
Softwaretechnik 2

Software Development Processes
Motivation
- Warum sind Entwicklungsprozesse sinnvoll? -
Softwareentwicklungsrozesse erzeugen folgende Artefakte - Dokumente,
die jeweils einer bestimmten Struktur entsprechen! - Requirements
Dokument - Architekturdokument (Bauplan) - Projektplan - Risiken -
Quellcode, der der Architektur entsprechen muss - ... der das System
implementiert - ... der Testfälle - ... des Installationsprogramms - ... der
Wartungssoftware (-¿ Extra Entwicklungsprojekt) - Testfälle
Why development processes? - Development Processes are needed to
know - How do we develop systems? - When to do what in a
development team? - Development Processes need to be implemented
per company and/or project - Tailor the process! - Establish the
knowledge of the process in the development team - Development
Processes are a key competence for Project Managers

Software Processes
1. Background 2. OpenUP 3. SCRUM 4. Metamodels

Arten von Entwicklungsprozessen
Phase-, Waterfall-, Loop-Models
![Buns2002](Assets/Softwaretechnik2-phasenmodell.png)
Prototype-Models
Incremental-, Evolutionary, Recursive-, Iterative-Models
Spiral-Model ![Boeh 1988](Assets/Softwaretechnik2-Spiralmodell.png)

Certification of Project Managers
- Project Management Professional (PMP)® - Industry-recognized
certification http://www.pmi.org - PMP
Requirements - ”... three years of project management experience, with
4500 hours leading and directing projects and 35 hours of project
management education.”(Erfolgreich und/oder bezahlt?)
PMP background - Examination for Project Managers - 200
multiple-choice questions in 4hrs -¿ 1min 12sec per question - 2-3 weeks
of preparation - Paid renewal every three years

PMP Example Question 1 (taken from the PMP
website) An accepted deadline for a project approaches. However,
the project manager realizes only 751. Additional resources using the
contingency fund 2. Escalation approval to use contingency funding 3.
Team overtime to meet schedule 4. Corrective action based on causes

PMP Example Question 2 (taken from the PMP
website) The project manager develops a process improvement
plan to encourage continuous process improvement during the life of the
project. Which of the following is a valid tool or technique to assist the
project manager to assure the success of the process improvement plan?
1. Change control system 2. Process analysis 3. Benchmarking 4.
Configuration management system

PMP Example Questions 3 (taken from the PMP
website) The project manager meets with the project team to
review lessons learned from previous projects. In what activity is the
team involved? 1. Performance management 2. Scope identification 3.
Risk identification 4. Project team status meeting

OpenUP
Core Principles
(Made available under EPL v1.0) OpenUP is based on a set of mutually
supporting core principles: - Collaborate to align interests and share
understanding - Evolve to continuously obtain feedback and improve -
Balance competing priorities to maximize stakeholder value - Focus on
articulating the architecture

Collaboration: Some key practices
- Maintain a common understanding - Key artifacts: Vision,
requirements, architecture notebook, iteration plan - Foster a high-trust
environment - Manage by intent, tear down walls, understand the

perspectives of others - Share responsibility - Everybody owns the
product, help each other - Learn continuously - Develop technical and
interpersonal skills, be a student and a teacher - Organize around the
architecture - The architecture provides a shared understanding of the
solution and forms the basis for partitioning work.

Evolve: Some key practices
- Develop your project in iterations - Use time-boxed iterations that
deliver incremental value and provide frequent feedback. - Focus
iterations on meeting the next management milestone - Divide the
project into phases with clear goals and focus iterations on meeting
those goals. - Manage risks - Identify and eliminate risk early. - Embrace
and manage change - Adapt to changes. - Measure progress objectively -
Deliver working software, get daily status, and use metrics. -
Continuously re-evaluate what you do - Assess each iteration and
perform process retrospectives.

Balance: Some key practices
- Know your audience & create a shared understanding of the domain. -
Identify stakeholders early and establish a common language - Separate
the problem from the solution - Understand the problem before rushing
into a solution. - Use scenarios and use cases to capture requirements -
Capture requirements in a form that stakeholders understand - Establish
and maintain agreement on priorities - Prioritize work to maximize value
and minimize risk early - Make trade-offs to maximize value - Investigate
alternative designs and re-factor to maximize value - Manage scope -
Assess the impact of changes and set expectations accordingly.

Focus: Some key practices
- Create the architecture for what you know today - Keep it as simple as
possible and anticipate change - Leverage the architecture as a
collaborative tool - A good architecture facilitates collaboration by
communicating the ”big-pictureänd enabling parallelism in development.
- Cope with complexity by raising the level of abstraction - Use models
to raise the level of abstraction to focus on important high-level
decisions. - Organize the architecture into loosely coupled, highly
cohesive components - Design the system to maximize cohesion and
minimize coupling to improve comprehension and increase flexibility. -
Reuse existing assets - Don’t re-invent the wheel. Made available under
EPL v1.0

OpenUP is Agile and Unified
- OpenUP incorporates a number of agile practices... - Test-First Design
- Continuous Integration - Agile Estimation - Daily Standup, Iteration
Assessment, Iteration Retrospective - Self-organizing teams - ...within
the context of an iterative, incremental lifecycle (UP).
Core principles mapping to Agile manifesto

OpenUP/Basic Key principles Agile manifesto
Collaborate to align interests and share understanding Individuals and interactions over process and tools
Evolve to continuously obtain feedback and improve Responding to change over following a plan
Balance competing priorities to maximize stakeholder value Customer collaboration over contract negotiation
Focus on articulating the architecture Working software over comprehensive documentation

Governance Model - Balancing Agility and Discipline - OpenUP
incorporates a three-tiered governance model to plan, execute, and
monitor progress. - These tiers correspond to personal, team and
stakeholder concerns and each operates at a different time scale and level
of detail.

OpenUP Project Lifecycle
- OpenUP uses an iterative, incremental lifecycle. - Proper application of
this lifecycle directly addresses the first core principle (Evolve). - The
lifecycle is divided into 4 phases, each with a particular purpose and
milestone criteria to exit the phase: - Inception: To understand the
problem. - Elaboration: To validate the solution architecture. -
Construction: To build and verify the solution in increments. -
Transition: To transition the solution to the operational environment
and validate the solution.

OpenUP Iteration Lifecycle
- Phases are further decomposed into a number of iterations. - At the
end of each iteration a verified build of the system increment is available.
- Each iteration has its own lifecycle, beginning with planning and
ending in a stable system increment, Iteration Review (did we achieve

the iteration objectives) and a Retrospective (is there a better process). -
Progress on completion of micro-increments is monitored daily via
SScrumsänd the iteration burndown chart to provide timely feedback.
Micro-Increments - Micro-increments are small steps towards the goals of
the iteration. - Should be small enough to be completed in a day or two -
Identify Stakeholders is a micro-increment (one step of a task). -
Determine Technical Approach for Persistency is a micro-increment (a
task with a specific focus) - Develop Solution Increment for UC 1 Main
Flow is a micro-increment (a task with a specific focus) -
Micro-increments are defined and tracked via the work items list. - Work
items reference requirements and process tasks as needed to provide
required inputs to complete the micro-increment.

OpenUP Lifecycle - Inception Phase
- The primary purpose of the Inception Phase is to understand the scope
of the problem and feasibility of a solution. - At the Lifecycle Objectives
Milestone, progress towards meeting these objectives are assessed and a
decision to proceed with the same scope, change the scope, or terminate
the project is made. - More specifically, the objectives and associated
process activities are:

Phase objectives Activities that address objectives
Define a Vision Initiate Project
Identify key system functionality Identify and Refine Requirements
Determine at least one possible solution Agree on Technical Approach
Understand the cost, schedule, and risks associated with the project Initiate Project, Plan and Manage Iteration

OpenUP Lifecycle - Elaboration Phase
- The primary purpose of the Elaboration Phase is to validate the
solution architecture (feasibility and trade-offs). - At the Lifecycle
Architecture Milestone, progress towards meeting these objectives are
assessed and a decision to proceed with the same scope, change the
scope, or terminate the project is made. - More specifically, the
objectives and associated process activities are:

Phase objectives Activities that address objectives
Get a more detailed understanding of the requirements Identify and Refine Requirements
Design, implement, validate, and baseline an architecture Develop the Architecture, Develop Solution Increment, Test Solution
Mitigate essential risks, and produce accurate schedule and cost estimates Plan and Manage Iteration, Ongoing Tasks

OpenUP Lifecycle - Construction Phase
- The primary purpose of the Construction Phase is to develop and
verify the solution incrementally. - At the Initial Operational Capability
Milestone, progress towards meeting these objectives is assessed and a
decision to deploy the solution to the operation environment is made. -
More specifically, the objectives and associated process activities are:

Phase objectives Activities that address objectives
Iteratively develop a complete product that is ready to transition to the user community Identify and Refine Requirements; Develop Solution Increment; Test Solution
Minimize development costs and achieve some degree of parallelism Plan and Manage Iteration Ongoing Tasks

OpenUP Lifecycle - Transition Phase
- The primary purpose of the Transition Phase is to deploy the solution
to the operational environment and validate it. - At the Product Release
Milestone, progress towards meeting these objectives are assessed and a
decision to make the product generally available is made. - More
specifically, the objectives and associated process activities are:

Phase objectives Activities that address objectives
Beta test to validate that user expectations are met Ongoing Tasks; Develop Solution Increment; Test Solution
Achieve stakeholder concurrence that deployment is complete Plan and Manage Iteration; Test Solution
Improve future project performance through lessons learned Plan and Manage Iteration

OpenUP Disciplines
- A discipline is a collection of tasks that are related to a major ärea of
concern”within the overall project. - Within the lifecycle, tasks are
performed concurrently across several disciplines. - Separating tasks into
distinct disciplines is simply an effective way to organize content that
makes comprehension easier. - OpenUP defines the following Disciplines:

Example: OpenUp

![OpenUp Beispiel](Assets/Softwaretechnik2-openUp-beispiel.png)

The four Phases of OpenUP

![Phasen](Assets/Softwaretechnik2-openUp-phasen.png)
Decomposition of a Phase

1/9

Softwaretechnik 2

1. Inception - Glossary - Vision - Work Items List - Project Plan - Risk
List - Supporting Requirements Spec - Use Case, Use Case Model -
Architecture Notebook - Iteration Plan 2. Elaboration - Architecture -
Design - Developer Tests - Build - Implementation - Test Log - Test
Scripts 3. Construction 4. Transition
Inhalte

SCRUM
Example: SCRUM

Product Backlog
- Requirements - Each item will be refined by the -¿ Sprint Backlog

Sprint Backlog
- Prioritized workitems - 2-4 weeks - Daily tracking of the progress
(remaining work in days or h)
Sprint Burndown Chart

Daily Scrum
Short daily meeting 1. What did you do yesterday? 2. What will you do
today? 3. Are there any impediments in your way?

Where do changes come from?
![Wieg 1999, p344](Assets/Softwaretechnik2-Veränderungen.png)

Example: Change Control Process
Everyone needs to know about - The owner of each document - The
access rights to each document - The change procedure

Impact Analysis Questionaire
[Wieg 1999, p346] - Do any existing requirements in the baseline conflict
with the proposed change? - Do any other pending requirements changes
conflict with the proposed change? - What are the business or technical
consequences of not making the change? - What are possible adverse side
effects or other risks of making the proposed change? - Will the proposed
change adversely affect performance requirements or other quality
attributes? - Is the proposed change feasible within known technical
constraints and current staff skills? - Will the proposed change place
unacceptable demand on any computer resources required for the
development, test, or operating environments? - Must any tools be
acquired to implement and test the change? - How will the proposed
change affect the sequence, dependencies, effort, or duration of any tasks
currently in the project plan? - Will prototyping or other user input be
required to verify the proposed change? - How much effort that has
already been invested in the project will be lost it this change is
accepted? - Will the proposed change cause an increase in product unit
cost, such as by increasingg third-party product licensing fees? - Will the
change affect any marketing, manufacturing, training, or customer
support plans? - Identify any user interface changes, additions, or
deletions required. - Identify any changes, additions, or deletions required
in reports, databases, or files. - Identify the design components that must
be created, modified, or deleted. - Identify the source code files that
must be created, modified, or deleted. - Identify any changes required in
build files or procedures. - Identify existing unit, integration, system,
and acceptance test cases that must be modified or deleted. - Estimate
the number of new unit, integration, system, and acceptance test cases
that will be required. - Identify any help screens, training materials, or
other user documentation that must be created or modified. - Identify
any other applications, libraries, or hardware components affected by the
change. - Identify any third-party software that must be purchased or
licensed. - Identify any impact the proposed change will have on the
project‘s software project management plan, quality assurance plan,
configuration management plan, or other plans. [Wieg 1999], p346

Metamodelle
What is Model Driven Development?
MDD proposes the usage of ”models at different levels of abstraction and
performs transformations between them in order to derive a concrete
application implementation ”[1]
Model - Everything can be a representation of a model - Source Code -
Word, Excel - ... - Conforms to a meta-model - -¿ Manage complexity
with a higher/smarter abstraction

Meta-meta model ...
- Object Management Group (OMG) - Meta Object Facility (MOF) -
Commonly used 4 layer abstraction - MDD tools are based on this
structure!
Meta Levels - M3: z.B. MOF - M2: z.B. UML Meta Model - M1: z.B.
UML Model - M0: z.B. Source Code

Requirements Engineering
Definition: Requirements Engineering
Definition ([Bere 2009] → [DoD 1991]): ”Requirements engineering
involves all lifecycle activities devoted to (1) identification of user
requirements, (2) analysis of the requirements to derive additional
requirements, documentation of the requirements as a specification, and
(3) validation of the documented requirements against user needs, as well
as (4) processes that support these activities.”
- Professionelles Requirements Engineering - (1) Erheben Um was geht
es? - (2) Modellieren Analyse / Verfeinerung ... - (3) Validieren Prüfen -
(4) Verwalten Nutzung / Wiederverwendung

Definition: Requirement
What is a requirement? ”requirement”, IEEE 610.12 - 1990, p62 1. A
condition or capability needed by a user to solve a problem or achieve an
objective. 2. A condition or capability that must be met or possessed by
a system or system component to satisfy a contract, standard,
specification, or other formally imposed documents. 3. A documented
representation of a condition or capability as in (1) or (2).
See also: design requirement; functional requirement; implementation
requirement; interface requirement; performance requirement; physical
requirement.
Requirement vs. Goal (ä hot topic in the community”): A goal is an
objective the system under consideration should achieve. (intended
properties of the system) [Lams 2001].

Requirement Types
Different Requirement Types
Requirements - Functional - Data - Processes / Functions - Behaviour -
Non-functional - Process - Shipment - Implementation - Standards -
Organisation - Product - Reliability - Usability - Efficiency -
Maintainability - Protability - Safety - Performance - Ergonomy -
External - Law - Economy - Interoperability - Cultural - Physics - IT
Technology

Struktur einer Anforderung
Strukturelemente - Id - Description - Rationale - Satisfaction - Origin -
References - Validation
What a Requirement Looks Like - Unique Requirements ID - Mostly
numbers or alphanumeric combinations are being used. - Prevent
redundancies -¿ automatic generation of this ID - System-wide
identification of a requirement / workitem - Document Structure (-¿
Specification Document, -¿ Requirement Types) - We need to know how
to sort the requirements. Where to sort in a new requirement? Where to
find requirements to a given topic? - ”Checklist”missing requirements /
redundancies - Wide / complete scope of the requirements document -
Relations - ... to one/more use-case(s) - ... to other requirements - Use
Interaction (one requirement refers to the implemented functionality of
another requirement, e.g. Scrolling through a list of videos might make
use of the immediate play-video functionality) - Share Interaction (two
requirements share the same resource, e.g. memory) - ... to a component
(off-the-shelf) of the system. (This is a relation to the system design) - ...
to a specific system variant (of a system family). - Conflicts between
requirements (should be resolved before the design phase) - Conflicting
requirements, side effects - Analysis of the requirements, coverage
metrics, automated traceability matrices - Description - A single sentence
describing the requirement - Textual frames / boiler plates [Rupp 2002],
p229... - UML (Activity, Sequence, Use-Cases, Statecharts), legacy model
types ?? - Without a description we don‘t understand a requirement -
Developers are forced to think about the requirement - Rationale - Why
is this requirement important? - Unneeded / unnecessary requirements
have no rationale - Reduction of the requirements specification to the

essentially needed requirements - Origin - Who came up with this
requirement? Where does it come from? - Without a source there is no
”personal”reason to have a requirement - The origin is always the source
for more information about the requirement - Validation / Test-Case -
How could we quantify this requirement to test/validate it? - Un-testable
requirements have no means to be approved by the customer - Project
management (planning, scope, partitioning) is possible - Customer
Satisfaction - What is the level of customer-interest in this requirement?
How important is this requirement to the customer? - What if this
requirment won‘t be realized ...? - Could also be seen as priority of this
requirement (see Kano Model) - I like it that way - It must be that way -
I am neutral - I can live with it that way - I dislike it that whay -
Without the analysis of the customer satisfaction, the acceptance of the
final result is unknown. - Customer Satisfaction - References - To
Domain-Knowledge or other information important to understand the
requirement - The learning curve for new employees or new stakeholders
will be prolonged. - Understanding of the system is sped up.

Anforderungsschablonen

für die Beschreibung von Anforderungen [Rupp 2002]
Kano Model

Anforderungserhebung / Elicitation Techniques
Stakeholder Model
- Sponsor - Customer - Marketing - Productdesign - User - Enduser -
Maintenance - Contractor (Someone delivering something) -
Projectmanager - Softwareengineer - Qualityengineer - Technical Writer

Elicitation Techniques
- Own Participation ... - Internship - Job-Rotation -
”Hospitanz Ethnographic Observation - Other cultures ... - Introspection
- Explicitly try to think as a different individual (e. g. customers) - ...
change your ViewPoint [Rupp 2002], p111 - Document Analysis - Market
Studies, Books, Papers - Standards - System Documentation, User
Manuals (of competitors) - Web-Search ... - Patent Search - Interviews
(with/for statistical analysis) - In person, Telco - (Web-based)
questionaire (e.g. Sharepoint) - Structured / not structured - Feedback
round, [Rupp 2002], p120 - Brainstorming - MindMaps - With domain
experts, developers, ... - Protocol Analysis - Learn about business
processes - Input / Output of process steps (Observation) -
Apprenticing, Job-Rotation / ”Hospitanz - Knowledge Engineering ... -
Repertory Grid - Goal Question Metric

Web-Search
Example: Literature Search
Web of Knowledge IEEE explore ACM Scirus DBLP Citeseer(X) Google
Scholar Patentdatenbanken

Patentrecherche
- Viele Informationen sind nur in Patenten verfügbar - An anderer Stelle
veröffentlicht ¡-¿ In Patenten veröffentlicht - 80- Wo veröffentlichen um
Geheimhaltung bemühte Wettbewerber ihre Forschungs- und
Entwicklungsergebnisse?
Lösungen aus Patentdokumenten... doch es bedarf gewisser
Grundkenntnisse! - Hüten Sie sich vor ”naivenSSchlagwortsuchen wie ...

”Feder¿ Ënergiespeichermittel Manchmal will der Anmelder einfach
vermeiden, dass sein Patent gefunden wird ... - SSpielzeugball¿
”Kugelförmiges Objekt mit biegsamen Fäden ”Kugellager¿ ”Vielzahl von
Kugeln”
Lernen Sie, wie man nach Patenten sucht! -
http://www.epo.org/wbt/pi-tour -
http://www.epo.org/patents/learning/e-learning.html

Interviews
[Pohl 2008] - Vorbereitung - Ziel definieren/kommunizieren, Teilnehmer
auswählen/einladen/kennenlernen, Ort wählen, Fragen vorbereiten,
Domänensprache erlernen - Durchführung - Einleitung: Ziele und
erwartete Ergebnisse, Einstiegsfrage - Zusammenfassungen, Pausen,
Protokoll - Nachbereitung - Protokoll, Anforderungen, To-Do-Liste -
-¿Prüfung / Review

2/9

http://www.webofknowledge.com/
http://ieeexplore.ieee.org
http://dl.acm.org/
http://www.scirus.com
http://www.informatik.uni-trier.de/~ley/db/
http://citeseerx.ist.psu.edu
http://scholar.google.de/
http://scholar.google.de/
http://worldwide.espacenet.com/

Softwaretechnik 2

MindMaps - freemind.sourceforge.net - MindManager
(http://www.mindjet.com)

Questionaire: ... ilities - ISO 9126 - ISO 25010 - ISO 25051 -
...

SEI Risk Taxonomy
Repertory Grid
- Based on the ,,Personal Construct Theory” by George Kelly, 1955 -
Repertory Grid - Auswahltabelle - lat. Repertorium Bibliographie eines
Fachbereiches, - reperire = ”wiederfinden franz. Repertoire = Verzeichnis
- Interview technique: -¿ The interviewee creates his own interview! -
Goal: Understand someones ideas by similarities - Elements: ... the items
for the reasoning process - Construct - Single dimension of meaning for a
person to identify two pheonomena as similar - Two poles represent the
extreme viewpoints (with a typical scale of 1 ... 5)

Repertory Grid: How to + What is the question to be
answered? + Elicit the elements + Elaborate the constructs - By
comparing triads -¿ How are two of these similar and the third one
different? + Organize the elements and constructs in a table (-¿ grid)
and rate (1...5) each element according to the constructs
Example: ”What is the best car brand for me?”

Repertory Grid: Analysis 1. Best fit ... 2. What is closest to
the optimum? 3. Clustering to refine the constructs

Goal Question Metric
1. Robert E. Park, Wolfhart B Goethert, William A.
Florac,”Goal-Driven Software Measurement - A Guidebook”, SEI
Bericht, CMZ/SEI-96-HB-002, 1996. 2. Danilo Assmann, Ralf Kalmar,
Dr Teade Punter, ”Handbuch, Messen und Bewerten von
WebApplikationen mit der Goal/Question/Metric Methode”,
IESE-Report Nr. 087.02/D ver. 1.2, 2002
Motivation - Messen und Bewerten von - Softwareentwicklungsprozessen
- Produkten / Artefakten / Komponenten - Ziel: Quantitative Aussagen
- In einem Projektkontext - Für die beteiligten Personen
GQM - Zielorientiertes Messen - Ziele sind organisations- /
projektspezifisch 1. Planung der Messung 2. Instrumentierung 3.
Datenerfassung 4. Datenanalyse mit Ergebnisbericht
GQM Abstraction Sheet
Elicitation Techniques - Team Building - Kick-Off - Workshops -
Business Event Workshop (-¿ people/employees describe their work) -
Future Workshop - Identify and group problems. Work in smaller teams
on the groups. - Find and describe visionary solutions to problems.
Think without constraints. - Estimate the needed resources and the
feasibility for/of the proposed solutions. - Focus Groups - Sub-Teams for
specific issues / topics

Requirements Document Structure
Document Structure - Volere Schema - Sections, Sub-Sections, ... -
Examples ... - Requirements - Design - Use-Cases - Relation of
documents amongst each other? - ...
(Project) Document Setup - Lastenheft - Pflichtenheft - System Tests -
Testresults - Standards

Software Estimation
A Little Estimation Game [McCo 2006]
Please read and observe the following directions carefully: ”For each
question, fill in the upper and lower bounds that, in your opinion, give
you a 90
-¿ Most people reach a 30

Ten Key Characteristics of Software Executives 1.
Executives will always ask for what they want. 2. Executives will always
probe to get what they want if they don’t get it initially. 3. Executives
will tend to probe until they discover your point of discomfort. 4.
Executives won’t always know what’s possible, but they will know what
would be good for the business if it were possible. 5. Executives will be
assertive. That’s how they got to be executives in the first place. 6.
Executives will respect you when you are being assertive. In fact, they

assume you will be assertive if you need to be. 7. Executives want you to
operate with the organization’s best interests at heart. 8. Executives will
want to explore lots of variations to maximize business value. 9.
Executives know things about the business, the market, and the
company that you don’t know , and they may prioritize your project’s
goals differently than you would. 10. Executives will always want
visibility and commitment early (which would indeed have great business
value, if it were possible). [McCo 2006], p260

Estimation Improvement with the Capability Maturity
Model
Improvement in estimation at the Boeing Company. As with the U.S. Air
Force projects, the predictability of the projects improved dramatically
at higher CMM levels. [McCo 2006, p10]

Accuracy and Precision
Productivity Rates
![McCo 2006, 62](Assets/Softwaretechnik2-Productivity-Rates.png)

Randbedingungen, Fallstricke
Over- / Underestimation - Cyril Northcote Parkinson, 1955
in ,,The Economist” - ”Work expands so as to fill the time available for
its completion. -¿ Parkinson’s Law - Developers have a tendency to:
Best Case Estimates

Project Outcomes by Project Size
Size in Function Points (and Approximate Lines of Code) Early On Time Late Failed (Canceled)
10 FP (1,000 LOC) 11% 81% 6% 2%
100 FP (10,000 LOC) 6% 75% 12% 7%
1,000 FP (100,000 LOC) 1% 61% 18% 20%
10,000 FP (1,000,000 LOC) ¡1% 28% 24% 48%
100,000 FP (10,000,000 LOC) 0% 14% 21% 65%

[McCo 2006], p25, Source: Estimating Software Costs (Jones 1998).

Communication Paths
Paths (P) 0 1 3 6 ... 15
Nodes (n) 1 2 3 4 ... 6

P =

n−1∑
i=1

i =
(n− 1) ∗ ((n− 1) + 1)

2
=

2 ∗ (n− 1)

2

Gaußsche Summenformel:
∑n

i=1 = 1 + 2 + 3 + ... + n =
n(n+1)

2

Communication Paths cont.
The Cone of Uncertainty
![McCo 2006, p36](Assets/Softwaretechnik2-Cone-of-Uncertainty.png)

Accuracy vs. Project Length ![McCo 2006,
p26](Assets/Softwaretechnik2-Estimationresults.png) Estimation results
from one organization.

Commonly Missing Activities
- Functional Requirement Areas - Setup/installation program - Data
conversion utility - Glue code needed to use third-party or open-source
software - Help system - Deployment modes - Interfaces with external
systems - Non-Functional Requirements - ...ilities - SW Development
Activities - Ramp-up time for new team members - Mentoring of new
team members - Management coordination/manager meetings -
Cutover/deployment - Data conversion (own development) - Installation
- Customization - Requirements clarifications - Maintaining the revision
control system - Supporting the build - Maintaining the scripts required
to run the daily build - Maintaining the automated smoke test used in
conjunction with the daily build - Installation of test builds at user
location(s) - Creation of test data - Management of beta test program -
Participation in technical reviews - Integration work - Processing change
requests - Attendance at change-control/triage meetings - Coordinating
with subcontractors

Einflussgröße: Personal
![McCo 2006, p63](Assets/Softwaretechnik2-Einflussgröße-Personal.png)

Einflussgröße: Programmiersprache

![McCo 2006, p64/65](Assets/Softwaretechnik2-Einflussgröße-
Programmiersprache.png)
Ratio of High-Level-Language Statements to Equivalent C Code
Source: Adapted from Estimating Software Costs (Jones 1998) and
Software Cost Estimation with Cocomo II (Boehm 2000).

Estimation Techniques
Zählen
Which quantities to count? [McCo 2006, p86..88]

Quantity to Count Historical Data Needed to Convert the Count to an Estimate
Marketing requirements Average effort hours per requirement for development

Average effort hours per requirement for independent testing
Average effort hours per requirement for documentation
Average effort hours per requirement to create engineering requirements from marketing requirements

Features Average effort hours per feature for development and/or testing
Use cases Average total effort hours per use case

Average number of use cases that can be delivered in a particular amount of calendar time
Stories Average total effort hours per story

Average number of stories that can be delivered in a particular amount of calendar time
Engineering Requirements Average number of engineering requirements that can be formally inspected per hour

Average effort hours per requirement for development/test/documentation
Function Points Average development/test/documentation effort per Function Point

Average lines of code in the target language per Function Point
Change requests Average development/test/documentation effort per change request (depending on variability of the change requests, the data might be decomposed into average effort per small, medium, and large change request)
Web pages Average effort per Web page for user interface work

Average whole-project effort per Web page (less reliable, but can be an interesting data point)
Reports Average effort per report for report work
Dialog Boxes Average effort per dialog for user interface work
Database Tables Average effort per table for database work

Average whole-project effort per table (less reliable, but can be an interesting data point)
Classes Average effort hours per class for development

Average effort hours to formally inspect a class
Average effort hours per class for testing

Defects found Average effort hours per defect to fix
Average effort hours per defect to regression test
Average number of defects that can be corrected in a particular amount of calendar time

Configurations settings Average effort per configuration setting
Lines of code already written Average number of defects per line of code

Average lines of code that can be formally inspected per hour
Average new lines of code from one release to the next

Historische Daten
- The organization‘s historical data - Not personalized! - Check: working
days 6= calendar days! - Calibrate by building own charts - Use recent
data of your project to refine estimations

Expert Judgement
- Ask people who will do the work -

ExpectedCase =
BestCase+(4∗MostLikelyCase)+WorstCase

6

![McCo 2006, p109](Assets/Softwaretechnik2-Expert-Judgement.png)
De- / Recomposition - Divide and Conquer ![McCo 2006,
p116](Assets/Softwaretechnik2-Divide-and-Conquer.png) - Example
![McCo 2006,
p120](Assets/Softwaretechnik2-Decomposition-example.png)
Expert Judgement in Groups [McCo 2006, p151] 1. The Delphi
coordinator presents each estimator with the specification and an
estimation form. 2. Estimators prepare initial estimates individually.
(Optionally, this step can be performed after step 3.) 3. The coordinator
calls a group meeting in which the estimators discuss estimation issues
related to the project at hand. If the group agrees on a single estimate
without much discussion, the coordinator assigns someone to play devil’s
advocate. 4. Estimators give their individual estimates to the
coordinator anonymously. 5. The coordinator prepares a summary of the
estimates on an iteration form and presents the iteration form to the
estimators so that they can see how their estimates compare with other
estimators’ estimates. 6. The coordinator has estimators meet to discuss
variations in their estimates. 7. Estimators vote anonymously on whether
they want to accept the average estimate. If any of the estimators votes
”no,”they return to step 3. 8. The final estimate is the single-point
estimate stemming from the Delphi exercise. Or, the final estimate is the
range created through the Delphi discussion and the single-point Delphi
estimate is the expected case.

3/9

Softwaretechnik 2

Proxy-Based Estimates

Classify existing components/features ... (small, medium, large) ... and
estimate new features by these classes [McCo 2006, p138]

Example Size Average Staff Days per Feature Number of Features Estimated Effort (Staff Days)
Temp Very Small 48 6 288
Speed Small 53 20 1060
Daytrip Medium 60 4 240
Heartbeat Zone Large 66 5 330
Navigation Very Large 107 3 321
Total - 38 2239

Function Points
- Developed by Allan Albrecht, IBM, 1970 - Assess each functional
requirement ![Balz 1996](Assets/Softwaretechnik2-Function-Points.png)

Category Criterion Simple Middle Complex
Input Number of different data Elements 1-5 6-10 ¿10

Required complexity of the user interface low average high
Queries Number of different keys 1 2 ¿2

Required complexity of the user interface low average high
Output Number of colums 1-6 7-15 ¿15

different data elements 1-5 6-10 ¿10
Change of output groups (e.g. three data items to be printed but in two different groups -¿ grouped GUI elements) 1 2-3 ¿3
Preparation for printing data elements none some many

Database Number of Keys 1 2 ¿2
Different data elements 1-20 21-40 ¿40
Use existing data? (can be re-used) yes - no
Change of an already implemented data(structure) no yes -

Reference Data Read-only-files: Number of different data elements 1-5 6-10 ¿10
Read-only-files: Number of keys 1 2 ¿2
Tables: Number of different data elements 1-5 6-10 ¿10
Tables: Dimensions 1 2 3

Category Classification Weight
Input simple 3

middle 4
complex 6

Queries simple 3
middle 4
complex 6

Output simple 3
middle 5
complex 7

Database simple 3
middle 10
complex 15

Reference Data simple 3
middle 7
complex 10

Conversion of FP to LOC ![McCo
2006](Assets/Softwaretechnik2-FP-to-LOC.png)

Examples of Productivity
Product New Lines of Code Equivalent Staff Years Year Built Approx. Cost in 2006 Dollars $/LOC LOC/Staff Year
IBM Chief Programmer Team Project 83,000 9 1968 1,400,000* 17 9,200
Lincoln Continental 83,000 35 1989 2,900,000 35 2,400
IBM Checkout Scanner 90,000 58 1989 4,900,000 55 1,600
Microsoft Word for Windows 1.0 249,000 55 1989 8,500,000* 34 4,500
NASA SEL Project 249,000 24 2002 3,700,000* 15 10,000
Lotus 123 v. 3 400,000 263 1989 36,000,000 90 1,500
Microsoft Excel 3.0 649,000 50* 1990 7,700,000 12 13,000
Citibank Teller Machine 780,000 150 1989 22,000,000 28 5,200
Windows NT 3.1 (first version) 2,880,000 2,000* 1994 200,000,000 70 1,400
Space Shuttle 25,600,000 22,096 1989 2,000,000,000 77 1,200

*Estimated
Sources: ”Chief Programmer Team Management of Production
Programming”(Baker 1972), ”Microsoft Corporation: Office Business
Unit”(iansiti 1994), ”How to Break the Software Logjam”(Schlender
1989), SSoftware Engineering Laboratory (SEL) Relationships, Models,
and Management Rules”(NASA, 1991), Microsoft Secrets (Cusumano
and Selby 1995).

Checklist for individual estimates
1. Is what’s being estimated clearly defined? 2. Does the estimate include
all the kinds of work needed to complete the task? 3. Does the estimate
include all the functionality areas needed to complete the task? 4. Is the
estimate broken down into enough detail to expose hidden work? 5. Did
you look at documented facts (written notes) from past work rather than

estimating purely from memory? 6. Is the estimate approved by the
person who will actually do the work? 7. Is the productivity assumed in
the estimate similar to what has been achieved on similar assignments?
8. Does the estimate include a Best Case, Worst Case, and Most Likely
Case? 9. Is the Worst Case really the worst case? Does it need to be
made even worse? 10. Is the Expected Case computed appropriately from
the other cases? 11. Have the assumptions in the estimate been
documented? 12. Has the situation changed since the estimate was
prepared? [McCo 2006, p110]

Testen
Motivation
Software Testing - Operate/use a system with a set of known inputs
and/or a set of (environmental) conditions - Observe the reaction of the
system and compare against the expected reaction - -¿ Test against the
requirements - Measure the quality of a System - Keep the quality of a
system - While changing the system (-¿ maintenance) - Regression
Testing
Reference: ISTQB® Glossary of Testing Terms v2.2 (ANSI/IEEE
610.12-1990)

Definition: Error
- Difference between actual and desired behavior (Istverhalten ¡-¿
Sollverhalten)
- Failure: Deviation of the component or system from its expected
delivery, service or result. - Fehlerwirkung: Abweichung einer
Komponente/eines Systems von der erwarteten (Daten)Übergabe,
Leistung oder dem Ergebnis. (auch: äußerer Fehler, Ausfall) - Fault -¿
Defect: A flaw in a component or system that can cause the component
or system to fail to perform its required function, e.g. an incorrect
statement or data definition. A defect, if encountered during execution,
may cause a failure of the component or system. - Fehlerzustand: Defekt
(innerer Fehlerzustand) in einer Komponente oder einem System, der
eine geforderte Funktion des Produkts beeinträchtigen kann, z.B.
inkorrekte Anweisung oder Datendefinition. Ein Fehlerzustand, der zur
Laufzeit angetroffen wird, kann eine Fehlerwirkung einer Komponente
oder Systems verursachen. (auch: innerer Fehler)

Testprozess
![Spil 2012, 21](Assets/Softwaretechnik2-Testprozess.png)
![Testklassifikation, Hoff
2008](Assets/Softwaretechnik2-Testklassifikation.png)
Initial V-Model

W-Model
Testing Overview mit W-Model z.B. mit SCRUM: jeder Release eine
W-model Phase

Develop Requirements Test Cases
- Tasks - Develop Test Case(s) for each requirement - Setup a test plan ,
e. g., IEEE 829 - Check - Requirements ¡–¿ Test Cases - Review -
Execution Environment - Test SW (Tessy, LDRA,...), Web-Servers,
CAN-Bus / Fieldbus, USB, Scope, ... - Feasibility - Do all test cases
make sense? - Requirements tested completely?
Test Software: Example, Tessy
![http://www.hitex.com](Assets/Softwaretechnik2-Test-software-
example.png)
Classification Trees

Plan System Test
- Task - Refine Requirements / Test Cases - Develop Test Model(s) -
Check - Requirements refined? - Test Cases refined? - Review -
Refinement ok / feasible? - Completeness? - Test Case Execution -
Possible? - Manual / automated execution? - Estimation of test case
execution time
Test Plan (IEEE829)
[https://cabig.nci.nih.gov/archive/CTMS/Templates] 1.
INTRODUCTION 1. SCOPE 2. QUALITY OBJECTIVE 3. ROLES
AND RESPONSIBILITIES 4. ASSUMPTIONS FOR TEST
EXECUTION 5. CONSTRAINTS FOR TEST EXECUTION 6.
DEFINITIONS 2. TEST METHODOLOGY 1. PURPOSE 2. TEST
LEVELS 3. BUG REGRESSION 4. BUG TRIAGE 5. SUSPENSION

CRITERIA AND RESUMPTION REQUIREMENTS 6. TEST
COMPLETENESS 3. TEST DELIVERABLES 1. DELIVERABLES
MATRIX 2. DOCUMENTS 3. DEFECT TRACKING & DEBUGGING
4. REPORTS 5. RESPONSIBILITY MATRIX 4. RESOURCE &
ENVIRONMENT NEEDS 1. TESTING TOOLS 2. TEST
ENVIRONMENT 3. BUG SEVERITY AND PRIORITY DEFINITION
4. BUG REPORTING 5. TERMS/ACRONYMS
Example: Testmodell (Statechart)
Behavioral Test Model

Plan Integration Test

- Task - Refine Test Model(s) - Check - Traces Requirements ¡–¿ Design
Elements - Test Cases refined - Review - Test Case Refinement feasible?
- Completeness of Interface Test Cases - Communication protocols (USB,
fieldbus, SCSI, ...) - Component interfaces, plug-in APIs

Plan Unit Test
- Check - Traces Design Element ¡–¿ Code thus, Test Cases ¡–¿ Code -
Unit Tests refined (for each function) - Review - Unit Tests complete?

Test Implementation
- Check - Coding style - Static Analysis - Metrics, LOC, Cohesion,
McCabe ... - e. g., SPLINT: Null-Pointer dereferencing, storage,
information hiding, ... - Review - Implementation of Test Cases / Test
Steps (-¿ Test Scripts)
Splint: Null pointer dereferencing ![http://www.splint.org/, Splint
Manual, page 14](Assets/Softwaretechnik2-splint-null-pointer.png)
Splint: Variable Usage ![http://www.splint.org/, Splint Manual, page
18](Assets/Softwaretechnik2-splint-variable.png)
Splint: Information Hiding ![http://www.splint.org/, Splint Manual, page
22](Assets/Softwaretechnik2-splint-information.png)
Example: [PC-LINT](http://www.gimpel.com/html/lintchks.htm) -
Order of initialization dependencies - Pointer members not deleted by
destructors - Missing destructors from classes using dynamic allocation -
Creation of temporaries - Operator delete not checking argument for
NULL - Conflicting function specifiers - ... - -¿ Could also check MISRA
rules

MISRA [Motor Industry Software Reliability
Association](http://www.misra.org.uk) - Conform to ISO 9899 standard
(C-Language) - Multibyte characters and wide string literals shall not be
used - Sections of code should not be commented out - In an enumerator
list the = construct shall not be used to explicitly initialise members
other than the first unless it is used to initialise all items - Bitwise
operations shall not be performed on signed integer types - The goto
statement shall not be used - The continue statement shall not be used -
The break statement shall not be used, except to terminate the cases of
a switch statement - ...

Unit Testing

- Single functions / methods - 30min pro Comp.Point (McCabe) -
Priorisierung - Nach McCabe - Benutzungshäufigkeit - Kritikalität -
Equivalence class testing - Pre- / Post-conditions, Invariants -
”White-Box”testing - Timing on a fine granularity level (-¿ functions)
Equivalence Class Testing - A function F has a number of variables -
‘void setdate(int day, int month, int year)‘ - The variables have the
following boundaries and intervalls

1 \leq day \leq 31, for month in (1,3,5,7,8,10,12)
1 \leq day \leq 30, for month in (4,6,9,11)
1 \leq day \leq 28, for month =2 \&\& year \%4!=0
1 \leq day \leq 29, for month =2 \&\& year \%4==0
1 \leq month \leq 12
-1000 \leq year \leq 3000

Equivalence Class Testing
Document Pre-/Postconditions - E.g. with doxygen - \pre Pre-condition
- \post Post-condition - \invariant Invariant - \test Test Case - \todo
todo‘s left ...

Check for Memory Leaks ![Windows / Visual
Studio](Assets/Softwaretechnik2-memory-leaks.png)

4/9

Softwaretechnik 2

Check for Memory Leaks ![Linux / Valgrind
http://valgrind.org/](Assets/Softwaretechnik2-memory-leaks2.png)
[Memory
Leak](http://www.cprogramming.com/debugging/valgrind.html)

#include <stdlib.h>
int main()
{

char *x = malloc (100); // or , in C++,
//"char *x = new char [100]
return 0;

}

- ==2330== 100 bytes in 1 blocks are definitely lost in loss record 1 of 1
- ==2330== at 0x1B900DD0: malloc (vg replace malloc.c:a131) -
==2330== by 0x804840F: main (example1.c:5)

Invalid Pointers
(http://www.cprogramming.com/debugging/valgrind.html)

#include <stdlib.h>

int main()
{

char *x = malloc (10);
x[10] = 'a';
return 0;

}

- ==9814== Invalid write of size 1 - ==9814== at 0x804841E: main
(example2.c:6) - ==9814== Address 0x1BA3607A is 0 bytes after a
block of size 10 alloc’d - ==9814== at 0x1B900DD0: malloc (vg replace
malloc.c:131) - ==9814== by 0x804840F: main (example2.c:5)
No Bounds Checking!

Use Of Uninitialized Variables
(http://www.cprogramming.com/debugging/valgrind.html)

#include <stdio.h>
int main()
{

int x;
if(x == 0)
{

printf("X is zero");
}
return 0;

- ==17943== Conditional jump or move depends on uninitialised
value(s) - ==17943== at 0x804840A: main (example3.c:6)

Unit Testing - A TestCase holds the code of what to test - ...
with the runTest method - TestFixture (TestCase + setUP / tearDown
methods) - RepeatedTest -¿ Test + times to repeat ... - A TestSuite
contains many single Tests - ... run() all Tests - A TestListener is
implemented as observer pattern to follow the testing progress - The
TestRunner manages the lifecycle of all tests added
Unit Testing: embUnit ...
Example: counter

typedef struct __Counter Counter;
typedef struct __Counter* CounterRef;

struct __Counter {
int value;

};

CounterRef Counter_alloc(void);
void Counter_dealloc(CounterRef);
CounterRef Counter_init(CounterRef);
CounterRef Counter_counter(void);
int Counter_value(CounterRef);
void Counter_setValue(CounterRef ,int);
int Counter_inc(CounterRef);
int Counter_dec(CounterRef);
void Counter_clr(CounterRef);

CounterRef Counter_alloc(void){
return (CounterRef)malloc(sizeof(Counter));

}

CounterRef Counter_init(CounterRef self){
self ->value = 0;
return self;

}

CounterRef Counter_counter(void){
return Counter_init(Counter_alloc ());

}

int Counter_inc(CounterRef self){
self ->value ++;
return self ->value;

}

int Counter_dec(CounterRef self){
self ->value --;
return self ->value;

}

Example: testcounter.c

#include <embUnit/embUnit.h>
#include "counter.h"
#include "stdio.h"

CounterRef counterRef;

static void setUp(void){
counterRef = Counter_counter ();

}

static void tearDown(void){
Counter_dealloc(counterRef);

}

static void testSetValue(void){
Counter_setValue(counterRef ,1);
TEST_ASSERT_EQUAL_INT (1, Counter_value(counterRef));

Counter_setValue(counterRef ,-1);
TEST_ASSERT_EQUAL_INT (-1, Counter_value(counterRef));

}

static void testInc(void){
Counter_inc(counterRef);
TEST_ASSERT_EQUAL_INT (1, Counter_value(counterRef));

Counter_inc(counterRef);
TEST_ASSERT_EQUAL_INT (2, Counter_value(counterRef));

}

TestRef CounterTest_tests(void){
EMB_UNIT_TESTFIXTURES(fixtures) {

new_TestFixture("testInit",testInit),
new_TestFixture("testSetValue",testSetValue),
new_TestFixture("testInc",testInc),
new_TestFixture("testDec",testDec),
new_TestFixture("testClr",testClr),

};
EMB_UNIT_TESTCALLER(CounterTest ,"CounterTest", setUp ,tearDown ,fixtures);
return (TestRef)& CounterTest;

}

Example: main.c

#include <embUnit/embUnit.h>
#include "stdio.h"

TestRef CounterTest_tests(void);
TestRef PersonTest_tests(void);

int main (int argc , const char* argv []){
TestRunner_start ();
TestRunner_runTest(CounterTest_tests ());
TestRunner_runTest(PersonTest_tests ());
TestRunner_end ();
return 0;

}

Integration Testing
- Test the correct behavior of interacting components - Interfaces are the
main focus - ”White/Grey-Box”testing - Correct timing behavior

Time Measurement Profiling (e. g., GNU Profiler)

start=clock ();
myfunc ();
clocks=clock()-start;
Seconds = clocks / CLOCKS_PER_SEC;

*io_pin = 1;
myfunc ();
*io_pin = 0;

[In-Circuit Debugger](http://www.ghs.com)
[chronSIM](http://www.inchron.de)

System Testing
- Test the system against the specification (the test cases of each
requirement) - ”Black-Box”testing - Test before the final delivery -
Testing at the development site - Testing with testdata (can be formerly
”real”data) and/or mock-up data

System Testing
- Requirements Coverage - Test Model Coverage - Path Coverage
- Function Coverage ‘foo() called‘ - Statement Coverage ‘foo(1,1)‘ -
Decision Coverage ‘foo(1,1); foo(0,1)‘ - Condition Coverage ‘foo(1,1);
foo(1,0); foo(0,0)‘

int foo(int x, int y){
int z = 0;
if ((x>0) && (y>0)) {

z = x;
}
return z;

}

Statistical Testing Paths through the model ...

Acceptance Testing
- Testing at the customer site (by the customer) - Testing with
”real”data and/or online testing - ”Black-Box”testing - -¿Decision to
finalize the project (Payment ...)

Beispiel: Testen eines Softstarters
Quelle: Florian Kantz, Thomas Ruschival, Philipp Nenninger, Detlef
Streitferdt, ”Testing with Large Parameter Sets for the Development of
Embedded Systems in the Automation Domain”, 2nd IEEE International
Workshop on Component-Based Design of Resource-Constrained
Systems (CORCS) at the 33rd IEEE International Computer Software
and Applications Conference (COMPSAC), Seattle / Washington, 2009.

Development of Embedded Systems Levels of testing -
Coding / Debugging level - Functional level - Component level -
Integration level / black-box testing
Testing of Embedded Systems - Behavior of a Softstarter - Start / stop a
motor, ßingle buttonöperation - Monitoring - Parameters for the
Configuration - Softstarter has about 150 parameters for configuration
Size of the Task ... -¿ 1.0 ∗ 10110 permutations (1.9 ∗ 10104 years)
Goal: Reduce the number of permutations to test -¿ Identify a feasible
subset of permutations
Reduction of the Resulting Test Cases - Clustering of parameters -
Independent subsets of parameters - Introducing constraints between
parameters - To reduce the permutations of the parameters being part of
a constraint rule. - Pairwise Testing - Finally reduce to a feasible number
of permutations
Clustering of Parameters - Group parameters having no interaction with
parameters outside the group - Based on expert knowledge - ... and a
manual code analysis (-¿ unit testing)

5/9

Softwaretechnik 2

Constraints Between Parameters - Mutual Exclusion - Function
Switching Parameters - Selection of Ranges
Pairwise Testing - n-Way Testing - Assumption: There are 3 parameters
with 2 possible values each - 8 possible parameter settings are reduced to
4 - Anwendung - Medical Devices - Web Browser - Server - Distr.
Database - Traffic Collision Avoid.

Conclusion - Structured way of handling complexity - Approach is
used in addition to the manually developed test cases - Calculated
reduction down to 7.5*10-27- Means, if ,,Roadrunner” (1456 TFlops)
would have an assignment to calculate for 290382 years this approach
would reduce it to one single instruction! - But we would still have
2.26 ∗ 1069 to test ... (opposed to 1.0 ∗ 10110) - Lessons learned -
Approach has to be smartly adapted to black-box test the complete
system - Approach is very good for sub-systems / sub-problems
Pairwise Testing tools - Jenny (cmd-line tool, C-Code) - [NIST
Tool](http://csrc.nist.gov/groups/SNS/acts/index.html) (open source) -
http://www.testersdesk.com (open
source)

Software Product Lines
Beispiel: Cycling Computers ...
History of Terms
Both terms, Systemfamily and Product Line, refer to the same idea with
different perspectives!
- Systemfamily -¿ Technical Term - How are the products developed /
built? - Product Line -¿ Business Term - What are differences / features
for selling the products?
The term ”product linëıs now well established for both ideas within the
software development domain.
What is behind Product Lines? - Make use of Commonalities &
Variabilities - Based on Feature Oriented-Domain Analysis [Kang
1990,1998,2002] - Reference Architecture for the common parts (and all
future products) - Components for the variable parts (variabilities of
each individual product) - Automated derivation of variants based on the
features of a desired product - SW Product Lines are between mass
products and single products - -¿ A customizable mass product
Costs of a Product Line ![Pohl 2005,
p10](Assets/Softwaretechnik2-product-line-cost.png)
Time to Market of a Product Line ![Pohl 2005,
p11](Assets/Softwaretechnik2-time-to-market.png)

Currently available Software Product Lines
Product Line Examples - ABB, Gas Turbine Family, 35-270MW,
Semantic Graphics Framework, Train Control Product Line - Boeing,
Bold Stroke (operational flight program software) - CelsiusTech Systems
AB, Naval Control Software - Cummins Inc., Motor Control Software -
Hewlett-Packard, Printer Firmware - Lucent Technologies, Telephone
Switching SW - Philips, Consumer Electronics - Philips Medical, X-ray,
ultrasonic, tomography - Bosch, Driver Assistance Systems (e.g., parking
pilot) - Siemens Medical, X-ray, Magnetic Resonance, CT [Pohl 2005],
pp.414-434

Product Line Development Cycle
Product Line Development Concept ![Pohl 2005,
p21](Assets/Softwaretechnik2-product-line-development-concept.png) -
Domain Engineering: Domain engineering is the process of software
product line engineering to define and realize the commonality and the
variability of the product line. - Application Engineering: Application
engineering is the process of software product line engineering to build
the applications of the product line by reusing domain artifacts and
exploiting the product line variability.

The Concept of Variability
- Variation Point (of development/design elements): A variation point is
a representation of a variability subject within domain artifacts enriched
by contextual information. - Variant (core + set of elements with
variation points): A variant is a representation of a variability object
within domain artifacts. - Variability in Time: Variability in time is the
existence of different versions of an artifact valid at different (application

lifecycle) times. (-¿ roadmap) - Variability in Space: Variability in space
is the existence of an artifact in different shapes at the same time. (-¿
binding time) - External Variability: External variability is the
variability of domain artifacts that is visible to customers. - Internal
Variability: Internal variability is the variability of domain artifacts that
is hidden from customers. [Pohl 2005]

Modeling of Product Lines using Features
Features
A feature is a user visible property of a product -¿ the user is willing to
pay for such a property - Functional Features - Interface Features -
Parameter Features - Structural Features Depicted as ... Feature
Feature Modeling - mandatory - ![Hera
2009](Assets/Softwaretechnik2-feature-mandatory.png) -

V ariants =
∏S

i=1 V ariants(fi) -
V ariants(fi) = 1 if isLeaf(fi) == true - optional - ![Hera
2009](Assets/Softwaretechnik2-feature-optional.png) -

V ariants =
∏S

i=1(V ariants(fi) + 1) -
V ariants(fi) = 1 if isLeaf(fi) == true - XOR - ![Kang
1990](Assets/Softwaretechnik2-feature-xor.png) -

V ariants =
∑S

i=1 V ariants(fi) -
V ariants(fi) = 1 if isLeaf(fi) == true - OR - ![Kang
1990](Assets/Softwaretechnik2-feature-or.png) -

V ariants = (
∏S

i=1(V ariants(fi) + 1))− 1 -
V ariants(fi) = 1 if isLeaf(fi) == true

Feature Modeling: Example -

V ariantsEditor =
∏S

i=1 V ariants(fi) = 1 ∗ 2 = 2 -

V ariantsEncryption =
∏S

i=1(V ariants(fi) + 1) = 2 ∗ 2 = 4 -

V ariantsServerConnection =
∑S

i=1 V ariants(fi) = 3 -

V ariantsEmailClient =
∏S

i=1 V ariants(fi) = 2 ∗ 4 ∗ 3 = 24

Example Tool: PureVariants [Cycle Computer
Model](http://www.pure-systems.com)

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.start_screen);
...

PV:IFCOND(pv:hasFeature('Geschwindigkeitszeigen '))
TextView tv = (TextView)findViewById(R.id.start_digi_speed);
tv.setTypeface(tf);

PV:ENDCOND
...

}

-¿ Managed preprocessor directives!

Example online-tool:
http://www.splot-research.org

Handling Variability
Design Time
Variability of Use Cases ![Pohl 2005,
p105](Assets/Softwaretechnik2-Variability-cases.png)
![http://www.oose.de/uml](Assets/Softwaretechnik2-UML-1.png)
Variability Traces to the Architecture ![Pohl 2005,
p125](Assets/Softwaretechnik2-UML-2.png)
Modeling Variability by Design Patterns
Patterns: - Implemented/ ing Design Variability - Structural Patterns -
E. g., Adapter, Decorator, Facade, Proxy, ... - Behavioral Patterns - E.
g., Strategy - Creational Patterns - E. g., Abstract Factory

Factory Pattern sourcemaking.com - Intent - Define an interface
for creating an object, but let subclasses decide which classto instantiate.
Factory Method lets a class defer instantiation to subclasses. - Defining a
”virtual”constructor - The new operator considered harmful - Problem -

A framework needs to standardize the architectural model for a range of
applications, but allow for individual applications to define their own
domain objects and provide for their instantiation

Factory Method Example: Pocket Coffee Machine - One-Button
Operation, -¿ prepare coffee - ... one machine per pad type ... - The
machine type shall be ”jumperedät production time -
http://www.handpresso.com

public static void main(String [] args){
Abstract_Creator_CoffeMachine theMachineCreator;
switch(getJumperedVersion ()){
case 1:

theMachineCreator = new Create_handpresso_machine ();
theMachineCreator.getAny_machine (). prepareCoffee ();
break;

case 2:
theMachineCreator = new Create_micropresso_machine ();
theMachineCreator.getAny_machine (). prepareCoffee ();
break;

default:
break;

}
}

Deus_Ex_Factory* _factory;
God* _god;
_factory=new VeryHighDevLF_Ex_Factory;
_god=_factory ->createGod ();
_god ->createBigBang ();

God* VeryHighDevLF_Ex_Factory :: createGod (){
Deus_Ex_Factory :: setInstanceOfGod(new VeryHighDev_LF);
return Deus_Ex_Factory :: getInstanceOfGod ();

}

Decorator
Compile Time

Variabiliy at Compile Time - Exchange C-files before

compilation - Ënabled̈ın the design - Replacement / extension - #ifdef
directives - In the code ... (pre-processor) - High effort to maintain the
code - Defines - As environment variable for ”make”
Variability at Linking Time - Use different libraries (libraries with the
same interface) - Update (-¿ replace libraries) - Static linking - #Linker
directives, #ifdef

Startup Time
Deliver different systems

Runtime
Variability at Runtime - Use different libraries - Update (-¿ replace
libraries at system startup) - Configuration files - switch/if , based on
config-files - Virtual Machines / Scripts, Interpreter

Aspect-Oriented Programming
AOP was developed in the mid 90ies by Gregor Kiczales at the Xerox
Palo Alto Research Lab (PARC) (now: Professor at the University of
British Columbia, Canada) - Handle cross-cutting concerns in software
systems to increase the code maintainability and reusability - E.g.,
persistency, authentication/security, error handling - Cross-Cutting
Concern ¡–¿Feature

AOP / AspectJ
New Concepts - Pointcut - Choose the methods of the software system -
Select values for several Join Points (hosting the resulting methods) in
the program flow - Execute the code specified in an Advice for each join
point - As replacement for the original method - To extend the original
method (before/after the original method) - Inter-type declarations - For
the modification of the static structure of the software system (class

6/9

Softwaretechnik 2

members and class relationships) - Aspects - Are the modules to host
crosscutting concerns (e. g., serialization, security) and may include
pointcuts, advices, and inter-type declarations

Example: Authentication
- Within the AuthPayment pointcut, ep refers to the object of the
adviced method - call : method call - execution: execution of the method
content - get/set : reading / writing of attributes - initialization : ... of
the object - handler : exception handler - Signature of the method being
part of the aspect. - Wildcards: - * An arbitrary number of characters -
.. An arbitrary number of characters with the point

’
.‘ - + Includes the

subtypes (here: subtypes of Routing) - When to inject code? - before the
base method is executed - after the base method is executed - around
new behavior with existing method referred by proceed()
Summary: Aspect Oriented Programming - Very good separation of
concerns - Design of aspects is vital for the success of the development -
Only parts of the system behavior are in the code, all others are in
aspects. - Hard to (statically) analyze the system. - Testing of such
systems ...

Domain Specific Languages
Definition: A Domain Specific Language (DSL) is a computer
programming language (-¿ grammar and syntax) to formulate /
implement solutions for problems in a specified (limited) domain.

Types of DSLs
Example: Graphviz dot
![http://www.graphviz.org/](Assets/Softwaretechnik2-Graphviz-dot.png)

digraph finite_state_machine{
rankdir=LR;
size="8,5"
node [shape = doublecircle]; LR_0 LR_3 LR_4 LR_8;
node [shape = circle];
LR_0 -> LR_2 [label = "SS(B)"]; LR_0 -> LR_1 [label = "SS(S)"];
LR_1 -> LR_3 [label = "S(\$end)"]; LR_2 -> LR_6 [label = "SS(b)"];
LR_2 -> LR_5 [label = "SS(a)"]; LR_2 -> LR_4 [label = "S(A)"];
LR_5 -> LR_7 [label = "S(b)"]; LR_5 -> LR_5 [label = "S(a)"];
LR_6 -> LR_6 [label = "S(b)"]; LR_6 -> LR_5 [label = "S(a)"];
LR_7 -> LR_8 [label = "S(b)"]; LR_7 -> LR_5 [label = "S(a)"];
LR_8 -> LR_6 [label = "S(b)"]; LR_8 -> LR_5 [label = "S(a)"];

}

Example: Test Case Generation

model simple_model
tc: |\$ // access to the test -api |\$

|\$ extern void addtostream(int);
...
|\$ #define SENSOR_SPEED 0x0000 |\$ void

testcase_1 ()
|\$ {
|\$

source [START]
"init"
[S_START]

[S_START]
"0x55"
tc:|\$ addtostream (0x55);

[startheader]
...

extern void addtostream(int);
...
#define SENSOR_SPEED 0x0000
...
void testcase_1 ()
{

addtostream (0x55);
addtostream (0x04);
...
addtostream (0x02);

}

Example: Compiler Generators flex/bison the former lex/yacc duo

Scanner

digit [0-9]
number {digit }+\.?|{ digit }*\.{ digit }+
identifier [a-zA-Z]+
%%[] { /* Skip blanks. */ }
{number} { sscanf(yytext , "%lf", &yylval);

return NUMBER; }
\n|. { return yytext [0]; }

Software Maintenance
Motivation
- Software won‘t wear out! - It gets old when it is changed by developers
-¿ Architectural Decay
Product Life Cycle: months ... many years
Background - Why? - Maintenance: Fix broken software (-¿ bugs) -
Evolution - Extend existing software (-¿ new features/functions) -
Develop (bad -¿)good software - Long Living Software (changes in
HW/SW) - Re-develop software - When? Product Strategy, Business
Rules - Goals? Changeability, Maintainability, Comprehension

Reengineering
![SEI 1998](Assets/Softwaretechnik2-Reengineering.png)
Terms - Reverse Engineering - Reconstruct the plan / the requirements
of the ready made software - Reengineering - Change a Software System
to enhance its Quality (at a higher abstraction level than -¿ Refactoring)
- Forward Engineering - Opposite of -¿ Reverse Engineering. Standard
development cycle, e. g., OpenUP, SCRUM, V-Model,...
System Analysis - How does the current system look like? - What do we
want to change - Which rules do we want to follow and which rules are
broken?
- Running Software System - Observation of the externally visible
behavior + reaction - Use Cases - Requirements - Code - Disassembling
/ decompilation (not allowed by law!) - Only for scientific work!
OpenRCE (Rerverse Code Engineering, http://www.openrce.org) -
Counterpart: Obfuscation - Transformation (-5...+5) - Re-Order Code -
Change Variable Names - Add branches (if (true) ...), each instruction as
subroutine ... - NOPs - Encryption (of code) - Obfuscator vermeiden -
Design & Requirements - Design by observation (marginal) -
Requriements by observation (as above) - Manual tasks - Interview
former / current employees - Interview users of the system - Deep Search
of Documents - -¿ Assess the Feasibility of the
Project Reverse-Engineering might become Re-Development

Code Smells
Code - Hard to read
- Rules/Hints for Good Code - Naming - Names want to tell their
intention - ‘int x; // average speed -¿int averageSpeed;‘ -

void strcpy(char *a, char *b) ->
strcpy(char *destination , char *source)
strcpy(char *to , char *from)

- Be careful with e.g., btevhdl -¿ buttonEventHandler - Don‘t ...: String
noOfWayPoints; - Where (in different types of lists) to add() / insert(),
or how to sort()? - Names that tell the intention - List (alphabetically)
of (global) variables in the code documentation - Character similarities

(-¿ the font question ...) - Öhhh ZeroÖ0 - Ïhh OnëI1, I1 - ßmallEL..
largeiI”lI - Rules/Hints for Good Code - Functions - Functions have a
single, simple and clear behavior - Don‘t duplicate code (code
redundancy) - Agree, enforce and live a project wide coding style - Hard
to follow call graphs if using function pointers - Specifically document
such occurences - Don‘t use switch to access different class types - -¿ use
Polymorphism instead - switch(typeof(object)) or switch(object.type) -
Reduce the number of arguments of a function/method - -¿use objects
for more than three arguments - Rules/Hints for Good Code - Comments
- Don‘t forget the Copyright Notice - Comments do not only repeat the
function name ... - Keep comments in sync with the code (-¿ Review) -

Use exception handling - Rules/Hints for Good Code - Global ... -
Exchange hand written parsers with -¿ DSL technology - Start with
non-threaded code, improve towards threads/parallelism - Carefully
select global variables (-¿ Singletons)

Metrics
The Law of Demeter
- Proposed by Karl J. Lieberherrs research group in 1987 - Northeastern
University, College of Computer and Information Science, Boston,
Massachusetts (http://www.ccs.neu.edu/home/lieber/) - Style rule for
the development of a good system design - Law of Demeter - Method M
of Object O 1. may only invoke methods of O 2. use parameters of M 3.
use/call methods of any object created in M 4. may invoke methods of
O‘s direct component objects 5. may access a global variable accessible
by O, in the scope of M
@ Design Level - Overall Architecture - Use -¿ static / dynamic analyses
to asses - Cohesion : A class strongly focussing on a single goal has a high
cohesion. - Coupling : A component which highly depends (by method
calls) on another component is strongly coupled. - ... of the architectural
components - Goal: low coupling and STRONG COHESION
Calculate Cohesion - *L*ack of *CO*hesion in *M*ethods for a class C

LCOM = 1−
1

M ∗ F

F∑
i=1

count(fi ← m)

- M = Number of Methods in C - F = number of fields in C (or
attributes) - fi = field i in the set (i=1...F) of the fields in a given class C
- count(fk ¡- m) = how many methods m use field fk

LCOMHS =
1

M − 1
(M −

1

F

F∑
i=1

count(fi ← m))

- HS = Henderson-Sellers - LCOMHS = 1 - M →∞, LCOMHS → 1 -
F →∞, LCOMHS → 1 - M,F →∞, LCOMHS → 1
Cohesion - As used in the Eclipse Metrics Plugin

LCOM∗ =

∑n
A=1 m(A)

n −m

(1−m)

- m(A) is the number of methods accessing an attribute A - n is the
number of attributes - m is the number of methods m - (LCOM >> 1 is
alarming), small values (< 1) are better. - Hint: The class could be split
into a number of (sub)classes. - - Changes in A cause the need to check
B, C, D, E, F - The interface of A might be hard to reuse in future/other
projects - Coupling : A component which highly depends (by method
calls) on another component is strongly coupled. - Afferent Coupling =
#Classes outside a package that depend on classes inside the package. -
Efferent Coupling = #Classes inside a package that depend on classes
outside the package.
Design Level - ”Tell, don‘t ask! Bad: car.getSteeringWheel().getAngle() -
Better: car.getDirectionOfTravel() - Start with reference architectures
and refine ... - Layers, pipes and filters, plug-in, client / server, MVC -
Use design patterns, (or at least) their concepts - A class / component
interface should hide most of the complexity underneath (-¿ Facade
Pattern) - 30-Rule, [Rooc 2004], p35 - Methods ¡= 30LLOC - #Methods
per Class ¡ 30 - #Classes per Package ¡ 30 - #Packages per Subsystem ¡
30 - System ¡ 30 subsystems - #Layers 3 ... 10
- Usage / Inheritance Relations - Inheritance hierarchy ¡ 10 - In and
between Packages - Keep a small hierarchy (¡5) - In and between
Subsystems - Keep APIs small - In and between Layers - Use layers at
all! - Calls should follow the layer structure - Don‘t use/allow cycles

7/9

Softwaretechnik 2

What is the simplest design?
By Kent Beck, [Beck 2000], page 109 1. The system (code and tests
together) must communicate everything you want to communicate. 2.
The system must contain no duplicate code. 3. The system should have
the fewest possible classes. 4. The system should have the fewest possible
methods.
Requirements Level - Sometimes hard to find but easy to change at very
low costs! - Inconsistencies - Redundancy - Contradictions - Misspellings
- Wording (domain specific) - Constraints (missing) - Missing
requirements vs. ”goldplating ...

Refactoring
Refactoring Overview
- Software changes (beautifying) without changing the behavior! -
”Refactoring (noun): a change made to the internal structure of software
to make it easier to understand and cheaper to modify without changing
its observable behavior.”[Fowl 1999, Martin Fowler, ”Refactoring -
Improving the Design of Existing Code”, Addison Wesley, 1999, page 53.]
- (Highly) dependant on the tool support (-¿ IDE) - Reduced errors
while refactoring
![http://www.eclipse.org/org/usagedata/](Assets/Softwaretechnik2-
eclipse-refactoring.png)

Refactoring Howto
1. Set up the test cases for your code 2. Review the test cases 3. Identify
the smells 4. Refactor the code - Stepwise!! 5. Execute all test cases 6.
Fix errors - Go back to 6. unless the test result is green 7. Go to 4. and
continue refactoring

Composing Methods

void printMainScreen () {
System. out.println("Main Screen");
// print details
System. out.println("Speed");
System. out.println("curr Temp");

}

zu

void printMainScreen () {
System. out.println("Main Screen");
printMainScreenDetails ();

}
private void printMainScreenDetails () {

System. out.println("Speed");
System. out.println("curr Temp");

}

int getRating (){
return(hasMoreThanFiveDeliveries ())?2:1;

}
boolean hasMoreThanFiveDeliveries (){

return(noOfDeliveries >5);
}

zu

int getRating (){
return(noOfDeliveries >5)?2:1;

}

int discount(int inputVal , in quantity , in yearToDate){
if(inputVal >50) inputVal -= 2;
...

zu

int discount(int inputVal , in quantity , in yearToDate){
int result = inputVal;
if(inputVal >50) result -= 2;
...

public class SmallCycle{
DataModel myDM = new DataModel ();
int localValue;
public void calcHeight () { myDM.height = 45; localValue = 100; }
public void calcSurface () { myDM.surface = 452; calcHeight (); }
...

zu

public class SmallCycle {
...

public void calcSurface (){
myDM.surface = 452;
myDM.calcHeight(this);
}

...

public class DataModel {
public int height;
public int surface;
public void calcHeight(SmallCycle smallCycle){

height = 45;
smallCycle.localValue = 100;

}

public class BigCycle {
...

String owner;
String ownerBirthday;
public BigCycle (){

owner = "Harry";
}

zu

public class BigCycle {
...
Owner localOwner = new Owner ();
public BigCycle (){

localOwner.setName("Harry");
}

}
...
public class Owner{

private String name;
private String birthday;
...
public void setName(String name){

this.name = name;
}
...

}

Organizing Data
Replace Magic Number with Symbolic Constant

double getLengthPerTireTick(int tiresize){
return ((tiresize *25.4)/2)*2*3.141

}

zu

... return ((tiresize*MMPERINCH)/2)*2* Math.PI
static final double MMPERINCH = 25.4

Simplifying Conditional Expressions - Decompose
Conditional - Consolidate Conditional Expression

double disabilityAmount (){
if(_seniority <2) return 0;
if(_monthsDisabled >12) return 0;
if(_isPartTime) return 0;
// compute disability amount

}
double disabilityAmount (){

if(isNotEligableForDisability ()) return 0;
// compute the disability amount

}

- Consolidate Duplicate Conditional Fragments

if(isSpecialDeal ()){
total = price * 0.95;
send ();

}
else {

total = price * 0.98;
send()

}

zu

if(isSpecialDeal ())
total = price * 0.95;

else
total = price * 0.98;

send ();

- Replace Nested Conditional with Guard Clauses

double getPayAmount (){
double result;
if(_isDead) result = deadAmount ();
else {

if(_isSeperated) result = seperatedAmount ();
else {

if(_isRetired) result = retiredAmount ();
else result = normalPayAmount ();

}
}
return result;

}

zu

double getPayAmount (){
if(_isDead) return deadAmount ();
if(_isSeperated) return separatedAmount ();
if(_isRetired) return retiredAmount ();
return normalPayAmount ();

}

- Replace Conditional with Polymorphism

double getSpeed (){
switch(type){

case EUROPEAN:
return getBaseSpeed ();

case AFRICAN:
return getBaseSpeed () - getLoadFactor () * _numberOfCoconuts;

case NORWEGIAN_BLUE:
return (_isNailed) ? 0 : getBaseSpeed(_voltage);

}
}

Making Method Calls Simpler

- Rename Method - Separate Query from Modifier

Dealing with Generalization

- Pull Up Field - Push Down / Pull Up

Other Refactorings

- Change Method Signature - Extract Local Variable - Extract Local
Variable to Field - Convert Anonymous Class to Nested - Move Type to
new File - Extract Superclass - Extract Interface

8/9

Softwaretechnik 2

Long Living Software

Mars Rover Software Coding Guidelines
[Moodle](A. Brown and G. Wilson, The Architecture of Open Source
Applications, Volume II , lulu.com, 2012.) - Core: Web-Server (e. g.,
Apache) hosting the PHP-code - Server: /var/www/moodle/category.php
- Client: https://moodle2.tu-ilmenau.de/course/category.php?id=92 -
Connects to a database (e. g., MySQL) - moodledata folder (outside the
web root) - Extensible: moodle Plug-In API (according to plugin types) -
= a folder ¡plugin-type¿/¡plugin-name¿ - Documentation @
https://moodle.org/

Compiler Compiler
(e. g., flex/bison) - Lexer, Yet Another Compiler Compiler - First
compiler-compiler 1960 by Tony Brooker - YACC initially developed
1970 by Stephen C. Johnson (AT&T Corporation) for Unix -
Look-**A**head **L**eft to right **R**ightmost derivation -
Parser
![http://en.wikipedia.org](Assets/Softwaretechnik2-LALR-Parser-1.png)
![http://en.wikipedia.org](Assets/Softwaretechnik2-LALR-Parser-2.png)
-

Long Living Systems
How to build long living system in the first place? - Very broad/extensive
requirements engineering phase - Capture (the needed) Variabilities, (e.
g.: Future Workshop) - Product Lines - Clear and Understood

SW(/HW)-Architecture - Remove the smells (periodically) , -¿ Reviews,
Refactoring - Standard Architectures, Design Patterns, COTS - Prepare
all documents and the development environment for ”newcomersänd
ßtrangers Good Estimation of ... - ... the efforts over time - ... the efforts
for changes - ... the limits of the architecture - ... the expected SW END
OF LIFE + reengineering costs - ... never touch a running system
Key Attributes of Long Living Systems 1. Keep your system focussed on
what it is(was) supposed to do. 2. Take your time to design your APIs
with pride and keep them stable. (-¿ if at all, only extensions are
feasible!) 3. Design the core architecture with well defined extension
mechanisms to tailor the application to user needs. (-¿ Plug-Ins, DSL,
DLLs) 4. Take maintenance serious , in terms of the needed/planned
effort and the trageted/desired quality.

9/9

	Software Development Processes
	Motivation
	Software Processes
	Arten von Entwicklungsprozessen
	Certification of Project Managers

	OpenUP
	Core Principles
	Collaboration: Some key practices
	Evolve: Some key practices
	Balance: Some key practices
	Focus: Some key practices
	OpenUP is Agile and Unified
	OpenUP Project Lifecycle
	OpenUP Iteration Lifecycle
	OpenUP Lifecycle - Inception Phase
	OpenUP Lifecycle - Elaboration Phase
	OpenUP Lifecycle - Construction Phase
	OpenUP Lifecycle - Transition Phase
	OpenUP Disciplines
	Example: OpenUp
	The four Phases of OpenUP

	SCRUM
	Product Backlog
	Sprint Backlog
	Daily Scrum
	Where do changes come from?

	Example: Change Control Process
	Impact Analysis Questionaire

	Metamodelle
	What is Model Driven Development?
	Meta-meta model ...

	Requirements Engineering
	Definition: Requirements Engineering
	Definition: Requirement
	Requirement Types
	Different Requirement Types

	Struktur einer Anforderung
	 Anforderungsschablonen

	Anforderungserhebung / Elicitation Techniques
	Stakeholder Model
	Elicitation Techniques
	Web-Search
	Patentrecherche
	Interviews
	Repertory Grid
	Goal Question Metric
	Requirements Document Structure

	Software Estimation
	A Little Estimation Game [McCo 2006]
	Estimation Improvement with the Capability Maturity Model

	Accuracy and Precision
	Productivity Rates
	Randbedingungen, Fallstricke
	The Cone of Uncertainty
	Commonly Missing Activities
	Einflussgröße: Personal
	Einflussgröße: Programmiersprache

	Estimation Techniques
	Zählen
	Historische Daten
	Expert Judgement
	Proxy-Based Estimates
	Function Points
	Checklist for individual estimates

	Testen
	Motivation
	Definition: Error
	Testprozess
	W-Model
	Develop Requirements Test Cases
	Plan System Test
	Plan Integration Test
	Plan Unit Test
	Test Implementation
	Unit Testing
	Integration Testing
	System Testing
	System Testing
	Acceptance Testing

	Beispiel: Testen eines Softstarters

	Software Product Lines
	Beispiel: Cycling Computers ...
	History of Terms
	Currently available Software Product Lines
	Product Line Development Cycle
	The Concept of Variability
	Modeling of Product Lines using Features
	Features

	Handling Variability
	Design Time
	Compile Time
	Startup Time
	Runtime

	Aspect-Oriented Programming
	AOP / AspectJ
	Example: Authentication

	Domain Specific Languages
	Types of DSLs
	Example: Test Case Generation
	Scanner

	Software Maintenance
	Motivation
	Reengineering
	Code Smells
	Code - Hard to read

	Metrics
	The Law of Demeter
	What is the simplest design?

	Refactoring
	Refactoring Overview
	Refactoring Howto
	Composing Methods
	Organizing Data
	Making Method Calls Simpler
	Dealing with Generalization
	Other Refactorings

	Long Living Software
	Compiler Compiler
	Long Living Systems

