachtet werden?

2. Welche Mechanismen müssen hierfür anders als bei
nicht-echtzeitfähigen Betriebssystemen implementiert
werden, und wie?

• Grundlegender Gedanke

– Abgeleitet aus den Aufgaben eines Betriebssystems sind
folgende Fragestellungenvon Interesse:

1. Wie müssen die Ressourcen verwaltet werden? ( → CPU,
Speicher, E/A, ...)

2. Sind neue Abstraktionen, Paradigmen (Herangehensweisen)
und entsprechende Komponenten erforderlich (oder
günstig)?

• Prozess-Metainformationen

1. Frist
2. Periodendauer
3. abgeleitet davon: Spielraum, Unpünktlichkeit, Verspätung,

...
4. im Zusammenhang damit: Prioritätsumkehr, Überlast

• Ressourcen-Management

– Wie müssen Ressourcen verwaltet werden, damit Fristen
eingehalten werden können?

Wir betrachten i.F.

1. Algorithmen, die Rechnersysteme echtzeitfähig machen
-einschließlich des Betriebssystems:

• grundlegende Algorithmen zum Echtzeitscheduling
• Besonderheiten der Interruptbehandlung
• Besonderheiten der Speicherverwaltung

2. Probleme, die behandelt werden müssen, um Echtzeitfähigkeit
nicht zu be- oder verhindern:

• Prioritätsumkehr
• Überlast
• Kommunikation-und Synchronisationsprobleme

Echtzeitscheduling
• Scheduling:

– Schedulingvon Prozessen/Threads als wichtigster
Einflussfaktor auf Zeitverhalten des Gesamtsystems

• Echtzeit-Scheduling:

– benötigt: Scheduling-Algorithmen, die Scheduling unter
Berücksichtigung der ( unterschiedlichen ) Fristen der
Prozesse durchführen können

• Fundamentale Algorithmen:

– wichtigste Strategien:

1. Ratenmonotones Scheduling (RM)
2. Earliest Deadline First (EDF)

– beide schon 1973 von Liu & Layland ausführlich diskutiert
[Liu&Layland73]

Annahmen der Scheduling-Strategien

• A1: Alle Instanzen eines periodischen Prozesses $t i$ treten
regelmäßig und mit konstanter Rate auf (= werden aktiviert ).
Das Zeitintervall $T i$ zwischen zwei aufeinanderfolgenden
Aktivierungen heißt Periode des Prozesses.

• A2: Alle Instanzen eines periodischen Prozesses $t i$ haben den
gleichen Worst-Case-Rechenzeitbedarf $C i$.

• A3: Alle Instanzen eines periodischen Prozesses $t i$ haben die
gleiche relative Frist $D i$, welche gleich der Periodendauer $T i$
ist.

• A4: Alle Prozessesind kausal unabhängig voneinander (d.h. keine
Vorrang- und Betriebsmittel-Restriktionen)

• A5: Kein Prozess kann sich selbst suspendieren, z.B. bei
E/A-Operationen.

• A6: Alle Prozesse werden mit ihrer Aktivierung sofort
rechenbereit ( release time = arrival time ).

• A7: Jeglicher Betriebssystem-Overhead (Kontextwechsel,
Scheduler-Rechenzeit) wird vernachlässigt.

A5-7 sind weitere Annahmen des Scheduling Modells
Ratenmonotones Scheduling (RM)

• Voraussetzung:

– periodisches Bereitwerden der Prozesse/Threads, d.h.
periodische Prozesse bzw. Threads

• Strategie RM:

– Prozess (Thread) mit höchster Ankunftsrate bekommt
höchste statische Priorität (Kriterium: Wie oft pro
Zeiteinheit wird Prozess bereit?)

– Scheduling-Zeitpunkt: nur einmal zu Beginn (bzw. wenn
neuer periodischer Prozess auftritt)

– präemptiver Algorithmus

• – Zuteilung eines Prozessors nach RM
– $t 1, t 2$: Anforderungen von Prozessorzeit durch zwei

periodische Prozesse
– darunter: Prozessorzuteilung nach RM

• Optimalität von RM

– Unter allen Verfahren mit festen (statischen)Prioritäten ist
RM optimaler Algorithmus in dem Sinne, dass kein anderes
Verfahren dieser Klasse eine Prozessmenge einplanen kann,
die nicht auch von RM geplant werden kann.
[Liu&Layland73]

• Prozessor-Auslastungsfaktor

– Bei gegebener Menge von n periodischen Prozessen gilt:
$U=\sum {i=1}ˆn \frac{C i}{T i}$

– mit $\frac{C i}{T i}$ Anteil an Prozessorzeit für jeden
periodischen Prozess $t i$

– und $U$ Summe der Prozessorzeit zur Ausführung der
gesamten Prozessmenge (,,utilization factor”)

• Prozessorlast

– $U$ ist folglich Maß für die durch Prozessmenge
verursachte Last am Prozessor → Auslastungsfaktor

• Planbarkeitsanalyse einer Prozessmenge

– im allgemeinen Fall kann RM einen Prozessor nicht zu
100% auslasten

– von besonderem Interesse: kleinste obere Grenze des
Auslastungsfaktors $U {lub}$ (lub: ,,least upper bound”)

• Beispiel für $n=2$

– Obere Grenze des Prozessor-Auslastungsfaktors für zwei
periodische Prozesse als Funktion des Verhältnisses ihrer
Perioden.

– (Abb. nach [Buttazzo97] Bild 4.7, S. 90)

• Obere Auslastungsgrenze bei RM

– nach [Buttazzo97] (S. 89-91) erhält man bei n Prozessen für
RM: $U {lub}=n(2ˆ{\frac{1}{n}}-1)$

– für $n\rightarrow\infty$ konvergiert $U {lub}$ zu $ln\ 2
\approx 0,6931...$

– Wird genannter Wert nicht überschritten, sind beliebige
Prozessmengen planbar.

– (Herleitung siehe [Buttazzo97] , Kap. 4.3.3)
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Earliest Deadline First (EDF)
• Voraussetzung:

– kann sowohl periodische als auch aperiodische Prozesse
planen

• Optimalität:

– EDF in Klasse der Schedulingverfahren mit dynamischen
Prioritäten: optimaler Algorithmus [Liu&Layland73]

• Strategie EDF:

– Zu jedem Zeitpunkt erhält Prozess mit frühester Frist
höchste dynamische Priorität

– Scheduling-Zeitpunkt: Bereitwerden eines (beliebigen)
Prozesses

– präemptiver Algorithmus (keine Verdrängung bei gleichen
Prioritäten)

• Beispiel

– Zuteilung eines Prozessors nach EDF
– $t 1, t 2$: Anforderungen nach Prozessorzeit durch zwei

periodische Prozesse
– darunter: Prozessorzuteilung nach EDF

• Planbarkeitsanalyse:

– Mit den Regeln $A1 ... A7$ ergibt sich für die obere
Schranke des Prozessorauslastungsfaktors: $U {lub}=
1\rightarrow$ Auslastung bis 100% möglich!

– Eine Menge periodischer Prozesse ist demnach mit EDF
planbar genau dann wenn: $U=\sum {i=1}ˆn
\frac{C i}{T i}\leq 1$ (Prozessor natürlich nicht mehr als
100% auslastbar)

• Beweis: Obere Auslastungsgrenze bei EDF

– Behauptung: Jede Menge von n periodischen Tasks ist mit
EDF planbar ↔: $U=\sum {i=1}ˆn \frac{C i}{T i}\leq 1$

– ←: $U>1$ übersteigt die verfügbare Prozessorzeit; folglich
kann niemals eine Prozessmenge mit dieser (oder höherer)
Gesamtauslastung planbar sein.

– →: Beweis durch Widerspruch. Annahme: $U\leq 1$ und
die Prozessmenge ist nicht planbar. Dies führt zu einem
Schedule mit Fristverletzung zu einem Zeitpunkt $t 2$,
z.B.:

– Beobachtungen an diesem Schedule:

∗ $exists$ ein längstes, kontinuierliches Rechenintervall
$[t 1,t 2]$, in welchem nur Prozessinstanzen mit
Fristen $\leq t 2$ rechnen

∗ die Gesamtrechenzeit $C {bad}$ aller Prozesse in
$[t 1,t 2]$ muss die verfügbare Prozessorzeit
übersteigen: $C {bad} > t 2-t 1$ (sonst: keine
Fristverletzung an $t 2$)

∗ Anwesenheit in $[t 1,t 2]$ leitet sich davon ab, ob
(genauer: wie oft) die Periode eines Prozesses in
$t 2-t 1$ passt: $t i$ in
$[t 1,t 2]\Leftrightarrow\lfloor\frac{t 2-
t 1}{T i}\rfloor
>0$

∗ Damit ist $C {bad}$ die Summe der Rechenzeiten
aller Prozessinstanzen, die garantiert in $[t 1,t 2]$
sind, mithin: $C {bad}=\sum {i=1}ˆn
\lfloor\frac{t 2-t 1}{T i}\rfloor C i$

∗ Im Beispiel: $t 1... t 3$ in $[t 1,t 2]$, folglich:
$C {bad}= 2 C 1 + 1 C 2 + 1 C 3$

∗ Zu zeigen: Beobachtung $C {bad}> t 2-t 1$
widerspricht Annahme $U\leq 1$.

∗ Es gilt $\sum {i=1}ˆn
\lfloor\frac{t 2-t 1}{T i}\rfloor
C i\leq\sum {i=1}ˆn\frac{t 2-t 1}{T i}C i$ wegen
Abrundung.

∗ Mit $U=\sum {i=1}ˆn\frac{C i}{T i}$ folgt daraus
$C {bad}\leq(t 2-t 1)U$

∗ $C {bad}>t 2-t 1$ entspricht also
$(t 2-t 1)U>t 2-t 1$ und somit $U>1$. Widerspruch
zur Annahme!

Vergleich: EDF vs. RM
Zuteilung eines Prozessors nach EDF (dynamisch) bzw. RM (statisch)
$t 1,t 2$: Anforderungen nach Prozessorzeit durch zwei periodische
Prozesse darunter: Prozessorzuteilung nach EDF bzw. RM

• gut erkennbar: deutliche Unterschiede bei Scheduling mit
statischem (RM) vs. dynamischem Algorithmus (EDF).

Vergleich: Anzahl Prozesswechsel

• Häufigkeit von Prozesswechseln im Beispiel:

– RM: 16
– EDF: 12

• Ursache: dynamische Prioritätenvergabe führt dazu, dass Instanz
II von $t 2$ die gleiche Priorität wie Instanz A von $t 1$ hat
(usw.) → keine unnötige Verdrängung

Vergleich: 100% Prozessorauslastung

• EDF: erzeugt auch bei Prozessorauslastung bis 100% (immer)
korrekte Schedules

• RM: kann das im allgemeinen Fall nicht
• Bedeutung von 100% Prozessorauslastung in der Praxis:

Überwiegend müssen Systeme mit harten Echtzeitanforderungen
auch weiche Echtzeit- sowie Nicht-Echtzeit-Prozesse unterstützen.
Daher: Belegungslücken am Prozessor für die letzteren beiden
nutzbar.

Vergleich: Implementierung

• RM

– statisch: jeweils eine Warteschlange pro Priorität:
– Einfügen und Entfernen von Tasks: $O(1)$

• EDF

– dynamisch: balancierter Binärbaum zur Sortierung nach
Prioritäten:

– Einfügen und Entfernen von Tasks: $O(log\ n)$

Scheduling in Multimedia-Anwendungen

• Konkretisierung des Betrachtungswinkels

– RM und EDF wurden entwickelt insbesondere für
Echtzeit-Regelsysteme → ohne Berücksichtigung von
Multimediasystemen

– Multimediasysteme → andere Probleme, schwächere
Annahmen: spezialisierte Scheduling-Algorithmen

– gehen meist auch von EDF und/oder RM als Grundlage aus

• Betrachteter Algorithmus:

– Beispielfür spezialisierten Scheduling-Algorithmus:

∗ RC-Algorithmus - entwickelt an University of Texas
∗ Anpassung von EDF an Charakteristika von

Multimedia-Anwendungen

Prozesstypen in Multimedia-Anwendungen

1. Echte Multimedia-Prozesse

• periodische Prozesse: weiche Fristen

1. pünktliche periodische Prozesse mit konstantem
Prozessorzeitbedarf $C$ für jede Instanz (unkomprimierte
Audio- und Videodaten)

2. pünktliche periodische Prozesse mit unterschiedlichem $C$
einzelner Instanzen (komprimierte Audio- und Videodaten)

3. unpünktliche periodische Prozesse:

– verspätete Prozesse
– verfrühte Prozesse

• aperiodische-Prozesse aus Multimedia-Anwendungen: weiche
Fristen

2. Prozesse nebenläufiger Nicht-Multimedia-Anwendungen

• interaktive Prozesse : keine Fristen , aber: keine zu langen
Antwortzeiten Ansatz (z.B.): maximal tolerierbare
Verzögerung

• Hintergrund-Prozesse : zeitunkritisch, keine Fristen, aber :
dürfen nicht verhungern

Multimediaanwendungen sind ein typisches Beispiel für mögliche
Abweichungen der Lastpezifikation $(T i,C i)$ eines Echtzeitprozesses!
Problem: Abweichungen von Lastspezifikation

• gibt Prozessor nicht frei
• verspätete periodische Prozesse

RC Algorithmus
• Ziel

– spezifikationstreue Prozesse nicht bestrafen durch
Fristüberschreitung aufgrund abweichender Prozesse

• Idee

– grundsätzlich: Schedulingnach frühester Fristaufsteigend (=
EDF) → für eine vollständig spezifikationstreue
Prozessmenge verhält sich RC wie reines EDF

– Frist einer Instanz wird dynamisch angepasst:basierend auf
derjenigen Periode, in der sie eigentlich sein sollte lt.
Spezifikation der Prozessornutzung ($U i$, hier: ,,Rate”):
$U i=\frac{C i}{T i}$

– Bsp.: $U i =\frac{20}{40}=\frac{1}{2}$ ($t B$ hat
spezifizierte Aktivitätsrate von $0,5$ pro Periode)

RC Algorithmus: Strategie

• Variablen

– $a i$: Ankunftszeit der zuletzt bereitgewordenen Instanz
von $t i$

– $t iˆ{virt}$: virtuelle Zeit in aktueller Periode, die $t i$
bereits verbraucht hat

– $c iˆ{virt}$: Netto-Rechenzeit, die $t i$ in aktueller
Periode bereits verbraucht hat

– $d i$: dynamische Frist von $t i$, nach der sich dessen
Priorität berechnet (EDF)

• Strategie

– für eine bereite (lauffähige) Instanz von $t i$: adaptiere
dynamisch $d i$ basierend auf $t iˆ{virt}$

– für eine bereit gewordene (neu angekommene oder zuvor
blockierte) Instanzvon $t i$: aktualisiere $t iˆ{virt}$ auf
akt. Systemzeit $(t)\rightarrow$ etwaiger ”Zeitkredit”
verfällt

RC Algorithmus: Berechnung von $t iˆ{virt}$
Beispiel: Situation bei $t=20ms$
Da $t B$ aber noch weiteren Rechenbedarf hat: Situation bei $t=30 ms$

RC Algorithmus: Adaptionsfunktion Für Prozess ti zu
jedem Scheduling-Zeitpunkt:
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RC Algorithmus: Scheduling Zeitpunkte, zu denen der
Scheduler aktiv wird:

1. aktuell laufender Prozess $t i$ blockiert:

• $RC(t i)$

2. Prozesse $t i... j$ werden bereit:

• $for\ x\in[i,j]: RC(t x)$

3. periodischer ,,clock tick” (SchedulingInterrupt):

• $t i$ := aktuell ausgeführter Prozess
• $RC(t i)$

anschließendes Scheduling (präemptiv) = EDF:

Umgang mit abweichenden Prozessen unter RC

Resultat

Garantie: Prozesse, die sich entsprechend ihrer
Spezifikation verhalten, erhalten bis zum Ende jeder
spezifizierten Periode ihren spezifizierten Anteil an
Prozessorzeit.

Auswirkung auf verschiedene Prozesstypen:

• ,,pünktliche” Prozesse: Einhaltung der Frist in jeder Periode
garantiert (unabhängig von Verhalten anderer Prozesse)

• ,,verspätete” Prozesse: nur aktuelle Periode betrachtet, Nachholen
,,ausgelassener Perioden” nicht möglich

• ,,gierige” Prozesse: Prozessorentzug, sobald andere lauffähige
Prozesse frühere Fristen aufweisen

• nicht-periodische Hintergrundprozesse: pro ,,Periode” wird
spezifizierte Prozessorrate garantiert (z.B. kleine Raten bei
großen ,,Periodendauern” wählen.)

Umgang mit gemischten Prozessmengen

• Hintergrund-Scheduling:

– Prinzip:
– rechenbereite Prozesse auf 2 Warteschlangen aufgeteilt

(einfache Variante eines Mehr-Ebenen-Scheduling )
– Warteschlange 1:

∗ alle periodischen Prozesse
∗ mit höchster Priorität mittels RM oder EDF bedient

– Warteschlange 2:

∗ alle aperiodischen Prozesse
∗ nur bedient, wenn keine wartenden Prozesse in

Warteschlange 1

Hintergrund-Scheduling: Vor- und Nachteile

• Hauptvorteil:

– einfache Implementierung

• Nachteile:

– Antwortzeit aperiodischer Prozesse kann zu lang werden
(insbesondere bei hoher aperiodischer Last) → Verhungern
möglich!

– geeignet nur für relativ zeitunkritische aperiodische
Prozesse

• Beispiel: Hintergrund-Scheduling mit RM

Optimierung: Server-Prozess

• Scheduling mit Server-Prozessen:

– Prinzip: periodisch aktivierter Prozess benutzt zur
Ausführung aperiodischer Prozessoranforderungen

– Beschreibung Server-Prozess: durch Parameter äquivalent
zu wirklichem periodischen Prozess:

∗ Periodendauer $T S$
∗ ,,Prozessorzeitbedarf” $C S$; jetzt Kapazitätdes

Server-Prozesses
– Arbeitsweise Server-Prozess:

∗ geplant mit gleichem Scheduling-Algorithmus wie
periodische Prozesse

∗ zum Aktivierungszeitpunkt vorliegende aperiodische
Anforderungen bedient bis zur Kapazität des Servers

∗ keine aperiodischen Anforderungen: Server
suspendiert sich bis Beginn der nächsten Periode
(Schedule wird ohne ihn weitergeführt →
Prozessorzeit für periodische Prozesse)

∗ Kapazitätin jeder Server-Periode neu ”aufgeladen”

Beispiel: Server-Prozess mit RM

Optimierung: Slack-Stealing

• Prinzip: Es existiert passiver Prozess ,,slack stealer” (kein
periodischer Server)

• versucht so viel Zeit wie möglich für aperiodische Anforderungen
zu sammeln

• realisiert durch ,,slackstealing”(= Spielraum-Stehlen) bei
periodischen Prozessen

• letztere auf Zeit-Achse so weit nach hinten geschoben, dass Frist
und Beendigungszeitpunkt zusammenfallen

• Sinnvoll, da normalerweise Beenden periodischer Prozesse vor
ihrer Frist keinerlei Vorteile bringt

• Resultat: Verbesserung der Antwortzeiten für aperiodische
Anforderungen

•

Prioritätsumkehr
Mechanismen zur Synchronisation und Koordination sind
häufige Ursachen für kausale Abhängigkeiten zwischen
Prozessen!

Problem

• Prinzip kritischer Abschnitt (Grundlagen BS):

– Sperrmechanismen stellen wechselseitigen Ausschluss bei
der Benutzung exklusiver Betriebsmittel durch nebenläufige
Prozesse sicher

– Benutzung von exklusiven sowie nichtentziehbaren
Betriebsmitteln: kritischer Abschnitt

– Folge: Wenn ein Prozess einen kritischen Abschnitt betreten
hat, darf er aus diesem nicht verdrängt werden (durch
anderen Prozess, der dasselbe Betriebsmittel nutzen will)

• Konflikt: kritische Abschnitte vs. Echtzeit-Prioritäten

– Falls ein weiterer Prozess mit höherer Priorität ablauffähig
wird und im gleichen kritischen Abschnitt arbeiten will,
muss er warten bis niederpriorisierter Prozess kritischen
Abschnitt verlassen hat

– (zeitweise) Prioritätsumkehr möglich! d.h. aus einer (Teil-)
Menge von Prozessen muss derjenige mit höchster Priorität
auf solche mit niedrigerer Priorität warten

Ursache der Prioritätsumkehr
•
• Prioritätsumkehr bei Blockierung an nichtentziehbarem,

exklusivem Betriebsmittel
• → unvermeidlich

Folgen der Prioritätsumkehr

• Kritisch bei zusätzlichen Prozessen mittlerer Priorität•
• Lösung: Priority Inheritance Protocol (PIP)

Lösung: Prioritätsvererbung

• ![Abb. nach [Buttazzo97] , Bild 7.6, S.188]
• ePrio ... effektive Priorität

Überlast
• Definition: kritische Situation - bei der die benötigte Menge an

Prozessorzeit die Kapazität des vorhandenen Prozessors
übersteigt $(U>1)$

– Folge: nicht alle Prozesse können Fristen einhalten

• Hauptrisiko: kritische Prozesse können Fristen nicht einhalten →
Gefährdung funktionaler und anderer nichtfkt. Eigenschaften ( →
harte Fristen!)

• Stichwort: ,,graceful degradation” (,,würdevolle”
Verschlechterung) statt unkontrollierbarer Situation → Wahrung
von Determinismus

Wichtigkeit eines Prozesses

• Minimallösung: (lebenswichtig für Echtzeit-System)

– Unterscheidung zwischen Zeitbeschränkungen (Fristen) und
tatsächlicher Wichtigkeit eines Prozesses für System

• Allgemein gilt:

– Wichtigkeit eines Prozesses ist unabhängig von seiner
Periodendauer und irgendwelchen Fristen

– z.B. kann ein Prozess trotz späterer Frist viel wichtiger als
anderer mit früherer Frist sein.

– Beispiel: Bei chemischem Prozess könnte
Temperaturauswertung jede 10s wichtiger sein als
Aktualisierung graphischer Darstellung an Nutzerkonsole
jeweils nach 5s

Umgang mit Überlast: alltägliche Analogien

1. Weglassen weniger wichtiger Aktionen

• ohne Frühstück aus dem Haus...
• kein Zähneputzen ...
• Wichtung vom Problem bzw. Aktivitätsträgern (hier:

Personen) abhängig!

2. Verkürzen von Aktivitäten

• Katzenwäsche...

3. Kombinieren

• kein Frühstück + Katzenwäsche + ungekämmt

Wichtung von Prozessen Behandlung:

• zusätzlicher Parameter V (Wert) für jeden Prozess/Thread einer
Anwendung

• spezifiziert relative Wichtigkeit eines Prozesses (od. Thread) im
Verhältnis zu anderen Prozessen (Threads) der gleichen
Anwendung

• bei Scheduling: V stellt zusätzliche Randbedingung (primär:
Priorität aufgrund von Frist, sekundär: Wichtigkeit)
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Obligatorischer und optionaler Prozessanteil

• Aufteilung der Gesamtberechnung $(C {ges})$ eines Prozesses in
zwei Phasen

• einfache Möglichkeit der Nutzung des Konzepts des anpassbaren
Prozessorzeitbedarfs

• Prinzip:

– Bearbeitungszeitbedarf eines Prozesses zerlegt in

1. obligatorischer Teil (Pflichtteil, $C {ob}$): muss
unbedingt u. immer ausgeführt werden → liefert
bedingt akzeptables Ergebnis

2. optionaler Teil $(C {opt})$: nur bei ausreichender
Prozessorkapazität ausgeführt → verbessert durch
obligatorischen Teil erzieltes Ergebnis

– Prinzip in unterschiedlicher Weise verfeinerbar

•

Echtzeit-Interruptbehandlung
1. Fristüberschreitung durch ungeeignete Interruptbearbeitung
2. Lösung für Echtzeitsysteme ohne Fristüberschreitung

• Interrupt wird zunächst nur registriert (deterministischer
Zeitaufwand)

• tatsächliche Bearbeitung der Interruptroutine muss durch
Scheduler eingeplant werden → Pop-up Thread

Echtzeit-Speicherverwaltung
• Prinzip:

– Hauptanliegen: auch hier Fristen einhalten
– wie bei Interrupt-Bearbeitung und Prioritätsumkehr:

unkontrollierbare Verzögerungen der Prozessbearbeitung (=
zeitlicher Nichtdeterminismus) vermeiden!

• Ressourcenzuordnung, deswegen:

1. keine Ressourcen-Zuordnung ,,on-demand” (d.h. in dem
Moment, wo sie benötigt werden) sondern ,,Pre-Allokation”
(= Vorab-Zuordnung)

2. keine dynamische Ressourcenzuordnung (z.B.
Hauptspeicher), sondern Zuordnung maximal benötigter
Menge bei Pre-Allokation ( → BS mit ausschließlich
statischer Hauptspeicherallokation: TinyOS)

Hauptspeicherverwaltung

• bei Anwendung existierender Paging-Systeme

– durch unkontrolliertes Ein-/Auslagern ,,zeitkritischer”
Seiten (-inhalte): unkontrollierbare Zeitverzögerungen
möglich!

– Technik hier: ,,Festnageln” von Seiten im Speicher
(Pinning, Memory Locking)

Sekundärspeicherverwaltung

• Beispiel 1: FCFS Festplattenscheduling

– Anforderungsreihenfolge = 98, 183, 37, 122, 14, 124, 65, 67
– Zuletzt gelesener Block: 53

• Beispiel 2: EDF Festplattenscheduling

– Anforderungsreihenfolge $t 1 = 98, 37, 124, 65$
– Anforderungsreihenfolge $t 2 = 183, 122, 14, 67$
– Zuletzt gelesener Block: 53 | | $a i$ | $d i$ | | ----- | ----- |

----- | | $t 1$ | 0 | 3 | | $t 2$ | 0 | 9 |
• Primärziel: Wahrung der Echtzeitgarantien

– naheliegend: EA-Schedulingnach Fristen → EDF (wie
Prozessor)

– für Zugriffsreihenfolge auf Datenblöcke: lediglich deren
Fristen maßgebend (weitere Regeln existieren nicht!)

• Resultat bei HDDs:

– ineffiziente Bewegungen der Lese-/Schreibköpfe -ähnlich
FCFS

– nichtdeterministische Positionierzeiten
– geringer Durchsatz

• Fazit:

– Echtzeit-Festplattenscheduling → Kompromiss zwischen
Zeitbeschränkungen und Effizienz

• bekannte Lösungen:

1. Modifikation von EDF
2. Kombination von EDF mit anderen Zugriffsstrategien

→ realisierte Strategien:

1. SCAN-EDF (SCAN: Kopfbewegung nur in eine Richtung bis
Mitte-/Randzylinder; EDF über alle angefragten Blöcke in dieser
Richtung )

2. Group Sweeping (SCAN mit nach Fristen gruppenweiser
Bedienung)

3. Mischstrategien

• Vereinfachung:

– o.g. Algorithmen i.d.R. zylinderorientiert →
berücksichtigen bei Optimierung nur Positionierzeiten
(Grund: Positionierzeit meist >> Latenzzeit)

Kommunikation und Synchronisation
• zeitlichen Nichtdeterminismus vermeiden:

1. Interprozess-Kommunikation

– Minimierung blockierender Kommunikationsoperationen
– indirekte Kommunikation → CAB zum

Geschwindigkeitsausgleich
– keine FIFO-Ordnungen (nach Fristen priorisieren)
– CAB ... Cyclic Asynchronous Buffer:

2. Synchronisation

– keine FIFO-Ordnungen, z.B. bei Semaphor-Warteschlangen
(vgl. o.)

Cyclic Asynchronous Buffer (CAB) Kommunikation
zwischen 1 Sender und n Empfängern:

• nach erstem Schreibzugriff: garantiert niemals undefinierte
Wartezeiten durch Blockierung von Sender/Empfänger

• Lesen/Überschreiben in zyklischer Reihenfolge:
• Implementierung:

– MRW: Most-Recently-Written; Zeiger auf jüngstes, durch
Sender vollständig geschriebenes Element

– LRW: Least-Recently-Written; Zeiger auf ältestes durch
Sender geschriebenes Element

– Garantien:
∗ sowohl MRW als auch LRW können ausschließlich

durch Sender manipuliert werden → keine
inkonsistenten Zeiger durch konkurrierende
Schreibzugriffe!

∗ sowohl MRW als auch LRW zeigen niemals auf ein
Element, das gerade geschrieben wird → keine
inkonsistenten Inhalte durch konkurrierende
Schreib-/Lesezugriffe!

– Regeln für Sender:

∗ muss nach jedem Schreiben MRW auf geschriebenes
Element setzen

∗ muss bevor LRW geschrieben wird LRW
inkrementieren

– Regel für Empfänger: muss immer nach Lesen von MRW
als nächstes LRW anstelle des Listennachbarn lesen

• Sender-Regeln:

– anschaulich, ohne aktiven Empfänger

• Empfänger-Regel:

– anschaulich, ohne aktiven Sender

Sonderfall 1: Empfänger schneller als Sender

• nach Zugriff auf MRW muss auf Lesesequenz bei LRW fortgesetzt
werden → transparenter Umgang mit nicht-vollem Puffer

• Abschwächung der Ordnungsgarantien:Empfänger weiß nur, dass
Aktualität der Daten zwischen LRW und MRW liegt

• Empfänger (nach min. einem geschriebenen Element) niemals
durch leeren Puffer blockiert•

Sonderfall 2: Sender schneller als Empfänger

• Schreiben in Puffer grundsätzlich in Reihenfolge der Elemente →
keine blockierenden Puffergrenzen → niemals Blockierung des
Senders

• keine Vollständigkeitsgarantien:Empfänger kann nicht sicher sein,
eine temporal stetige Sequenz zu lesen

• → Szenarien, in denen Empfänger sowieso nur an aktuellsten
Daten interessiert (z.B. Sensorwerte)

•

Konkurrierende Zugriffe:

• ... sind durch Empfänger immer unschädlich (da lesend)
• ... müssen vom Sender nach Inkrementieren von LRW

nicht-blockierend erkannt werden (klassisches Semaphormodell
ungeeignet)

• schnellerer Sender überspringtein gesperrtes Element durch
erneutes Inkrementieren von LRW , muss MRW trotzdem
nachziehen•

Architekturen und Beispiel-Betriebssysteme
• Architekturprinzipien:

– müssen Echtzeitmechanismen unterstützen; ermöglicht
entsprechende Strategien zur Entwicklungs-oder Laufzeit
(CPU-Scheduler, EA-Scheduler, IPC ...)

– müssen funktional geringe Komplexität aufweisen →
theoretische und praktische Beherrschung von
Nichtdeterminismus

∗ Theoretisch: Modellierung und Analyse (vgl.
Annahmen für Scheduling-Planbarkeitsanalyse)

∗ Praktisch: Implementierung (vgl. RC-Scheduler,
Prioritätsvererbung)

• Konsequenzen:

– Architekturen für komplementäre NFE:

∗ Sparsamkeit → hardwarespezifische
Kernelimplementierung

∗ Adaptivität → µKernel, Exokernel

– zu vermeiden:
∗ starke Hardwareabstraktion →

Virtualisierungsarchitekturen
∗ Kommunikation und Synchronisationskosten →

verteilte BS
∗ Hardwareunabhängigkeit und Portabilität → vgl.

Mach

Auswahl: Beispiel-Betriebssysteme

• wir kennen schon:

– funktional kleine Kernelimplementierung: TinyOS
– hardwarespezifischer µKernel: L4-Abkömmlinge
– Mischung aus beidem: RIOT
– Kommerziell bedeutender µKernel: QNX Neutrino
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• weitere Vertreter:

– hardwarespezifische Makrokernel: VRTX, VxWorks
– µKernel: DRYOS, DROPS
– ,,Exokernel” ...?

VRTX (Versatile Real-Time Executive)

• Entwickler:

– Hunter & Ready

• Eckdaten:

– Makrokernel
– war erstes kommerzielles Echtzeitbetriebssystem für

eingebettete Systeme
– heutige Bedeutung eher historisch
– Nachfolger (1993 bis heute): Nucleus RTOS (Siemens)

• Anwendung:

– Eingebettete Systeme in Automobilen(Brems-und
ABS-Controller)

– Mobiltelefone
– Geldautomaten

• Einsatzgebiete

– spektakulär: im Hubble-Weltraumteleskop

VxWorks

• Entwickler:

– Wind River Systems (USA)

• Eckdaten:

– modularer Makrokernel
– Konkurrenzprodukt zu VRTX
– Erfolgsfaktor: POSIX-konforme API
– ähnlich QNX: ,,skalierbarer” Kernel,zuschneidbarauf

Anwendungsdomäne ( → Adaptivitätsansatz)

• Anwendung:

– eingebettete Systeme:
– industrielle Robotersteuerung
– Luft-und Raumfahrt
– Unterhaltungselektronik

• Einsatzgebiete

– Deep-Impact-Mission zur Untersuchung des Kometen
Temple 1

– NASA Mars Rover
– SpaceX Dragon

DRYOS®

• Entwickler: Canon Inc.
• Eckdaten:

– Mikrokernel(Größe: 16 kB)
– Echtzeit-Middleware (Gerätetreiber → Objektive)
– Anwendungen: AE-und AF-Steuerung/-Automatik, GUI,

Bildbearbeitung, RAW-Konverter, ...
– POSIX-kompatible Prozessverwaltung

•

DROPS (Dresden Real-Time Operating System)

• Entwickler: TU Dresden, Lehrstuhl Betriebssysteme
• Eckdaten: Multi-Server-Architektur auf Basis eines L4-Mikrokerns•

Adaptivität
Motivation

• als unmittelbar geforderte NFE:

– eingebettete Systeme
– Systeme in garstiger Umwelt (Meeresgrund, Arktis,

Weltraum, ...)
– Unterstützung von Cloud-Computing-Anwendungen
– Unterstützung von Legacy-Anwendungen

• Beobachtung: genau diese Anwendungsdomänen fordern
typischerweise auch andere wesentliche NFE (s.bisherige
Vorlesung ...)

• → Adaptivität als komplementäre NFE zur Förderung von

– Robustheit: funktionale Adaptivitätdes BS reduziert
Kernelkomplexität ( → kleiner, nicht adaptiver µKernel)

– Sicherheit: wie Robustheit:TCB-Größe → Verifizierbarkeit,
außerdem: adaptive Reaktion auf Bedrohungen

– Echtzeitfähigkeit: adaptive Scheduling-Strategie (vgl. RC),

adapt. Überlastbehandlung, adapt.
Interruptbehandlungs-und Pinning-Strategien

– Performanz: Last-und Hardwareadaptivität
– Erweiterbarkeit: adaptive BS liefern oft hinreichende

Voraussetzungen der einfachen Erweiterbarkeit von
Abstraktionen, Schnittstellen, Hardware-Multiplexing-und
-Schutzmechanismen ( Flexibility )

– Wartbarkeit: Anpassung des BS an Anwendungen, nicht
umgekehrt

– Sparsamkeit: Lastadaptivitätvon CPUs, adaptive Auswahl
von Datenstrukturen und Kodierungsverfahren

Adaptivitätsbegriff
• Adaptability: ,,see Flexibility. ” [Marciniak94]
• Flexibility:

– ,,The ease with which a system or a component can be
modified for use in applications or environments other than
those for which it was specifically designed.” (IEEE)

– für uns: entspricht Erweiterbarkeit

• Adaptivität: (unsere Arbeitsdefinition)

– Die Fähigkeit eines Systems, sich an ein breites Spektrum
verschiedener Anforderungen anpassen zu lassen.

– = ... so gebaut zu sein, dass ein breites Spektrum
verschiedener nicht funktionaler Eigenschaften unterstützt
wird.

– letztere: komplementär zur allgemeinen NFE Adaptivität

Roadmap
• in diesem Kapitel: gleichzeitig Mechanismen und

Architekturkonzepte
• Adaptivität jeweils anhand komplementärer Eigenschaften

dargestellt:

– Exokernel: { Adaptivität } ∪ { Performanz,
Echtzeitfähigkeit,Wartbarkeit, Sparsamkeit }

– Virtualisierung: { Adaptivität } ∪ { Wartbarkeit,
Sicherheit, Robustheit }

– Container: { Adaptivität } ∪ { Wartbarkeit, Portabilität,
Sparsamkeit }

• Beispielsysteme:

– Exokernel-Betriebssysteme: Aegis/ExOS, Nemesis,
MirageOS

– Virtualisierung: Vmware, VirtualBox, Xen
– Containersoftware: Docker

Exokernelarchitektur
• Grundfunktion von Betriebssystemen

– physische Hardware darstellen als abstrahierte Hardware
mit komfortableren Schnittstellen

– Schnittstelle zu Anwendungen (API) : bietet dabei exakt
die gleichen Abstraktionen der Hardware für alle
Anwendungen an, z.B.

∗ Prozesse: gleiches Zustandsmodell, gleiches
Threadmodell

∗ Dateien: gleiche Namensraumabstraktion
∗ Adressräume: gleiche Speicherverwaltung (VMM,

Seitengröße, Paging)
∗ Interprozesskommunikation: gleiche Mechanismen

für alle Anwendungsprozesse

• Problem:

– Implementierungsspielraumfür Anwendungen wird
begrenzt:

1. Vorteile domänenspezifischer Optimierungender
Hardwarebenutzung können nicht ausgeschöpft werden →
Performanz, Sparsamkeit

2. die Implementierung existierender Abstraktionen kann bei
veränderten Anforderungen nicht an Anwendungen
angepasst werden →Wartbarkeit

3. Hardwarespezifikationen, insbesondere des Zeitverhaltens
(E/A, Netzwerk etc.), werden von Effekten des
BS-Management überlagert → Echtzeitfähigkeit

• Idee von Exokernel-Architekturen:

Exokernelmechanismen
• Designprinzip von Exokernelmechanismen:

– Trennung von Schutz und Abstraktion der Ressourcen
– Ressourcen-Schutz und -Multiplexing: verbleibt beim

Betriebssystemkernel(dem Exokernel)
– Ressourcen-Abstraktion (und deren Management): zentrale

Aufgabe der Library-Betriebssysteme

∗ → autonome Management-Strategien durch in
Anwendungen importierte Funktionalität

– Resultat:
1. systemweit(durch jeweiliges BS vorgegebene) starre

Hardware-Abstraktionen vermieden
2. anwendungsdomänenspezifische Abstraktionen sehr

einfach realisierbar
3. (Wieder-) Verwendung eigener und fremder

Managementfunktionalität wesentlich erleichtert →
komplementäre NFEn! (Performanz, EZ-Fähigkeit,
Sparsamkeit, ...)

• Funktion des Exokernels:

– Prinzip: definiert Low-level-Schnittstelle

∗ ,,low-level” = so hardwarenah wie möglich, bspw. die
logische Schnittstelle eines elektronischen
Schaltkreises/ICs ( → Gerätetreiber $\subseteq$
Library-BS!)

∗ Bsp.: der Exokernelmuss den Hauptspeicher schützen,
aber nicht verstehen, wie dieser verwaltet wird →
Adressierung ermöglichen ohne Informationen über
Seiten, Segmente, Paging-Attribute, ...

– Library-Betriebssysteme: implementieren darauf jeweils
geeignete anwendungsnahe Abstraktionen

∗ Bsp.: Adressraumsemantik, Seitentabellenlayout und
-verwaltung, Paging-und Locking-Verfahren, ...

– Anwendungsprogrammierer: wählen geeignete
Library-Betriebssysteme bzw. schreiben ihre eigenen
Exokernelmechanismen

• prinzipielle Exokernelmechanismen am Beispiel Aegis/ExOS
[Engler+95]
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– Der Exokernel...
∗ implementiert: Multiplexing der

Hardware-Ressourcen
∗ exportiert: geschützte Hardware-Ressourcen

• minimal: drei Arten von Mechanismen

1. Secure Binding: erlaubt geschützte Verwendung von
Hardware-Ressourcen durch Anwendungen, Behandlung
von Ereignissen

2. Visible ResourceRevocation: beteiligt Anwendungen am
Entzug von Ressourcen mittels (kooperativen)
Ressourcen-Entzugsprotokolls

3. Abort-Protokoll: erlaubt ExokernelBeendigung von
Ressourcenzuordnungen bei unkooperativen Applikationen

Secure Binding
• Schutzmechanismus, der Autorisierung ( → Library-BS)zur

Benutzung einer Ressource von tatsächlicher Benutzung ( →
Exokernel) trennt

• implementiert für den Exokernelerforderliches
Zuordnungswissenvon (HW-)Ressource zu Mangement-Code (der
im Library-BS implementiert ist)

• → ”Binding” in Aegis implementiert als Unix-Hardlinkauf
Metadatenstruktur zu einem Gerät im Kernelspeicher (
,,remember: everythingisa file...” )

• Zur Implementierung benötigt:

– Hardware-Unterstützung zur effizienten Rechteprüfung
(insbes. HW-Caching)

– Software-Caching von Autorisierungsentscheidungen im
Kernel (bei Nutzung durch verschiedene Library-BS)

– Downloadingvon Applikationscode in Kernel zur effizienten
Durchsetzung (quasi: User-Space-Implementierung von
Systemaufrufcode)

• einfach ausgedrückt: ,,Secure Binding” erlaubt einem
ExokernelSchutz von Ressourcen, ohne deren Semantik verstehen
zu müssen.

Visible Resource Revocation
• monolithische Betriebssysteme: entziehen Ressourcen

,,unsichtbar” (invisible), d.h. transparent für Anwendungen

– Vorteil: im allgemeinen geringere Latenzzeiten, einfacheres
und komfortableres Programmiermodell

– Nachteil: Anwendungen(hier: die eingebetteten Library-BS)
erhalten keine Kenntnis über Entzug,bspw. aufgrund von
Ressourcenknappheit etc.

– → erforderliches Wissen für Management-Strategien!

• Exokernel-Betriebssysteme: entziehen(überwiegend) Ressourcen
,,sichtbar” → Dialog zwischen Exokernel und Library-BS

– Vorteil: effizientes Management durch Library-BS möglich
(z.B. Prozessor: nur tatsächlich benötigte Register werden
bei Entzug gespeichert)

– Nachteil : Performanz bei sehr häufigem Entzug,
Verwaltungs-und Fehlerbehandlungsstrategien zwischen
verschiedenen Library-BS müssen korrekt und
untereinander kompatibelsein...

– → Abort - Protokoll notwendig, falls dies nicht gegeben ist

Abort - Protokoll
• Ressourcenentzug bei unkooperativen Library-Betriebssystemen (

Konflikt mit Anforderung durch andere Anwendung/deren
Library-BS: Verweigerung der Rückgabe, zu späte Rückgabe, ...)

• notwendig aufgrund von Visible Ressource Revocation
• Dialog:

– Exokernel: ,,Bitte Seitenrahmen x freigeben.”
– Library-BS: ,,...”
– Exokernel: ,,Seitenrahmen x innerhalb von 50 µs freigeben!”

– Library-BS: ,,...”
– Exokernel: (führt Abort-Protokoll aus)
– Library-BS: X (,,Abort” in diesem Bsp. =

Anwendungsprozess terminieren)

• In der Praxis:

– harte Echtzeit-Fristen (,, innerhalb von 50 µs” ) in den
wenigsten Anwendungen berücksichtigt

∗ → Abort = lediglich Widerruf aller Secure Bindings
der jeweiligen Ressource für die
unkooperativeAnwendung, nicht deren Terminierung
(= unsichtbarerRessourcenentzug)

∗ → anschließend: Informieren des entsprechenden
Library-BS

– ermöglicht sinnvolle Reaktion des Library-BS (in
Library-BS wird ,,Repossession”-Exceptionausgelöst, so
dass auf Entzug geeignet reagiert werden kann)

– bei zustandsbehafteten Ressourcen ( → CPU):
Exokernelkann diesen Zustand auf Hintergrundspeicher
sichern → Management-Informationen zum Aufräumen
durch Library-BS

Exokernelperformanz
• Was macht Exokern-Architekturen adaptiv(er)?

– Abstraktionen und Mechanismen des Betriebssystems
können den Erfordernissen der Anwendungen angepasst
werden

– (erwünschtes) Ergebnis: beträchtliche
Performanzsteigerungen (vgl. komplementäre Ziel-NFE:
Performanz, Echtzeitfähigkeit, Wartbarkeit, Sparsamkeit )

Performanzstudien

1. Aegis mit Library-BS ExOS (MIT: Dawson Engler, Frans
Kaashoek)

2. Xok mit Library-BS ExOS (MIT)
3. Nemesis (Pegasus-Projekt, EU)
4. XOmB (U Pittsburgh)
5. ...

Aegis/ExOSals erweiterte Machbarkeitsstudie [Engler+95]

1. machbar: sehr effiziente Exokerne

• Grundlage: begrenzte Anzahl einfacher Systemaufrufe
(Größenordnung ˜10) und Kernel-interne Primitiven
(,,Pseudo-Maschinenanweisungen”), die enthalten sein
müssen

2. machbar: sicheres Hardware-Multiplexing auf niedriger
Abstraktionsebene (,,low-level”) mit geringem Overhead

3. traditionelle Abstraktionen (VMM, IPC) auf Anwendungsebene
effizient implementierbar → einfache Erweiterbarkeit,
Spezialisierbarkeitbzw. Ersetzbarkeit dieser Abstraktionen

4. für Anwendungen: hochspezialisierte Implementierungen von
Abstraktionen generierbar, die genau auf Funktionalität und
Performanz-Anforderungen dieser Anwendung zugeschnitten

5. geschützte Kontrollflussübergabe: als IPC-Primitive im
Aegis-Kernel, 7-mal schnellerals damals beste Implementierung
(vgl. [Liedtke95], Kap. 3)

6. Ausnahmebehandlung bei Aegis: 5-mal schneller als bei damals
bester Implementierung

7. durch Aegis möglich: Flexibilität von ExOS, die mit
Mikrokernel-Systemen nicht erreichbar ist:

• Bsp. VMM: auf Anwendungsebene implementiert, wo diese
sehr einfach mit DSM-Systemen u. Garbage-Kollektoren
verknüpfbar

8. Aegis erlaubt Anwendungen Konstruktion effizienter
IPC-Primitiven (∆µKernel: nicht vertrauenswürdige
Anwendungen können keinerlei spezialisierte IPC-Primitiven
nutzen, geschweige denn selbst implementieren)

Xok/ExOS

• praktische Weiterentwicklung von Aegis: Xok
• für x86-Hardware implementiert
• Kernel-Aufgaben (wie gehabt): Multiplexing von Festplatte,

Speicher, Netzwerkschnittstellen, ...
• Standard Library-BS (wie bei Aegis): ExOS

– ,,Unix as a Library”
– Plattform für unmodifizierte Unix-Anwendungen (csh, perl,

gcc, telnet, ftp, ...)

• z.B. Library-BS zum Dateisystem-Management: C-FFS

– hochperformant (im Vergleich mit
Makrokernel-Dateisystem-Management)

– Abstraktionen und Operationen auf Exokernel-Basis (u.a.):
Inodes, Verzeichnisse, physische Dateirelokation( →
zusammenhängendes Lesen)

– Secure Bindings für Metadaten-Modifikation

• Forschungsziele:

– Aegis: Proof-of-Concept
– XOK: Proof-of-Feasibility (Performanz)

•

Zwischenfazit: Exokernelarchitektur

• Ziele:

– Performanz, Sparsamkeit: bei genauer Kenntnis der
Hardware ermöglicht deren direkte
BenutzungAnwendungsentwicklern Effizienzoptimierung

– Wartbarkeit: Hardwareabstraktionen sollen flexibel an
Anwendungsdomänen anpassbar sein, ohne das BS
modifizieren/wechseln zu müssen

– Echtzeitfähigkeit: Zeitverhaltendes Gesamtsystems durch
direkte Steuerung der Hardware weitestgehend durch
(Echtzeit-) Anwendungen kontrollierbar

• Idee:

– User-Space:anwendungsspezifische Hardwareabstraktionen
im User-Space implementiert

– Kernel-Space:nur Multiplexing und Schutz der
HW-Schnittstellen

– in der Praxis: kooperativer Ressourcenentzug zwischen
Kernel, Lib. OS

• Ergebnisse:

– hochperformanteHardwarebenutzung durch spezialisierte
Anwendungen

– funktional kleiner Exokernel( → Sparsamkeit, Korrektheit
des Kernelcodes )

– flexible Nutzung problemgerechterHW-Abstraktionen (
readymade Lib. OS)

– keine Isolation von Anwendungen ( → Parallelisierbarkeit:
teuer und mit schwachen Garantien; → Robustheit und
Sicherheit der Anwendungen: nicht umsetzbar)
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Virtualisierung
• Ziele (zur Erinnerung):

– Adaptivität
– Wartbarkeit, Sicherheit, Robustheit
– → auf gleicher Hardware mehrere unterschiedliche

Betriebssysteme ausführbar machen

• Idee:

Ziele von Virtualisierung

• Adaptivität: ( ähnlich wie bei Exokernen)

– können viele unterschiedliche Betriebssysteme - mit jeweils
unterschiedlichen Eigenschaften ausgeführt werden damit
können: Gruppen von Anwendungen auf ähnliche Weise
jeweils unterschiedliche Abstraktionen etc. zur Verfügung
gestellt werden

• Wartbarkeit:

– Anwendungen - die sonst nicht gemeinsam auf gleicher
Maschine lauffähig - auf einer phyischenMaschine
ausführbar

– ökonomische Vorteile: Cloud-Computing, Wartbarkeit von
Legacy-Anwendungen

• Sicherheit:

– Isolation von Anwendungs-und Kernelcode durch getrennte
Adressräume (wie z.B. bei Mikrokern-Architekturen)

– somit möglich:

1. Einschränkung der Fehlerausbreitung → angreifbare
Schwachstellen

2. Überwachung der Kommunikation zwischen
Teilsystemen

– darüber hinaus: Sandboxing (vollständig von logischer
Ablaufumgebung isolierte Software, typischerweise
Anwendungen → siehe z.B. Cloud-Computing)

• Robustheit:

– siehe Sicherheit!

Architekturvarianten - drei unterschiedliche Prinzipien:

1. Typ-1 - Hypervisor ( früher: VMM - ,,Virtual MachineMonitor” )
2. Typ-2 - Hypervisor
3. Paravirtualisierung

Typ-1 - Hypervisor
•
• Idee des Typ- 1 - Hypervisors:

– Kategorien traditioneller funktionaler Eigenschaften von
BS:

1. Multiplexing & Schutz der Hardware (ermöglicht
Multiprozess-Betrieb)

2. abstrahierte Maschine** mit ,,angenehmerer”
Schnittstelle als die reine Hardware (z.B. Dateien,
Sockets, Prozesse, ...)

• Typ- 1 - Hypervisor trennt beide Kategorien:

– läuft wie ein Betriebssystem unmittelbar über der Hardware
– bewirkt Multiplexing der Hardware, liefert aber keine

erweiterte Maschine** an Anwendungsschicht →
,,Multi-Betriebssystem-Betrieb”

• Bietet mehrmals die unmittelbare Hardware-Schnittstelle an,
wobei jede Instanz eine virtuelle Maschine jeweils mit den
unveränderten Hardware-Eigenschaften darstellt (Kernel u. User
Mode, Ein-/Ausgaben usw.).

• Ursprünge: Time-Sharing an Großrechnern

– Standard-BS auf IBM-Großrechner System/360: OS/360

– reines Stapelverarbeitungs-Betriebssystem (1960er Jahre)
– Nutzer (insbes. Entwickler) strebten interaktive

Arbeitsweise an eigenem Terminal an → timesharing (MIT,
1962: CTSS)

∗ IBM zog nach: CP/CMS, später VM/370 → z/VM
∗ CP: Control Program → Typ- 1 - Hypervisor
∗ CMS: ConversationalMonitor System → Gast-BS

– CP lief auf ,,blanker” Hardware (Begriff geprägt: ,,bare
metal hypervisor” )

∗ lieferte Menge virtueller Kopiender
System/360-Hardware an eigentliches
Timesharing-System

∗ je eines solche Kopie pro Nutzer → unterschiedliche
BS lauffähig (da jede virtuelle Maschine exakte Kopie
der Hardware)

∗ in der Praxis: sehr leichtgewichtiges, schnelles
Einzelnutzer-BS als Gast → CMS (heute wäre das
wenig mehr als ein Terminal-Emulator...)

• heute: Forderungen nach Virtualisierung von Betriebssystemen

– seit 1980er: universeller Einsatz des PC für Einzelplatz-
und Serveranwendungen → veränderte Anforderungen an
Virtualisierung

– Wartbarkeit: vor allem ökonomische Gründe:
1. Anwendungsentwicklung und -bereitstellung:

verschiedene Anwendungen in Unternehmen, bisher
auf verschiedenen Rechnern mit mehreren (oft
verschiedenen) BS, auf einem Rechner entwickeln und
betreiben (Lizenzkosten!)

2. Administration: einfache Sicherung, Migration
virtueller Maschinen

3. Legacy-Software

– später: Sicherheit, Robustheit →
Cloud-Computing-Anwendungen

• ideal hierfür: Typ- 1 - Hypervisor

– 3Gast-BS angenehm wartbar
– 3Softwarekosten beherrschbar
– 3Anwendungen isolierbar

Hardware-Voraussetzungen

• Voraussetzungen zum Einsatz von Typ-1-HV

– Ziel: Nutzung von Virtualisierung auf PC-Hardware
– systematische Untersuchung der Virtualisierbarkeit von

Prozessoren bereits 1974 durch Popek & Goldberg
[Popek&Goldberg74]

– Ergebnis:

∗ Gast-BS (welches aus Sicht der CPU im User Mode -
also unprivilegiert läuft) muss sicher sein können, dass
privilegierte Instruktionen (Maschinencode im Kernel)
ausgeführt werden

∗ dies geht nur, wenn tatsächlich der HV diese
Instruktionen ausführt!

∗ dies geht nur, wenn CPU bei jeder solchen Instruktion
im Nutzermodus Kontextwechsel zum HV ausführen,
welcher Instruktion emuliert!

• virtualisierbare Prozessoren bis ca. 2006:

– 3IBM-Architekturen(bekannt: PowerPC, bis 2006
Apple-Standard)

– 7Intel x86-Architekturen (386, Pentium, teilweise Core i)

Privilegierte Instruktionen ohne Hypervisor

• kennen wir schon: Instruktion für Systemaufrufe

1. User Mode: Anwendung bereitet Befehl und Parameter vor

2. User Mode: Privilegierte Instruktion (syscall/Trap - Interrupt) →
CPU veranlasst Kontext-und Privilegierungswechsel, Ziel:
BS-Kernel

3. Kernel Mode: BS-Dispatcher (Einsprungpunkt für
Kernel-Kontrollfluss) behandelt Befehl und Parameter, ruft
weitere privilegierte Instruktionen auf (z.B. EA-Code)

•

Privilegierte Instruktionen mit Typ- 1 - Hypervisor(1)

• zum Vergleich: Instruktion für Systemaufrufe des Gast-BS

1. User Mode: Anwendung bereitet Befehl und Parameter vor
2. User Mode: Trap → Kontext-und Privilegierungswechsel, Ziel:

Typ-1-HV
3. Kernel Mode: HV-Dispatcher ruft Dispatcher im Gast-BS auf
4. User Mode: BS-Dispatcher behandelt Befehl und Parameter, ruft

weitere privilegierte Instruktionenauf (z.B. EA-Code) →
Kontext-und Privilegierungswechsel, Ziel: Typ-1-HV

5. Kernel Mode: HV führt privilegierte Instruktionen anstelle des
Gast-BS aus

•

Sensible und privilegierte Instruktionen: Beobachtungen an
verschiedenen Maschinenbefehlssätzen: [Popek&Goldberg74]

• $\exists$ Menge an Maschinenbefehlen, die nur im Kernel Mode
ausgeführt werden dürfen (Befehle zur Realisierung von E/A,
Manipulation der MMU, ...)

– → sensible Instruktionen

• $\exists$ Menge an Maschinenbefehlen, die Wechsel des
Privilegierungsmodus auslösen (x86: Trap ), wenn sie im User
Mode ausgeführt werden

– → privilegierte Instruktionen

• Prozessor ist virtualisierbarfalls (notw. Bed.): sensible
Instruktionen $\subseteq$ privilegierte Instruktionen

• Folge: jeder Maschinenbefehl, der im Nutzermodus nicht erlaubt
ist, muss einen Privilegierungswechsel auslösen (z.B. Trap
generieren)

• kritische Instruktionen = sensible Instruktionen \ privilegierte
Instruktionen

– Befehle, welche diese Bedingung verletzen → Existenz im
Befehlssatz führt zu nicht-virtualisierbarem Prozessor

• Beispiele für sensible Instruktionen bei Intel x86:

– hlt: Befehlsabarbeitung bis zum nächsten Interrupt stoppen
– invlpg: TLB-Eintrag für Seite invalidieren
– lidt: IDT (interrupt descriptor table) neu laden
– mov auf Steuerregistern
– ...

• Beispiel: Privilegierte Prozessorinstruktionen

– Bsp.: write - Systemaufruf
– Anwendungsprogramm schreibt String in Puffer eines

Ausgabegeräts ohne Nutzung der libc Standard-Bibliothek:
asm ( ı̈nt $0x80" ); /* interrupt 80 (trap) */

– Interrupt-Instruktion veranlasst Prozessor zum
Kontextwechsel: Kernelcode im privilegierten Modus
ausführen

Vergleich: Privilegierte vs. sensible Instruktionen

•

Folgen für Virtualisierung

• privilegierte Instruktionen bei virtualisierbaren Prozessoren
• bei Ausführung einer privilegierten Instruktion in virtueller

Maschine: immer Kontrollflussübergabe an im Kernel-Modus
laufende Systemsoftware - hier Typ-1-HV

• HV kann (anhand des virtuellen Privilegierungsmodus) feststellen:

1. ob sensible Anweisung durch Gast-BS
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2. oder durch Nutzerprogramm (Systemaufruf!) ausgelöst

• Folgen:

1. privilegierte Instruktionen des Gast-Betriebssystems
werden ausgeführt → ,,trap-and-emulate”

2. Einsprung in Betriebssystem, hier also Einsprung in
Gast-Betriebssystem → Upcall durch HV

• privilegierte Instruktionen bei nicht virtualisierbaren Prozessoren

– solche Instruktionen typischerweise ignoriert!

Intel-Architektur ab 386

• dominant im PC-und Universalrechnersegment ab 1980er
• keine Unterstützung für Virtualisierung ...
• kritische Instruktionen im User Mode werden von CPU ignoriert
• außerdem: in Pentium-Familie konnte Kernel-Code explizit

feststellen, ob er im Kernel- oder Nutzermodus läuft → Gast-BS
trifft (implementierungsabhängig) evtl. fatal fehlerhafte
Entscheidungen

• Diese Architekturprobleme (bekannt seit 1974) wurden 20 Jahre
lang im Sinne von Rückwärtskompatibilität auf
Nachfolgeprozessoren übertragen ...

– erste virtualisierungsfähige Intel-Prozessorenfamilie (s.
[Adams2006] ): VT, VT-x® (2005)

– dito für AMD: SVM, AMD-V® (auch 2005)

Forschungsarbeit 1990er Jahre

• verschiedene akademische Projekte zur Virtualisierung bisher
nicht virtualisierbarer Prozessoren

• erstes und vermutlich bekanntestes: DISCO- Projekt der
University of Stanford

• Resultat: letztlich VMware (heute kommerziell) und
Typ-2-Hypervisors...

Typ-2-Hypervisor
Virtualisierung ohne Hardwareunterstützung:

• keine Möglichkeit, trap-and-emulate zu nutzen
• keine Möglichkeit, um

1. korrekt (bei sensiblen Instruktionen im Gast-Kernel) den
Privilegierungsmodus zu wechseln

2. den korrekten Code im HV auszuführen

Übersetzungsstrategie in Software:

• vollständige Übersetzung des Maschinencodes, der in VM
ausgeführt wird, in Maschinencode, der im HV ausgeführt wird

• praktische Forderung: HV sollte selbst abstrahierte
HW-Schnittstelle zur Ausführung des (komplexen!)

Übersetzungscodes zur Verfügung haben (z.B. Nutzung von
Gerätetreibern)

• → Typ-2-HV als Kompromiss:

– korrekte Ausführung von virtualisierter Software auf
virtualisierter HW

– beherrschbare Komplexität der Implementierung

aus Nutzersicht

• läuft als gewöhnlicher Nutzer-Prozess auf Host-Betriebssystem
(z.B. Windows oder Linux)

• VMware bedienbarwie physischer Rechner (bspw. erwartet
Bootmedium in virtueller Repräsentation eines physischen
Laufwerks)

• persistente Daten des Gast-BS auf virtuellem Speichermedium (
tatsächlich: Image-Datei aus Sicht des Host-Betriebssystems)

Mechanismus: Code-Inspektion

• Bei Ausführung eines Binärprogramms in der virtuellen Maschine
(egal ob Bootloader, Gast-BS-Kernel, Anwendungsprogramm):
zunächst inspiziert Typ-2-HV den Code nach Basisblöcken

– Basisblock: Befehlsfolge, die mit privilegierten Befehlen
oder solchen Befehlen abgeschlossen ist, die den
Kontrollfluss ändern (sichtbar an Manipulation des
Programm-Zählers eip), z.B. jmp, call, ret.

• Basisblöcke werden nach sensiblen Instruktionen abgesucht
• diese werden jeweils durchAufruf einer HV-Prozedur ersetzt, die

jeweilige Instruktion behandelt
• gleiche Verfahrensweise mit letzter Instruktion eines Basis-Blocks

Mechanismus: Binary Translation (Binärcodeübersetzung)

• modifizierter Basisblock: wird innerhalbdes HVin
Cachegespeichert und ausgeführt

• Basisblock ohne sensible Instruktionen: läuft unter Typ-2-HV
exakt so schnell wie unmittelbar auf Hardware (weil er auch
tatsächlich unmittelbar auf der Hardware läuft, nur eben im
HV-Kontext)

• sensible Instruktionen: nach dargestellter Methode abgefangen
und emuliert → dabei hilft jetzt das Host-BS (z.B. durch eigene
Systemaufrufe, Gerätetreiberschnittstellen)

Mechanismus: Caching von Basisblöcken

• HV nutzt zwei parallel arbeitende Module (Host-BS-Threads!):

– Translator: Code-Inspektion, Binary Translation
– Dispatcher: Basisblock-Ausführung

• zusätzliche Datenstruktur: Basisblock-Cache
• Dispatcher: sucht Basisblock mit jeweils nächster auszuführender

Befehlsadresse im Cache; falls miss → suspendieren (zugunsten
Translator)

• Translator: schreibt Basisblöcke in Basisblock-Cache
• Annahme: irgendwann ist Großteil des Programms im Cache,

dieses läuft dann mit nahezu Original-Geschwindigkeit
(theoretisch)

Performanzmessungen

• zeigen gemischtes Bild: Typ2-HV keinesfalls so schlecht, wie einst
erwartet wurde

• qualitativer Vergleich mit virtualisierbarer Hardware
(Typ1-Hypervisor):

• ,,trap-and-emulate,,: erzeugt Vielzahl von Traps →
Kontextwechsel zwischen jeweiliger VM und HV

• insbesondere bei Vielzahl an VMs sehr teuer: CPU-Caches, TLBs,
Heuristiken zur spekulativen Ausführung werden verschmutzt

• wenn andererseits sensible Instruktionen durch Aufruf von
VMware-Prozeduren innerhalb des ausführenden Programms
ersetzt: keine Kontextwechsel-Overheads

Studie: (von Vmware) [Adams&Agesen06]

• last-und anwendungsabhängig kann Softwarelösung sogar
Hardwarelösung übertreffen

• Folge: viele moderne Typ1-HV benutzen aus Performanzgründen
ebenfalls Binary Translation

Paravirtualisierung
Funktionsprinzip

• ... unterscheidet sich prinzipiell von Typ-1/2-Hypervisor
• wesentlich: Quellcode des Gast-Betriebssystems modifiziert
• sensible Instruktionen: durch Hypervisor-Calls ersetzt
• Folge: Gast-Betriebssystem arbeitet jetzt vollständig wie

Nutzerprogramm, welches Systemaufrufe zum Betriebssystem
(hier dem Hypervisor) ausführt

• dazu:

– Hypervisor: muss geeignetes Interface definieren (HV-Calls)
– → Menge von Prozedur-Aufrufen zur Benutzung durch

Gast-Betriebssystem
– bilden eine HV-API als Schnittstelle für

Gast-Betriebssysteme (nicht für Nutzerprogramme!)

• mehr dazu: Xen

Verwandtschaft mit Mikrokernel-Architekturen

• Geht man vom Typ-1-HV noch einen Schritt weiter ...

– und entfernt alle sensiblen Instruktionen aus
Gast-Betriebssystem ...

– und ersetzt diese durch Hypervisor-Aufrufe, um
Systemdienste wie E/A zu benutzen, ...

– hat man praktisch den Hypervisor in Mikrokernel
transformiert.

• ... und genau das wird auch schon gemacht: $Lˆ4$Linux (TU
Dresden)

– Basis: stringente $Lˆ4\mu$ Kernel-Implementierung
(Typ-1-HV-artiger Funktionsumfang)

– Anwendungslaufzeitumgebung: paravirtualisierter
Linux-Kernel als Serverprozess

– Ziele: Isolation (Sicherheit, Robustheit), Echtzeitfähigkeit
durch direktere HW-Interaktion (vergleichbar
Exokernel-Ziel)

Zwischenfazit Virtualisierung

• Ziele: Adaptivität komplementär zu...

– Wartbarkeit : ökonomischer Betrieb von Cloud-und
Legacy-Anwendungen ohne dedizierte Hardware

– Sicherheit : sicherheitskritische Anwendungen können
vollständig von nichtvertrauenswürdigen Anwendungen
(und untereinander) isoliert werden

– Robustheit : Fehler in VMs (= Anwendungsdomänen)
können nicht andere VMs beeinträchtigen

• Idee: drei gängige Prinzipien:

– Typ-1-HV: unmittelbares HW-Multiplexing,
trap-and-emulate

– Typ-2-HV: HW-Multiplexing auf Basis eines Host-OS,
binarytranslation

– Paravirtualisierung: Typ-1-HV für angepasstes Gast-OS,
kein trap-and-emulate nötig → HV ähnelt $\mu$Kern

• Ergebnisse:

– 3VMs mit individuell anpassbarer Laufzeitumgebung
– 3isolierteVMs
– 3kontrollierbare VM-Interaktion (untereinander und mit

HW)
– 7keine hardwarespezifischen Optimierungen aus VM heraus

möglich → Performanz, Echtzeitfähigkeit, Sparsamkeit!
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Container
Ziele:

• Adaptivität , im Dienste von ...
• ... Wartbarkeit: einfachen Entwicklung, Installation,

Rekonfiguration durch Kapselung von

– Anwendungsprogrammen
– ∗ durch sie benutzte Bibliotheken
– ∗ Instanzen bestimmter BS-Ressourcen

• ... Portabilität: Betrieb von Anwendungen, die lediglich von
einem bestimmten BS-Kernel abhängig sind (nämlich ein solcher,
der Container unterstützt); insbesondere hinsichtlich:

– Abhängigkeitskonflikten (Anwendungen und Bibliotheken)
– fehlenden Abhängigkeiten (Anwendungen und Bibliotheken)
– Versions-und Namenskonflikten

• ... Sparsamkeit: problemgerechtes ,,Packen,, von Anwendungen in
Container → Reduktion an Overhead: selten (oder gar nicht)
genutzter Code, Speicherbedarf, Hardware, ...

Idee:

• private Sichten (Container) bilden = private
User-Space-Instanzen für verschiedene Anwendungsprogramme

• Kontrolle dieser Container i.S.v. Multiplexing, Unabhängigkeit
und API: BS-Kernel

• somit keine Form der BS-Virtualisierung, eher:
,,User-Space-Virtualisierung,,

Anwendungsfälle für Container

• Anwendungsentwicklung:

– konfliktfreies Entwickeln und Testen unterschiedlicher
Software, für unterschiedliche Zielkonfigurationen
BS-User-Space

• Anwendungsbetrieb und -administration:

– Entschärfung von ,,dependency hell,,
– einfache Migration, einfaches Backup von Anwendungen

ohne den (bei Virtualisierungsimages als Ballast
auftretenden) BS-Kernel

– einfache Verteilung generischer Container für bestimmte
Aufgaben

– = Kombinationen von Anwendungen

• Anwendungsisolation? → Docker

Zwischenfazit: Container

• Ziele: Adaptivität komplementär zu...

– Wartbarkeit : Vermeidung von Administrationskosten für
Laufzeitumgebung von Anwendungen

– Portabilität : Vereinfachung von Abhängigkeitsverwaltung
– Sparsamkeit : Optimierung der Speicher-und

Verwaltungskosten für Laufzeitumgebung von
Anwendungen

• Idee:

– unabhängige User-Space-Instanz für jeden einzelnen
Container

– Aufgaben des Kernels: Unterstützung der
Containersoftware bei Multiplexing und Herstellung der
Unabhängigkeitdieser Instanzen

• Ergebnisse:

– 3vereinfachte Anwendungsentwicklung
– 3vereinfachter Anwendungsbetrieb
– 7Infrastruktur nötig über (lokale) Containersoftware

hinaus, um Containern zweckgerecht bereitzustellen und zu
warten

– 7keine vollständige Isolationmöglich

Beispielsysteme (Auswahl)

• Virtualisierung: VMware, VirtualBox
• Paravirtualisierung: Xen
• Exokernel: Nemesis, MirageOS, RustyHermit
• Container: Docker, LupineLinux

Hypervisor

VMware

• ”... ist Unternehmenin PaloAlto, Kalifornien (USA)
• gegründet 1998 von 5 Informatikern
• stellt verschiedene Virtualisierungs-Softwareprodukte her:

1. VMware Workstation
– war erstes Produkt von VMware (1999)
– mehrere unabhängige Instanzen von x86- bzw.

x86-64-Betriebssystemen auf einer Hardware
betreibbar

2. VMware Fusion: ähnliches Produkt für Intel
Mac-Plattformen

3. VMware Player: (eingestellte) Freeware für
nichtkommerziellen Gebrauch

4. VMware Server (eingestellte Freeware, ehem. GSX Server)
5. VMware vSphere (ESXi)

– Produkte 1 ... 3: für Desktop-Systeme
– Produkte 4 ... 5: für Server-Systeme
– Produkte 1 ... 4: Typ-2-Hypervisor

• bei VMware-Installation: spezielle vm- Treiber in
Host-Betriebssystem eingefügt

• diese ermöglichen: direkten Hardware-Zugriff
• durch Laden der Treiber: entsteht ,,Virtualisierungsschicht”

(VMware-Sprechweise)
•
• – Typ1- Hypervisor- Architektur

– Anwendung nur bei VMware ESXi
• – Entsprechende Produkte in Vorbereitung

VirtualBox

• Virtualisierungs-Software für x86- bzw. x86-64-Betriebssysteme
für Industrie und ,,Hausgebrauch” (ursprünglich: Innotek , dann
Sun , jetzt Oracle )

• frei verfügbare professionelle Lösung, als Open Source Software
unter GNU General Public License(GPL) version 2. ...

• (gegenwärtig) lauffähig auf Windows, Linux, Macintosh und
Solaris Hosts

• unterstützt große Anzahl von Gast-Betriebssystemen: Windows
(NT 4.0, 2000, XP, Server 2003, Vista, Windows 7),
DOS/Windows 3.x, Linux (2.4 and 2.6), Solaris and OpenSolaris ,
OS/2 , and OpenBSD u.a.

• reiner Typ-2-Hypervisor

Paravirutalisierung: Xen
• entstanden als Forschungsprojekt der University of Cambridge

(UK), dann XenSource Inc., danach Citrix, jetzt: Linux
Foundation (,,self-governing”)

• frei verfügbar als Open Source Software unter GNU General
Public License (GPL)

• lauffähig auf Prozessoren der Typen x86, x86-64, PowerPC, ARM,
MIPS

• unterstützt große Anzahl von Gast-Betriebssystemen: FreeBSD,
GNU/Hurd/Mach, Linux, MINIX, NetBSD, Netware,
OpenSolaris, OZONE, Plan 9

• ,,Built for the cloud before it was called cloud.” (Russel Pavlicek,
Citrix)

• bekannt für Paravirtualisierung
• unterstützt heute auch andere Virtualisierungs-Prinzipien

Xen : Architektur

• Gast-BSe laufen in Xen Domänen (,,$dom i$”, analog $VM i$)
• es existiert genau eine, obligatorische, vertrauenswürdige

Domäne: $dom 0$
• Aufgaben (Details umseitig):

– Bereitstellen und Verwalten der virtualisierten Hardware
für andere Domänen (Hypervisor-API, Scheduling-Politiken
für Hardware-Multiplexing)

– Hardwareverwaltung/-kommunikation für paravirtualisierte
Gast-BSe (Gerätetreiber)

– Interaktionskontrolle (Sicherheitspolitiken)

• $dom 0$ im Detail: ein separates, hochkritisch administriertes,
vertrauenswürdiges BS mit eben solchen Anwendungen (bzw.
Kernelmodulen) zur Verwaltung des gesamten virtualisierten
Systems

– es existieren hierfür spezialisierte Variantenvon Linux,
BSD, GNU Hurd

Xen : Sicherheit

• Sicherheitsmechanismusin Xen: Xen Security Modules (XSM)
• illustriert, wie (Para-) Typ-1-Virtualisierung von BS die NFE

Sicherheit unterstützt
• PDP: Teil des vertrauenswürdigen BS in $dom 0$, PEPs: XSMs

im Hypervisor
• Beispiel: Zugriff auf Hardware

– Sicherheitspolitik-Integration, Administration, Auswertung:
$dom 0$

• Beispiel: Inter-Domänen-Kommunikation

– Interaktionskontrolle (Aufgaben wie oben): $dom 0$
– Beispiel: VisorFlow
– selber XSM kontrolliert Kommunikation für zwei Domänen

Exokernel
Nemesis

• Betriebssystemaus EU-Verbundprojekt ,,Pegasus,, zur
Realisierung eines verteilten multimediafähigen Systems (1.
Version: 1994/95)

• Entwurfsprinzipien:

1. Anwendungen: sollen Freiheit haben, Betriebsmittel in für
sie geeignetster Weise zu nutzen (= Exokernel-Prinzip)

2. Realisierung als sog. vertikal strukturiertes Betriebssystem:

– weitaus meiste Betriebssystem-Funktionalität
innerhalb der Anwendungen ausgeführt (=
Exokernel-Prinzip)

– Echtzeitanforderungen durch Multimedia →
Vermeidung von Client-Server-Kommunikationsmodell
wegen schlecht beherrschbarer zeitlicher
Verzögerungen (neu)

•

MirageOS + Xen

• Spezialfall: Exokernel als paravirtualisiertes BS auf Xen
• Ziele : Wartbarkeit (Herkunft: Virtualisierungsarchitekturen ...)

– ökonomischer HW-Einsatz
– Unterstützung einfacher Anwendungsentwicklung
– nicht explizit: Unterstützung von Legacy-Anwendungen!

• Idee: ,,Unikernel” → eine Anwendung, eine API, ein Kernel
• umfangreiche Dokumentation, Tutorials, ... → ausprobieren
• Unikernel - Idee

– Architekturprinzip:
– in MirageOS:

• Ergebnis: Kombination von Vorteilen zweier Welten
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– Virtualisierungs vorteile: Sicherheit, Robustheit ( → Xen -
Prinzip genau einer vertrauenswürdigen, isolierten Domäne
$dom 0$)

– Exokernelvorteile: Wartbarkeit, Sparsamkeit
– nicht: Exokernelvorteil der hardwarenahen

Anwendungsentwicklung... ( → Performanz und
Echzeitfähigkeit )

Container: Docker
• Idee: Container für einfache Wartbarkeit von

Linux-Anwendungsprogrammen ...

– ... entwickeln
– ... testen
– ... konfigurieren
– ... portieren → Portabilität

• Besonderheit: Container können - unabhängig von ihrem
Einsatzzweck - wie Software-Repositories benutzt, verwaltet,
aktualisiert, verteilt ... werden

• Management von Containers: Docker Client → leichtgewichtiger
Ansatz zur Nutzung der Wartbarkeitsvorteile von Virtualisierung

• Forsetzung unter der OCI (Open Container Initiative)

– ,,Docker does a nice job [...] for a focused purpose, namely
the lightweight packaging and deployment of applications.”
(Dirk Merkel, Linux Journal)

• Implementierung der Containertechnik basierend auf
Linux-Kernelfunktionen:

– Linux Containers (LXC): BS-Unterstützung für
Containermanagement

– cgroups: Accounting/Beschränkung der
Ressourcenzuordnung

– union mounting: Funktion zur logischen Reorganisation
hierarchischer Dateisysteme

•

Performanz und Parallelität
Motivation

• Performanz: Wer hätte gern einen schnell(er)en Rechner...?
• Wer braucht schnelle Rechner:

– Hochleistungsrechnen, HPC (,,high
performancecomputing”)

∗ wissenschaftliches Rechnen(z.B. Modellsimulation
natürlicher Prozesse,
Radioteleskop-Datenverarbeitung)

∗ Datenvisualisierung(z.B. Analysen großer Netzwerke)
∗ Datenorganisation-und speicherung(z.B.

Kundendatenverarbeitung zur Personalisierung von
Werbeaktivitäten, Bürgerdatenverarbeitung zur
Personalisierung von Geheimdienstaktivitäten)

– nicht disjunkt dazu: kommerzielle Anwendungen

∗ ,,Big Data”: Dienstleistungen für Kunden, die o. g.
Probleme auf gigantischen Eingabedatenmengen zu
lösen haben (Software wie Apache Hadoop )

∗ Wettervorhersage

– anspruchsvolle Multimedia- Anwendungen

∗ Animationsfilme
∗ VR-Rendering

Performanzbegriff
• Performance: The degree to which a system or component

accomplishes its designated functions within given constraints,
such as speed, accuracy, or memory usage. (IEEE)

• Performanz im engeren Sinne dieses Kapitels: Minimierung der
für korrekte Funktion (= Lösung eines Berechnungsproblems) zur
Verfügung stehenden Zeit.

• oder technischer: Maximierung der Anzahl pro Zeiteinheit
abgeschlossener Berechnungen.

Roadmap
• Grundlegende Erkenntnis: Performanz geht nicht (mehr) ohne

Parallelität → Hochleistungsrechnen = hochparalleles Rechnen
• daher in diesem Kapitel: Anforderungen hochparallelen Rechnens

an ...

– Hardware: Prozessorarchitekturen
– Systemsoftware: Betriebssystemmechanismen
– Anwendungssoftware: Parallelisierbarkeitvon Problemen

• BS-Architekturen anhand von Beispielsystemen:

– Multikernel: Barrelfish
– verteilte Betriebssysteme

Hardware-Voraussetzungen
• Entwicklungstendenzen der Rechnerhardware:

– Multicore-Prozessoren: seit ca. 2006 (in größerem Umfang)
– Warum neues Paradigma für Prozessoren? bei

CPU-Taktfrequenz >> 4 GHz: z.Zt. physikalische Grenze,
u.a. nicht mehr sinnvoll handhabbare Abwärme

– Damit weiterhin:
1. Anzahl der Kerne wächst nicht linear
2. Taktfrequenz wächst asymptotisch, nimmt nur noch

marginal zu

Performanz durch Parallelisierung ...
Folgerungen

1. weitere Performanz-Steigerung von Anwendungen: primär durch
Parallelität (aggressiverer) Multi-Threaded-Anwendungen

2. erforderlich: Betriebssystem-Unterstützung → Scheduling,
Sychronisation

3. weiterhin erforderlich: Formulierungsmöglichkeiten (Sprachen),
Compiler, verteilte Algorithmen ... → hier nicht im Fokus

... auf Prozessorebene
Vorteile von Multicore-Prozessoren

1. möglich wird: Parallelarbeit auf Chip-Ebene → Vermeidung
der Plagen paralleler verteilter Systeme

2. bei geeigneter Architektur: Erkenntnisse und Software aus Gebiet
verteilter Systeme als Grundlage verwendbar

3. durch gemeinsame Caches (architekturabhängig): schnellere
Kommunikation (speicherbasiert), billigere Migration von
Aktivitäten kann möglich sein

4. höhere Energieeffizienz: mehr Rechenleistung pro Chipfläche,
geringere elektrische Leistungsaufnahme → weniger
Gesamtabwärme, z.T. einzelne Kerne abschaltbar (vgl.
Sparsamkeit , mobile Geräte)

5. Baugröße: geringeres physisches Volumen

Nachteile von Multicore-Prozessoren

1. durch gemeinsam genutzte Caches und Busstrukturen: Engpässe
(Bottlenecks) möglich

2. zur Vermeidung thermischer Zerstörungen: Lastausgleich
zwingend erforderlich! (Ziel: ausgeglichene Lastverteilung auf
einzelnen Kernen)

3. zum optimalen Einsatz zwingend erforderlich:

1. Entwicklung Hardwarearchitektur
2. zusätzlich: Entwicklung geeigneter Systemsoftware
3. zusätzlich: Entwicklung geeigneter Anwendungssoftware

Multicore-Prozessoren
• Sprechweise in der Literatur gelegentlich unübersichtlich...
• daher: Terminologie und Abkürzungen:

– MC ...multicore(processor)
– CMP ...chip-level multiprocessing, hochintegrierte Bauweise

für ,,MC”

– SMC ...symmetric multicore → SMP ... symmetric
multi-processing

– AMC ...asymmetric (auch: heterogeneous ) multicore →
AMP ... asymmetric multi-processing

– UP ...uni-processing , Synonym zu singlecore(SC) oder
uniprocessor

Architekturen von Multicore-Prozessoren

• A. Netzwerkbasiertes Design

– Prozessorkerne des Chips u. ihre lokalen Speicher (oder
Caches): durch Netzwerkstruktur verbunden

– damit: größte Ähnlichkeit zu traditionellen verteilten
Systemen

– Verwendung: bei Vielzahl von Prozessorkernen
(Skalierbarkeit!)

– Beispiel: Intel Teraflop-Forschungsprozessor Polaris (80
Kerne als 8x10-Gitter)

• B. Hierarchisches Design

– mehrere Prozessor-Kerne teilen sich mehrere baumartig
angeordnete Caches

– meistens:

∗ jeder Prozessorkern hat eigenen L1-Cache
∗ L2-Cache, Zugriff auf (externen) Hauptspeicher u.

Großteil der Busse aber geteilt

– Verwendung: typischerweise Serverkonfigurationen
– Beispiele:

∗ IBM Power
∗ Intel Core 2, Core i
∗ Sun UltraSPARCT1 (Niagara)

• C. Pipeline-Design

– Daten durch mehrere Prozessor-Kerne schrittweise
verarbeitet

– durch letzten Prozessor: Ablage im Speichersystem
– Verwendung:

∗ Graphikchips
∗ (hochspezialisierte) Netzwerkprozessoren

– Beispiele: Prozessoren X10 u. X11 von Xelerator zur
Verarbeitung von Netzwerkpaketen in Hochleistungsroutern
(X11: bis zu 800 Pipeline-Prozessorkerne)

Symmetrische u. asymmetrische Multicore-Prozessoren

• symmetrische Multicore-Prozessoren (SMC)

– alle Kerne identisch, d.h. gleiche Architektur und gleiche
Fähigkeiten

– Beispiele:

∗ Intel Core 2 Duo
∗ Intel Core 2 Quad
∗ ParallaxPropeller

• asymmetrische MC-Prozessoren (AMC)
• Multicore-Architektur, jedoch mit Kernen unterschiedlicher

Architektur und/oder unterschiedlichen Fähigkeiten
• Beispiel: Kilocore:

– 1 Allzweck-Prozessor (PowerPC)
– ∗ 256 od. 1024 Datenverarbeitungsprozessoren
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Superskalare Prozessoren
• Bekannt aus Rechnerarchitektur: Pipelining

– parallele Abarbeitung von Teilen eines Maschinenbefehls in
Pipeline-Stufen

– ermöglicht durch verschiedene Funktionseinheiten eines
Prozessors für verschiedene Stufen:

∗ Control Unit (CU)
∗ ArithmeticLogicUnit (ALU)
∗ Float Point Unit (FPU)
∗ Memory Management Unit (MMU)
∗ Cache

– sowie mehrere Pipeline-Register

• superskalare Prozessoren: solche, bei denen zur Bearbeitung einer
Pipeling-Stufe erforderlichen Funktionseinheiten n-fach vorliegen

• Ziel:

– Skalarprozessor (mit Pipelining): 1 Befehl pro Takt
(vollständig) bearbeitet

– Superskalarprozessor: bis zu n Befehle pro Taktbearbeitet

• Verbereitung heute: universell (bis hin zu allen
Desktop-Prozessorfamilien)

Parallelisierung in Betriebssystemen
• Basis für alle Parallelarbeit aus BS-Sicht: Multithreading
• wir erinnern uns ...:

– Kernel-Level-Threads (KLTs): BS implementiert Threads
→ Scheduler kann mehrere Threads nebenläufig planen →
Parallelität möglich

– User-Level-Threads (ULTs): Anwendung implementiert
Threads → keine Parallelität möglich!

• grundlegend für echt paralleles Multithreading:

– parallelisierungsfähige Hardware
– kausal unabhängige Threads
– passendes (und korrekt eingesetztes!) Programmiermodell,

insbesondere Synchronisation!
– → Programmierer + Compiler

Vorläufiges Fazit:

• BS-Abstraktionen müssen Parallelität unterstützen (Abstraktion
nebenläufiger Aktivitäten: KLTs)

• BS muss Synchronisationsmechanismen implementieren

Synchronisations- und Sperrmechanismen
• Synchronisationsmechanismen zur Nutzung

– ... durch Anwendungen → Teil der API
– ... durch den Kernel (z.B. Implementierung

Prozessmanagement, E/A, ...)

• Aufgabe: Verhinderung konkurrierender Zugriffe auf logische oder
physische Ressourcen

– Vermeidung von raceconditions
– Herstellung einer korrekten Ordnung entsprechend

Kommunikationssemantik (z.B. ,,Schreiben vor Lesen”)

• (alt-) bekanntes Bsp.: Reader-Writer-Problem

Erinnerung: Reader-Writer-Problem

• Begriffe: (bekannt)

– wechselseitiger Ausschluss ( mutual exclusion)
– kritischer Abschnitt (critical section)

• Synchronisationsprobleme:

– Wie verhindern wir ein write in vollen Puffer?
– Wie verhindern wir ein read aus leerem Puffer?

– Wie verhindern wir, dass auf ein Element während des read
durch ein gleichzeitiges write zugegriffen wird? (Oder
umgekehrt?)

Sperrmechanismen ( Locks )

• Wechselseitiger Ausschluss ...

– ... ist in nebenläufigen Systemen zwingend erforderlich
– ... ist in echt parallelen Systemen allgegenwärtig
– ... skaliert äußerst unfreundlich mit Code-Komplexität →

(monolithischer) Kernel-Code!

• Mechanismen in Betriebssystemen: Locks
• Arten von Locks am Beispiel Linux:

– Big Kernel Lock (BKL)

∗ historisch (1996-2011): lockkernel(); ... unlockkernel();
∗ ineffizient durch massiv gestiegene Komplexität des

Kernels
– atomic-Operationen
– Spinlocks
– Semaphore (Spezialform: Reader/Writer Locks)

atomic*

• Bausteine der komplexeren Sperrmechanismen:

– Granularität: einzelne Integer- (oder sogar Bit-) Operation
– Performanz: mittels Assembler implementiert, nutzt

Atomaritäts garantiender CPU ( TSL - Anweisungen:
,,test-set-lock” )

• Benutzung:

– atomic * Geschmacksrichtungen: read, set, add, sub, inc,
dec u. a.

– keine explizite Lock-Datenstruktur → Deadlocks durch
Mehrfachsperrung syntaktisch unmöglich

– definierte Länge des kritischen Abschnitts (genau diese eine
Operation) → unnötiges Sperren sehr preiswert

Zusammenfassung
Funktionale und nichtfunktionale Eigenschaften

• Funktionale Eigenschaften: beschreiben, was ein
(Software)-Produkt tun soll

• Nichtfunktionale Eigenschaften: beschreiben, wie funktionale
Eigenschaften realisiert werden, also welche sonstigen
Eigenschaftendas Produkt haben soll ... unterteilbar in:

1. Laufzeiteigenschaften (zur Laufzeit sichtbar)
2. Evolutionseigenschaften (beim Betrieb sichtbar:

Erweiterung, Wartung, Test usw.)

Roadmap (... von Betriebssystemen)

• Sparsamkeit und Effizienz
• Robustheit und Verfügbarkeit
• Sicherheit
• Echtzeitfähigkeit
• Adaptivität
• Performanzund Parallelität

Sparsamkeit und Effizienz
• Sparsamkeit: Die Eigenschaft eines Systems, seine Funktion mit

minimalem Ressourcenverbrauch auszuüben.
• Effizienz: Der Grad, zu welchem ein System oder eine seiner

Komponenten seine Funktion mit minimalem
Ressourcenverbrauch ausübt. → Ausnutzungsgrad begrenzter
Ressourcen

• Die jeweils betrachtete(n) Ressource(n) muss /(müssen) dabei
spezifiziert sein!

• sinnvolle Möglichkeiten bei Betriebssystemen:

1. Sparsamer Umgang mit Energie , z.B. energieeffizientes
Scheduling

2. Sparsamer Umgang mit Speicherplatz (Speichereffizienz)
3. Sparsamer Umgang mit Prozessorzeit
4. ...

Sparsamkeit mit Energie

• Sparsamkeit mit Energie als heute extrem wichtigen Ressource,
mit nochmals gesteigerter Bedeutung bei mobilen bzw.
vollständig autonomen Geräten Maßnahmen:

1. Hardware-Ebene: momentan nicht oder nicht mit maximaler
Leistung benötigte Ressourcen in energiesparenden Modus
bringen: abschalten, Standby, Betrieb mit verringertem
Energieverbrauch ( abwägen gegen verminderte Leistung).
(Geeignete Hardware wurde/wird ggf. erst entwickelt)

2. Software-Ebene: neue Komponenten entwickeln, die in der Lage
sein müssen:

• Bedingungenzu erkennen, unter denen ein energiesparender
Modus möglich ist;

• Steuerungs-Algorithmen für Hardwarebetrieb so zu
gestalten, dass Hardware-Ressourcen möglichst lange in
einem energiesparenden Modus betrieben werden.

• Energie-Verwaltungsstrategien: energieeffizientes Scheduling
zur Vermeidung von Unfairness und Prioritätsumkehr

• Beispiele: energieeffizientes Magnetfestplatten-Prefetching,
energiebewusstes RR-Scheduling

Sparsamkeit mit Speicherplatz

• Betrachtet: Sparsamkeit mit Speicherplatz mit besonderer
Wichtigkeit für physisch beschränkte, eingebettete und autonome
Geräte

• Maßnahmen Hauptspeicherauslastung:

1. Algorithmus und Strategie z.B.:

– Speicherplatz sparende Algorithmen zur Realisierung
gleicher Strategien

2. Speicherverwaltung von Betriebssystemen:

– physische vs. virtuelle Speicherverwaltung
– speichereffiziente Ressourcenverwaltung
– Speicherbedarfdes Kernels
– direkte Speicherverwaltungskosten

• Maßnahmen Hintergrundspeicherauslastung:

1. Speicherbedarf des Betriebssystem-Images
2. dynamische SharedLibraries
3. VMM-Auslagerungsbereich
4. Modularität und Adaptivität des Betriebssystem-Images

• Nicht betrachtet: Sparsamkeit mit Prozessorzeit → 99%
Überschneidung mit NFE Performanz

Robustheit und Verfügbarkeit
• Robustheit: Zuverlässigkeit unter Anwesenheit externer Ausfälle
• fault, aktiviert → error, breitet sich aus → failure

Robustheit

• Erhöhung der Robustheit durch Isolation:

– Maßnahmen zur Verhinderung der Fehlerausbreitung:

1. Adressraumisolation: Mikrokernarchitekturen,
2. kryptografische HW-Unterstützung: Intel SGX und
3. Virtualisierungsarchitekturen

• Erhöhung der Robustheit durch Behandlung von Ausfällen:
Micro-Reboots

Vorbedingung für Robustheit: Korrektheit
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• Korrektheit: Eigenschaft eines Systems sich gemäß seiner
Spezifikation zu verhalten (unter der Annahme, dass bei dieser
keine Fehler gemacht wurden).

• Maßnahmen (nur angesprochen):

1. diverse Software-Tests:

• können nur Fehler aufspüren, aber keine Fehlerfreiheit
garantieren!

2. Verifizierung:

• Durch umfangreichen mathematischen Apparat wird
Korrektheit der Software bewiesen.

• Aufgrund der Komplexität ist Größe verifizierbarer
Systeme (bisher?) begrenzt.

• Betriebssystem-Beispiel: verifizierter Mikrokern seL

Verfügbarkeit

• Verfügbarkeit: Der Anteil an Laufzeit eines Systems, in dem
dieses seine spezifizierte Leistung erbringt.

• angesprochen: Hochverfügbare Systeme
• Maßnahmen zur Erhöhung der Verfügbarkeit:

1. Robustheitsmaßnahmen
2. Redundanz
3. Redundanz
4. Redundanz
5. Ausfallmanagement

Sicherheit
• Sicherheit (IT-Security): Schutz eines Systems gegen Schäden

durch zielgerichtete Angriffe, insbesondere in Bezug auf die
Informationen, die es speichert, verarbeitet und kommuniziert.

• Sicherheitsziele:

1. Vertraulichkeit (Confidentiality)
2. Integrität (Integrity)
3. Verfügbarkeit (Availability)
4. Authentizität (Authenticity)
5. Verbindlichkeit (Non-repudiability)

Security Engineering

• Sicherheitsziele → Sicherheitspolitik → Sicherheitsarchitektur →
Sicherheitsmechanismen

• Sicherheitspolitik: Regeln zum Erreichen eines Sicherheitsziels.

– hierzu formale Sicherheitsmodelle:
– IBAC, TE, MLS
– DAC, MAC

• Sicherheitsmechanismen: Implementierung der Durchsetzung einer
Sicherheitspolitik.

– Zugriffssteuerungslisten(ACLs)
– SELinux

• Sicherheitsarchitektur: Platzierung, Struktur und Interaktion von
Sicherheitsmechanismen.

– wesentlich: Referenzmonitorprinzipien
– RM1: Unumgehbarkeit → vollständiges Finden aller

Schnittstellen
– RM2: Manipulationssicherheit → Sicherheit

einerSicherheitspolitik selbst
– RM3: Verifizierbarkeit → wohlstrukturierte und per

Designkleine TCBs

Echtzeitfähigkeit
• Echtzeitfähigkeit: Fähigkeit eines Systems auf eine Eingabe

innerhalb eines spezifizierten Zeitintervalls eine korrekte Reaktion
hervorzubringen.

• Maximum dieses relativen Zeitintervalls: Frist d

1. echtzeitfähige Scheduling-Algorithmen für Prozessoren

• zentral: garantierte Einhaltung von Fristen
• wichtige Probleme: Prioritätsumkehr, Überlast, kausale

Abhängigkeit

2. echtzeitfähige Interrupt-Behandlung

• zweiteilig:asynchron registrieren, geplant bearbeiten

3. echtzeitfähige Speicherverwaltung

• Primärspeicherverwaltung, VMM (Pinning)
• Sekundärspeicherverwaltung, Festplattenscheduling

Adaptivität
• Adaptivität: Eigenschaft eines Systems, so gebaut zu sein, dass es

ein gegebenes (breites) Spektrum nichtfunktionaler Eigenschaften
unterstützt.

• Beobachtung: Adaptivität i.d.R. als komplementär und
synergetisch zu anderen NFE:

– Sparsamkeit
– Robustheit
– Sicherheit
– Echzeitfähigkeit
– Performanz
– Wartbarkeit und Portierbarkeit

Adaptive Systemarchitekturen

• Zielstellungen:

– Exokernel: { Adaptivität } ∪ { Performanz,
Echtzeitfähigkeit, Wartbarkeit, Sparsamkeit }

– Virtualisierung: { Adaptivität } ∪ { Wartbarkeit,
Sicherheit, Robustheit }

– Container: { Adaptivität } ∪ { Wartbarkeit, Portabilität,
Sparsamkeit }

Performanz und Parallelität
• Performanz (wie hier besprochen): Eigenschaft eines Systems, die

für korrekte Funktion (= Berechnung) benötigte Zeit zu
minimieren.

• hier betrachtet: Kurze Antwort-und Reaktionszeiten

1. vor allen Dingen: Parallelisierung auf Betriebssystemebene
zur weiteren Steigerung der Performanz/Ausnutzung von
Multicore-Prozessoren(da Steigerung der
Prozessortaktfrequenz kaum noch möglich)

2. weiterhin: Parallelisierung auf Anwendungsebene zur
Verringerung der Antwortzeiten von Anwendungen und
Grenzen der Parallelisierbarkeit(für Anwendungen auf
einem Multicore-Betriebssystem).

Mechanismen, Architekturen, Grenzen der Parallelisierung

• Hardware:

– Multicore-Prozessoren
– Superskalarität

• Betriebssystem:

– Multithreading(KLTs) und Scheduling
– Synchronisation und Kommunikation
– Lastangleichung

• Anwendung(sprogrammierer):

– Parallelisierbarkeiteines Problems
– optimaler Prozessoreneinsatz, Effizienz

Synergetische und konträre Eigenschaften
• Normalerweise:

– Eine nichtfunktionale Eigenschaft bei IT-Systemen meist
nicht ausreichend

– Beispiel: Was nützt ein Echtzeit-Betriebssystem - z.B.
innerhalb einer Flugzeugsteuerung - wenn es nicht auch
verlässlich arbeitet?

• In diesem Zusammenhang interessant:

– Welche nichtfunktionalen Eigenschaften mit Maßnahmen
erreichbar, die in gleiche Richtung zielen, bei welchen
wirken Maßnahmen eher gegenläufig?

– Erstere sollen synergetische, die zweiten konträre (also in
Widerspruch zueinander stehende) nichtfunktionale
Eigenschaften genannt werden.

– Zusammenhang nicht immer eindeutig und offensichtlich,
wie z.B. bei: ,,Sicherheit kostet Zeit.” (d.h. Performanz und
Sicherheit sind nichtsynergetische Eigenschaften)

Notwendige NFE-Paarungen
• Motivation: Anwendungen (damit auch Betriebssysteme) für

bestimmte Einsatzgebiete brauchen oft mehrere nichtfunktionale
Eigenschaften gleichzeitig - unabhängig davon, ob sich diese
synergetisch oder nichtsynergetisch zueinander verhalten.

• Beispiele:

– Echtzeit und Verlässlichkeit: ,,SRÜ”-Systeme an potentiell
gefährlichen Einsatzgebieten (Atomkraftwerk,
Flugzeugsteuerung, Hinderniserkennung an Fahrzeugen, ...)

– Echtzeit und Sparsamkeit: Teil der eingebetteten Systeme
– Robustheit und Sparsamkeit: unter entsprechenden

Umweltbedingungen eingesetzte autonome Systeme, z.B.
smart-dust-Systeme

Überblick: NFE und Architekturkonzepte

• 3... Zieleigenschaft
• ( 3) ... synergetische Eigenschaft
• 7... konträre Eigenschaft
• Leere Zellen: keine pauschale Aussage möglich.

Fazit: Breites und offenes Forschungsfeld → werden Sie aktiv!
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