Advanced Operating Systems

Funktionale und nichtfunktionale Eigenschaften

e Requirements: (nicht-)Funktionale Eigenschaften entstehen durch
Erfiillung von (nicht-)funktionalen Anforderungen

e funktionale Eigenschaft: was ein Produkt tun soll

e nichtfunktionale Eigenschaft (NFE): wie ein Produkt dies tun soll

e andere Bezeichnungen NFE: Qualitidten, Quality of Service

Hardwarebasis
e Einst: Einprozessor-Systeme
e Heute: Mehrprozessor-/hochparallele Systeme
e neue Synchronisationsmechanismen erforderlich
— unterschiedliche Hardware und deren Multiplexing

Betriebssystemarchitektur

Einst: Monolithische und Makrokernel-Architekturen
Heute: Mikrokernel(-basierte) Architekturen
Exokernelbasierte Architekturen (Library-Betriebssysteme)
Virtualisierungsarchitekturen

Multikernel-Architekturen
unterschiedliche Architekturen

i.....

Ressourcenverwaltung

e Einst: Batch-Betriebssysteme, Stapelverarbeitung (FIFO)
Heute: Echtzeitgarantien fiir Multimedia und Sicherheit
e echtzeitfihige Scheduler, Hauptspeicherverwaltung,
Ereignismanagement, Umgang mit Uberlast/Priorititsumkehr ...
— unterschiedliche Ressourcenverwaltung

Betriebssystemabstraktionen

Reservierung von Ressourcen ( — eingebettete Systeme)
Realisierung von QoS-Anforderungen ( — Multimediasysteme)
Erhshung der Ausfallsicherheit ( — verfiigbarkeitskritisch)
Schutz vor Angriffen und Missbrauch ( — sicherheitskritisch)
flexiblen und modularen Anpassen des BS ( — hochadaptiv)
—  hochst diverse Abstraktionen von Hardware

Betriebssysteme als Softwareprodukte

Betriebssystem: endliche Menge von Quellcode

besitzen differenzierte Aufgaben — funktionale Eigenschaften
Anforderungen an Nutzung und Pflege — Evolutionseigenschaften
konnen fiir Betriebssysteme hochst speziell sein

— spezielle Anforderungen an das Softwareprodukt BS

Grundlegende funktionale Eigenschaften von BS: Hardware-

Abstraktion Ablaufumgebung auf Basis der Hardware bereitstellen

Multiplexing Ablaufumgebung zeitlich/logisch getrennt einzelnen
Anwendungen zuteilen

Schutz gemeinsame Ablaufumgebung gegen Fehler und Manipulation

Nichtfunktionale Eigenschaften (Auswahl) von Betriebssystemen:

e Laufzeiteigenschaften: zur Laufzeit eines Systems beobachtbar

— Sparsamkeit und Effizienz

— Robustheit, Verfiigbarkeit

— Sicherheit (Security)

— Echtzeitfihigkeit, Adaptivitéit, Performanz

e Evolutionseigenschaften: charakterisieren (Weiter-) Entwicklung-
und Betrieb eines Systems

— Wartbarkeit, Portierbarkeit
— Offenheit, Erweiterbarkeit

1/17

Sparsamkeit und Effizienz

Motivation

Sparsamkeit (Arbeitsdefinition): Die Eigenschaft eines Systems, seine
Funktion mit minimalem Ressourcenverbrauch auszuiiben — Effizienz
bei Nutzung der Ressourcen

Effizienz: Der Grad, zu welchem ein System oder eine seiner
Komponenten seine Funktion mit minimalem Ressourcenverbrauch
ausiibt. (IEEE)

Beispiele:

mobile Geréte: Sparsamkeit mit Energie

Sparsamkeit mit weiteren Ressourcen, z.B. Speicherplatz
Betriebssystem (Kernel + User Space): geringer Speicherbedarf
optimale Speicherverwaltung durch Betriebssystem zur Laufzeit
BaugréBenoptimierung(Platinen-und Peripheriegeritegréfie)
Kostenoptimierung(kleine Caches, keine MMU, ...)

massiv reduzierte HW-Schnittstellen (E/A-Geriite, Peripherie)

Mobile und eingebettete Systeme (kleine Auswahl)

e mobile Rechner-Endgeriite

e Weltraumfahrt und -erkundung

e Automobile

e verteilte Sensornetze (WSN)

e Chipkarten

e Multimedia-und Unterhaltungselektronik
Energieeffizienz

zeitweiliges Abschalten momentan nicht bendtigter Ressourcen
Betriebssystemmechanismen

Dateisystem-E/A: energieeffizientes Festplatten-Prefetching
CPU-Scheduling: energieeffizientes Scheduling
Speicherverwaltung: Lokalitdtsoptimierung

Netzwerk: energiebewusstes Routing

Verteiltes Rechnen: temperaturabhingige Lastverteilung

T o

Energieeffiziente Dateizugriffe

HDD/Netzwerkgerite/... sparen nur bei relativ langer Inaktivitdt Energie

e Aufgabe: kurze, intensive Zugriffsmuster — lange Inaktivitit
o HDD-Gerédten: Zustidnde mit absteigendem Energieverbrauch:

1. Aktiv: einziger Arbeitszustand

2. Idle: Platte rotiert, Elektronik teilweise abgeschaltet
3. Standby: Rotation abgeschaltet

4. Sleep: gesamte restliche Elektronik abgeschaltet

e idhnliche, noch stidrker differenzierte Zustinde bei DRAM
e durch geringe Verldngerungen des idle - Intervalls kann signifikant
der Energieverbrauch reduziert werden

Prefetching-Mechanismus
e Prefetching (,,Speichervorgriff”, vorausschauend) & Caching

— Standard-Praxis bei moderner Datei-E/A

— Voraussetzung: Vorwissen iiber benétigte Folge von
zukiinftigen Datenblockreferenzen

— Ziel: Performanzverbesserung durch Durchsatzerhthung
und Latenzzeit-Verringerung

— Idee: Vorziehen mdoglichst vieler E/A-Anforderungen an
Festplatte 4 zeitlich gleichméBige Verteilung verbleibender

— Umsetzung: Caching dieser vorausschauend gelesenen
Blécke in ungenutzten PageCache

— Inaktivitit iiberwiegend sehr kurz — Energieeffizienz ...7
e Zugriffs-/Festplattenoperationen

— access(x) ... greife auf Inhalt von Festplattenblock x im
PageCache zu
— fetch(x) ... hole Block x nach einem access(x) von Festplatte

— prefetch(x) ... hole Block x ohne access(x) von Festplatte

e Fetch-on-Demand-Strategie bisher (kein vorausschauendes Lesen)
e Traditionelles Prefetching

— traditionelle Prefetching-Strategie: bestimmt

* wann Block von der Platte holen (HW aktiv)
* welcher Block zu holen ist
* welcher Block zu ersetzen ist
1. Optimales Prefetching: Jedes prefetch sollte den néchsten
Block im Referenzstrom in den Cache bringen, der noch
nicht dort ist
2. Optimales Ersetzen: Bei jedem ersetzenden prefetch sollte
der Block iiberschrieben werden, der am spétesten in der
Zukunft wieder benétigt wird
3. ,,Richte keinen Schaden an”: Uberschreibe niemals Block A
um Block B zu holen, wenn A vor B benétigt wird
4. Erste Moglichkeit: Fiihre nie ein ersetzendes prefetch aus,
wenn dieses schon vorher hitte ausgefithrt werden kénnen

o Energieeffizientes Prefetching
— versucht Lange der Disk-Idle-Intervalle zu maximieren

1. Optimales Prefetching: Jedes prefetch sollte den nichsten
Block im Referenzstrom in den Cache bringen, der noch
nicht dort ist

2. Optimales Ersetzen: Bei jedem ersetzenden prefetch sollte
der Block iiberschrieben werden, der am spitesten in der
Zukunft wieder benétigt wird

3. ,,Richte keinen Schaden an”: Uberschreibe niemals Block A
um Block B zu holen, wenn A vor B benétigt wird

4. Maximiere Zugriffsfolgen: Fiihre immer dann nach einem
fetch/prefetch ein weiteres prefetch aus, wenn Blocke fiir
eine Ersetzung geeignet sind

5. Beachte Idle-Zeiten: Unterbrich nur dann eine
Inaktivitdtsperiode durch ein prefetch, falls dieses sofort
ausgefiithrt werden muss, um Cache-Miss zu vermeiden

Allgemeine Schlussfolgerungen

1. Hardware-Spezifikation nutzen: Modi, in denen wenig Energie

verbraucht wird
2. Entwicklung von Strategien, die langen Aufenthalt in

energiesparenden Modi ermdéglichen und dabei
Leistungsparameter in vertretbarem Umfang reduzieren

3. Implementieren dieser Strategien in Betriebssystemmechanismen
zur Ressourcenverwaltung

Energieeffizientes Prozessormanagement

e CMOS z.Zt. meistgenutzte Halbleitertechnologie fiir Prozessor
e Komponenten fiir Energieverbrauch P = Psyitch + Preak + -

— Pgswiten: fiir Schaltvorgidnge notwendige Leistung
— Pjeqr: Verlustleistung durch verschiedene Leckstrome
— ...: weitere Einflussgréfien (technologiespezifisch)

Schaltleistung: Pswitching

e Energiebedarf kapaz. Lade-/Entladevorginge wihrend Schaltens
e fiir momentane CMOS dominanter Anteil am Energieverbrauch

e Einsparpotenzial: Verringerung von Versorgungsspannung
(quadratische Abhingigkeit!) und Taktfrequenz

langere Schaltvorginge, grolere Latenz zwischen Schaltvorgingen
Energieeinsparung nur mit Qualitidtseinbufien

— Anpassung des Lastprofils (Zeit-Last? Fristen kritisch?)
— Beeintrichtigung der Nutzererfahrung (Reaktivitit?)

4l

Verlustleistung: Pjeqk

e Energiebedarf baulich bedingter Leckstrome
e Hardware-Miniaturisierung — zunehmender Anteil Pjcqr an P
= Leckstréome kritisch fiir energiesparenden Hardwareentwurf



Advanced Operating Systems

Regelspielraum: Nutzererfahrung

e Nutzererwartung: wichtigstes Kriterium zur Bewertung von auf
einem Rechner aktiven Anwendungen durch Nutzer —
Nutzererwartung bestimmt Nutzererfahrung

e Typ einer Anwendung entscheidet iiber jeweilige Nutzererwartung

1. Hintergrund (z.B. Compiler): Gesamt-Bearbeitungsdauer,
Durchsatz

2. Echtzeit (z.B. Video-Player): ,,fliissiges” Abspielen von
Video oder Musik

3. Interaktiv (z.B. Webbrowser): Reaktivitit, d.h. keine

(wahrnehmbare) Verzdgerung zwischen Nutzer-Aktion und
Rechner-Reaktion
e Insbesondere kritisch: Echtzeit-/interaktive Anwendungen
e Reaktivitit: Reaktion von Anwendungen; abhingig z.B. von
1. Hardware an sich
2. Energieversorgung der Hardware (z.B. Spannungspegel)
3. Software-Gegebenheiten (z.B. Scheduling, Management)

e Zwischenfazit: Nutzererfahrung

— bietet Regelspielraum fiir Hardwareparameter

— Betriebssystemmechanismen zum energieeffizienten
Prozessormanagement miissen mit Nutzererfahrung(jeweils
erforderlicher Reaktivitit) ausbalanciert werden

Energieeffizientes Scheduling

e Scheduling-Probleme beim Energiesparen: Fairness &
Prioritdtsumkehr
e Beispiel: Round Robin (RR) mit Prioritéiten

- Ef“’dg” ... Energiebudget von t;

— El™it | Energielimit von t;

— Plimit ... maximale Leistungsaufnahme [Energie/Zeit]
— T ... resultierende Zeitscheibenlinge

e Problem 1: Unfaire Energieverteilung

e Problem 2: energieintensive Threads behindern nachfolgende
Threads gleicher Prioritét

e Problem 3: energieintensive Threads niedrigerer Prioritét
behindern spitere Threads hoherer Prioritét

e RR Strategie 1: faire Energieverteilung (einheitliche
Energielimits)

— 1<i<4:E'™" = P« T

e faire bzw. gewichtete Aufteilung begrenzter Energie optimiert
Energieeffizienz
e Problem: lange, wenig energieintensive Threads verzogern
Antwort-und Wartezeiten kurzer, energieintensiver Threads
— Lésung im Einzelfall: Wichtung per E!'™
— globale Reaktivitdt — Nutzererfahrung?

e RR Strategie 2: maximale Reaktivitidt ( — klassisches RR)

e Problem: sparsame Threads werden bestraft durch Verfallen des
ungenutzten Energiebudgets

e Idee: Ansparen von Energiebudgets — mehrfache Ausfithrung
eines Threads innerhalb einer Scheduling-Periode

e RR Strategie 3: Reaktivitdt, dann faire Energieverteilung

Implementierungsfragen
e Kosten ggii. klassischem RR? (durch Prioritéiten...?)
e Scheduling-Zeitpunkte?

— welche Accounting-Operationen (Buchfiihrung)?
— wann Accounting-Operationen?
— wann Verdridngung?

e Datenstrukturen?

— ... im Scheduler — Warteschlange(n)?

2/17

— ... im Prozessdeskriptor?

e Pro
— Optimierung der Energieverteilung nach Schedulingzielen
— Beriicksichtigung prozessspezifischer Verbrauchsmuster

e Kontra

— sekundédre Kosten: Energiebedarf des Schedulers,
Kontextwechsel, Implementierungskosten
— Voraussetzung: Monitoring des Energieverbrauchs

e Alternative: energieintensive Prozesse verlangsamen —
Regelung der CPU-Leistungsparameter

Systemglobale Energieeinsparungsmafinahmen
e Traditionelle: zu jedem Zeitpunkt Spitzen-Performanz angestrebt

— viele Anwendungen bendtigen keine Spitzen-Performanz
— viel Hardware-Zeit in Leerlaufsituationen bzw. keine
Spitzen-Performanz erforderlich

e Konsequenz (besonders fiir mobile Systeme)

— Hardware mit Niedrigenergiezustidnden
— Betriebssystem kann Energie-Management realisieren

Hardwaretechnologien
DPM: Dynamic Power Management

o versetzt leerlaufende Hardware selektiv in Zustéinde mit
niedrigem Energieverbrauch

o Zustandsiiberginge durch Power-Manager gesteuert, bestimmte
DPM-Strategie (Firmware) zugrunde, um gutes Verhéltnis
zwischen Performanz/Reaktivitit und Energieeinsparung zu

erzielen . . .
o bestimmt, wann und wie lange eine Hardware in

Energiesparmodus

Greedy Hardware-Komponente sofort nach Erreichen des Leerlaufs in
Energiesparmodus, ,,Aufwecken” durch neue Anforderung
Time-out Energiesparmodus erst nachdem ein definiertes Intervall im

Leerlauf, ,,Aufwecken” wie bei Greedy-Strategien
Vorhersage Energiesparmodus sofort nach Erreichen des Leerlaufs,
wenn Heuristik vorhersagt,dass Kosten gerechtfertigt
Stochastisch Energiesparmodus auf Grundlage stochastischen Modells

DVS: Dynamic Voltage Scaling

e cffizientes Verfahren zur dynamischen Regulierung von
Taktfrequenz gemeinsam mit Versorgungsspannung

e Nutzung quadratischer Abhéngigkeit der dynamischen Leistung
von Versorgungsspannung

e Steuerung/Strategien: Softwareunterstiitzung notwendig

e Ziel: Unterstiitzung von DPM-Strategien durch Mafinahmen auf
Ebene von Compiler, Betriebssystem und Applikationen

e Betriebssystem (pridiktives Energiemanagement)

— kann Benutzung verschiedener Ressourcen beobachten
— kann dariiber Vorhersagen téitigen
— kann notwendigen Performanzbereich bestimmen

e Anwendungen koénnen Informationen iiber jeweils fiir sie
notwendige Performanz liefern
— Kombination mit energieefizientem Scheduling

Speichereffizienz
e ... heifit: Auslastung des verfiigbaren Speichers
e oft implizit: Hauptspeicherauslastung (memoryfootprint)
e fiir kleine/mobile Systeme: Hintergrundspeicherauslastung
o Mafe zur Konkretisierung:

— zeitlich: Maximum vs. Summe genutzten Speichers?
— physischer Speicherverwaltung? — Belegungsanteil pAR
— virtuelle Speicherverwaltung? — Belegungsanteil vAR

e Konsequenzen fiir Ressourcenverwaltung durch BS

— Taskverwaltung (Accounting, Multiplexing, Fairness, ...)

— Programmiermodell, API (dynamische
Speicherreservierung)

— Sinnfrage und Strategien virtueller Speicherverwaltung
(VMM)

e Konsequenzen fiir Betriebssystem selbst

— minimaler Speicherbedarf durch Kernel
— minimale Speicherverwaltungskosten (obiger Aufgaben)

Hauptspeicherauslastung

Problem: externe Fragmentierung

e Losungen
— First Fit, Best Fit, WorstFit, Buddy
— Relokation

o Kompromissloser Weg: kein Multitasking

Problem: interne Fragmentierung

e Losung

— Seitenrahmengréfie verringern
— Tradeoff: dichter belegte vVAR — gréflere Datenstrukturen
fiir Seitentabellen

e direkter Einfluss des Betriebssystems auf Hauptspeicherbelegung

— Speicherbedarf des Kernels

— statische (min) GréBle des Kernels (Anweisungen+Daten)
— dynamische Speicherreservierung durch Kernel

— bei Makrokernel: Speicherbedarf von Gerétecontrollern

weitere Einflussfaktoren: Speicherverwaltungskosten

e VMM: Seitentabellengrofle — Mehrstufigkeit

e Metainformationen iiber laufende Programme: Gréfle von
Taskkontrollblécken (Prozess-/Threaddeskriptoren ...)

e dynamische Speicherreservierung durch Tasks

Hintergrundspeicherauslastung
Einflussfaktoren des Betriebssystems

statische Grofle des Kernel-Images, beim Bootstrapping gelesen

statische Gréfle von Programm-Images (Standards wie ELF)

statisches vs. dynamisches Einbinden von Bibliotheken

VMM: GroBe des Auslagerungsbereichs (inkl. Teilen der

Seitentabelle) fiir Anwendungen

e Modularisierung (zur Kompilierzeit) des Kernels: gezielte
Anpassung an Einsatzdoméne moglich

e Adaptivitidt (zur Kompilier-und Laufzeit) des Kernels: gezielte

Anpassung an sich d4ndernde Umgebungsbedingungen méglich

Architekturentscheidungen

e typische Einsatzgebiete sparsamer BS: eingebettete Systeme
e cingebettetes System

— Computersystem, das in ein grofleres technisches System,
welches nicht zur Datenverarbeitung dient, physisch
eingebunden ist

— Wesentlicher Bestandteil dieses groleren Systems

— Liefert Ausgaben in Form von Informationen/Daten

e spezielle, anwendungsspezifische Auspriagung der Aufgaben

— reduzierter Umfang von HW-Abstraktion, hardwarenéhere
Ablaufumgebung
— begrenzte Notwendigkeit von HW-Multiplexing & Schutz

e eng verwandte NFE: Adaptivitit von sparsamen BS



Advanced Operating Systems

e sparsame Betriebssysteme:

— energieeffizient: geringe Architekturanforderungen an
energieintensive Hardware
— speichereffizient: Auskommen mit kleinen Datenstrukturen

e Konsequenz: geringe logische Komplexitit des
Betriebssystemkerns
e sekundir: Adaptivitit des Betriebssystemkerns

Makrokernel (monolithischer Kernel)
e User Space:
— Anwendungstasks
— CPU im unprivilegierten Modus (Unix ,,Ringe” 1...3)
— Isolation von Tasks durch Programmiermodell/ VMM
e Kernel Space:
— Kernel und Gerétecontroller (Treiber)
— CPU im privilegierten Modus (Unix ,,Ring” 0)
— keine Isolation
e Vergleich
vglw. geringe Kosten von Kernelcode (Energie, Speicher)
VMM nicht zwingend erforderlich
Multitasking nicht zwingend erforderlich

Kernel (inkl. Treibern) jederzeit im Speicher
Robustheit, Sicherheit, Adaptivitit

Mikrokernel

e User Space:

> X NN

— Anwendungstasks, Kernel- und Treibertasks
— CPU im unprivilegierten Modus
— Isolation von Tasks durch VMM

e Kernel Space:

— funktional minimaler Kernel (uKernel)
— CPU im privilegierten Modus
— keine Isolation (Kernel wird in alle vAR eingeblendet)

e Vergleich

Robustheit, Sicherheit, Adaptivitit
Kernelspeicherbedarf gering, Serverprozesse nur wenn
bendtigt ( — Adaptivitét)

hohe IPC-Kosten von Serverprozessen
Kontextwechselkosten von Serverprozessen

VMM, Multitasking i.d.R. erforderlich

BS: TinyOS

Beispiel fiir sparsame BS im Bereich eingebetteter Systeme
verbreitete Anwendung: verteilte Sensornetze (WSN)
,,TinyOS” ist ein quelloffenes, BSD-lizenziertes Betriebssystem
fiir drahtlose Gerite mit geringem Stromverbrauch
Architektur

— monolithisch (Makrokernel) mit Besonderheiten:

— keine klare Trennung zwischen der Implementierung von
Anwendungen und BS (aber von funktionalen Aufgaben)

— zur Laufzeit: 1 Anwendung + Kernel

XXX NN\

o Mechanismen:

— kein Multithreading, keine echte Parallelitit
— keine Synchronisation zwischen Tasks

— keine Kontextwechsel bei Taskwechsel

— Multitasking realisiert durch Programmiermodell
— nicht-prdemptives FIFO-Scheduling

— kein Paging — keine Seitentabellen, keine MMU

e in Zahlen:

— Kernelgrofie: 400 Byte
— Kernelimagegrofie: 1-4 kByte
— Anwendungsgrofie: typisch ca. 15 kB, DB: 64 kB

3/17

o Programmiermodell:

— BS+Anwendung als Ganzes iibersetzt: statische
Optimierungen durch Compiler (Laufzeit, Speicherbedarf)

— Nebenlaufigkeit durch ereignisbasierte Kommunikation zw.

Anwendung und Kernel
* command: API-Aufruf, z.B. EA-Operation
* event: Reaktion auf diesen durch Anwendung

— sowohl commands als auch events : asynchron

BS: RIOT

e sparsames BS,optimiert fiir anspruchsvollere Anwendungen
e Open-Source-Mikrokernel-basiertes Betriebssystem fiir IoT
e Architektur

— halbwegs: Mikrokernel
— energiesparende Kernelfunktionalitét
* minimale Algorithmenkomplexitit
* vereinfachtes Threadkonzept — keine
Kontextsicherung erforderlich
* keine dynamische Speicherallokation
* energiesparende Hardwarezustinde vom Scheduler
ausgelost (inaktive CPU)
— Mikrokerneldesign unterstiitzt komplementire NFE:
Adaptivitdt, Erweiterbarkeit
— Kosten: IPC (hier gering)

e Mechanismen:

— Multithreading-Programmiermodell
— modulare Implementierung von Dateisystemen, Scheduler,
Netzwerkstack

e in Zahlen:

— Kernelgréfe: 1,5 kByte
— Kernelimagegréfle: 5 kByte

Robustheit und Verfiigbarkeit

Motivation
e allgemein: verlidsslichkeitskritische Anwendungsszenarien
e Forschung in garstiger Umwelt (Weltraum)
e hochsicherheitskritische Systeme (Finanz, Cloud Dienste)
e hochverfiigbare System (6ffentliche Infrastruktur, Strom)
e HPC (high performance computing)

Allgemeine Begriffe

e Verlisslichkeit: Féahigkeit, eine Leistung zu erbringen, der man
berechtigterweise vertrauen kann
e Untereigenschaften

1. Verfiigbarkeit (availability)

2. Robustheit (robustness, reliability
3. (Funktions-) Sicherheit (safety)
4. Vertraulichkeit (confidentiality)
5. Integritét (integrity)
6. Wartbarkeit (maintainability) (vgl.: evolutionére
Eigenschaften)
— nicht fiir alle Anwendungen sind alle Untereigenschaften
erforderlich
Robustheitsbegriff

e Untereigenschaften von Verlésslichkeit: Robustheit (reliability)

o Ausfall: beobachtbare Verminderung der Leistung eines Systems,
gegeniiber seiner als korrekt spezifizierten Leistung

e Robustheit: Verldsslichkeit unter Anwesenheit externer Ausfille
(= Ursache aulerhalb des betrachteten Systems)

Fehler, Ausfille und ihre Vermeidung
e Fehler — fehlerhafter Zustand — Ausfall

Ausfall (failure) liegt vor, wenn tatséchliche Leistung(en), die ein
System erbringt, von als korrekt spezifizierter Leistung abweichen

e Korrektheit testen/beweisen( — formale Verifikation)

fehlerhafter Zustand (error) notwendige Ursache eines Ausfalls (nicht
jeder error muss zu failure fithren)

e Maskierung, Redundanz
e Isolation von Subsystemen
— Isolationsmechanismen
Fehler (fault) Ursache fiir fehlerhaften Systemzustand ( error ), z.B.
Programmierfehler

e Ausfallverhalten spezifizieren
e Ausfille zur Laufzeit erkennen und Folgen beheben,
abschwéchen...
— Micro-Reboots

Fehlerhafter Zustand

interner und externer Zustand (internal & external state)

e externer Zustand: der Teil des Gesamtzustands, der an externer
Schnittstelle sichtbar wird X

e interner Zustand: restlicher Teilzustand

o erbrachte Leistung: zeitliche Folge externer Zusténde

Fehlerausbreitung und (externer) Ausfall

e Wirkungskette: Treiber-Programmierfehler (fault) — fehlerhafter
interner Zustand des Treibers (error)

— Ausbreitung dieses Fehlers (failure des Treibers)

= fehlerhafter externer Zustand des Treibers
= fehlerhafter interner Zustand des Kernels (error)

= Kernelausfall (failure)

e Auswirkung: fehlerhafter Zustand weiterer Kernel-Subsysteme
— Robustheit: Isolationsmechanismen

Isolationsmechanismen
e Isolationsmechanismen fiir robuste Betriebssysteme
— durch strukturierte Programmierung
— durch Adressraumisolation
e noch mehr fiir sichere Betriebssysteme
— durch kryptografische Hardwareunterstiitzung: Enclaves

— durch streng typisierte Sprachen und managed code
— durch isolierte Laufzeitumgebungen: Virtualisierung

Strukturierte Programmierung
Monolithisches BS... in historischer Reinform:

e Anwendungen, Kernel, gesamte BS-Funktionalitéit

e programmiert als Sammlung von Prozeduren

e jede darf jede davon aufrufen, keine Modularisierung
e keine definierten internen Schnittstellen

Monolithisches Prinzip

e Ziel: Isolation zwischen Anwendungen und Betriebssystem
e Mechanismus: Prozessor-Privilegierungsebenen (user/kernelspace)
e Konsequenz: fast keine Strukturierung des Kernels

Strukturierte Makrokernarchitektur

e schwach strukturierter (monolithischer) Makrokernel
= Schichtendifferenzierung ( layered operating system )
e Modularisierung

Modularer Makrokernel

e Kernelfunktionen in Module unterteilt — Erweiter-/Portierbarkeit

e klar definierte Modulschnittstellen
e Module zur Kernellaufzeit dynamisch einbindbar (Adaptivitét)



Advanced Operating Systems

Fehlerausbreitung beim Makrokernel

Wartbarkeit

Portierbarkeit

Erweiterbarkeit

(begrenzt) Adaptivitit

Schutz gegen statische Programmierfehler nur durch Compiler
kein Schutz gegen dynamische Fehler

x o o NN\

Adressraumisolation
Private virtuelle Adressrdume und Fehlerausbreitung

e private virtuelle Adressrdume zweier Tasks (i # j)
e korrekte private vAR: kollisionsfreie Seitenabbildung
e Magie in Hardware: MMU (BS steuert und verwaltet...)

Robustheit: Vorteil von privaten vAR?

v nichtvertrauenswiirdiger Code kann keine beliebigen physischen
Adressen schreiben
v/ Kommunikation zwischen nvw. Code muss durch
IPC-Mechanismen explizit hergestellt werden — Uberwachung
und Validierung zur Laufzeit moglich
v Kontrollfluss begrenzen: Funktionsaufrufe kénnen i.A. keine
AR-Grenzen iiberschreiten
— BS-Zugriffssteuerung kann nicht durch Taskfehler
ausgehebelt werden
— unabsichtliche Terminierungsfehler(unendliche Rekursion)
erschwert ...
e keine Isolation zwischen Fehlern innerhalb des Kernels

Mikrokernelarchitektur
Fortschritt ggii. Makrokernel

e Strukturierungskonzept

— strenger durchgesetzt durch konsequente Isolation
voneinander unabhéngiger Kernel-Subsysteme

— zur Laufzeit durchgesetzt — Reaktion auf fehlerhafte
Zustdnde moglich!

e zusitzlich zu vertikaler Strukturierung des Kernels: horizontale
Strukturierung eingefiihrt

— funktionale Einheiten: vertikal (Schichten)
— isolierte Einheiten: horizontal (private vAR)

= Kernel (alle BS-Funktionalitit) — pKernel (minimale BS-Funk.)
e Rest: ,,gewthnliche” Anwendungsprozesse mit AR-isolation
e Kommunikation: botschaftenbasierte IPC (client-server OS)
e Nomenklatur: Mikrokernel und Serverprozesse

Modularer Makrokernel vs. Mikrokernel
e minimale Kernelfunktionalitét:
e keine Dienste, nur allgemeine Schnittstellenfiir diese
e keine Strategien, nur grundlegende Mechanismen zur
Ressourcenverwaltung
e neues Problem: minimales Mikrokerneldesign

Robustheit von Mikrokernen

e = Gewinn durch Adressraumisolation innerhalb des Kernels
kem nichtvertrauenswiirdiger Code im Kernelspace, der dort
beliebige physische Adressen manipulieren kann

Kommunikation zwischen nvw. Code (nicht zur zwischen
Anwendungstasks)muss durch IPC explizit hergestellt werden —
Uberwachung und Validierung zur Laufzeit

Kontrollfluss begrenzen: Zugriffssteuerung auch zwischen
Serverprozessen, zur Laufzeit unabhingiges Teilmanagement von
Code (Kernelcode) mdglich (z.B.: Nichtterminierung erkennen)
Neu:

nvw. BS-Code muss nicht mehr im Kernelspace laufen
verbleibender Kernel: klein, funktional weniger komplex, leichter
zu entwickeln, zu testen, evtl. formal zu verifizieren

daneben: Adaptivitdt durch konsequentere Modularisierung des
Kernels gesteigert

<

N SNSe

4/17

Mikrokernel: Mach

1975: Aleph (BS des ,,Rochester Intelligent Gateway”)
1979/81: Accent (verteiltes BS), CMU

Mach 3.0 (1989): einer der ersten praktisch nutzbaren pKerne
Ziel: API-Emulation (# Virtualisierung) von UNIX und

-Derivaten auf unterschiedlichen Prozessorarchitekturen
mehrere unterschiedliche Emulatoren gleichzeitig lauffahig

— Emulation auflerhalb des Kernels
— Komponente im Adressraum des Applikationsprogramms
— 1...n Server, unabhéngig von Applikationsprogramm

pKernel-Funktionen

1. Prozessverwaltung
2. Speicherverwaltung
3. IPC-und E/A-Dienste, einschlieBlich Gerétetreiber

unterstiitzte Abstraktionen ( — API, Systemaufrufe):

1. Prozesse, Threads, Speicherobjekte

2. Ports (generisches, ortstransparentes Adressierungskonzept)

3. Botschaften, ... (sekundére, von den obigen genutzte
Abstraktionen)

Architektur
e Systemaufrufkosten:

— IPC-Benchmark (1995): i486 Prozessor, 50 MHz

— Messung mit verschiedenen Botschaftenldngen( x - Werte)

— ohne Nutzdaten (0 Byte Botschaftenldnge): 115 us
(Tendenz unfreundlich ...)

e Bewertung aus heutiger Sicht:

— funktional komplex

— 153 Systemaufrufe

— mehrere Schnittstellen, parallele Implementierungen fiir
eine Funktion

— Adaptivitdt (Auswahl durch Programmierer)

— zukunftsweliender Ansatz
— langsame und ineffiziente Implementierung

Lessons Learned

o Umsetzung: Designkriterien weitgehend unbekannt

e Folgen fiir Performanz und Programmierkomfort: [Heis19]

X ,,complex”, ,inflexible”, ,,slow”

e wissen etwas iiber Kosten: IPC-Performanz, Kernelabstraktionen

e wissen nichts iiber guten puKern-Funktionsumfang und gute
Schnittstellen

L4
Analyse des Mach-Kernels:
1. falsche Abstraktionen

2. unperformante Kernelimplementierung
3. prozessorunabhingige Implementierung

L3 und L4

o Mikrokerne der 2. Generation
e vollstdndige Uberarbeitung des Mikrokernkonzepts
Second Generation

First generation Third generation

Eg Mach Eg L4 selL.4
Memory Objects
Low-level FS, Memory-
Swapping mangmt
lirary
Kernel memory Kernel memory
Scheduling Scheduling Scheduling
ELS "TPC. WMUEBST | "TPC. WMU abstr. |

180 syscalls ~ 7 syscalls ~ 3 syscalls
100 kLOC ~ 10 kKLOC 9 k]ZOC
100 ps IPC ~ 1 ps IPC 0,2 — 1us IPC

Mikrokernel - Designprinzipien

e Was gehort in einen Mikrokern?

o Konzeptsicht — Funktionalitit

e Implementierungssicht — Performanz
— 1. Generation: durch Performanzentscheidungen aufgeweicht
— Effekt in Praxis gegenteilig: schlechte (IPC-) Performanz

Designprinzipien fiir Mikrokernel-Konzept

1. System interaktive und nicht vollstindig vertrauenswiirdige
Applikationen unterstiitzen ( — HW-Schutz,-Multiplexing),
2. Hardware mit virtueller Speicherverwaltung und Paging

Designprinzipien

Autonomie Subsystem muss so implementiert werden, dass es von
keinem anderen Subsystem gestort oder korrumpiert werden kann

Integritdt Subsystem S; muss sich auf Garantien von S> verlassen
konnen. D.h. beide Subsysteme miissen miteinander
kommunizieren kénnen, ohne dass ein drittes Subsystem diese
Kommunikation stéren, falschen oder abhéren kann.

L4: Speicherabstraktion

e Adressraum: Abbildung, die jede virtuelle Seite auf einen
physischen Seitenrahmen abbildet oder als ,,nicht zugreifbar”
markiert

e Implementierung iiber Seitentabellen, unterstiitzt durch
MMU-Hardware

e Aufgabe des Mikrokernels (Schicht aller Subsysteme): muss
Hardware-Konzept des Adressraums verbergen und durch eigenes
Adressraum-Konzept iiberlagern

e Mikrokernel-Konzept des Adressraums:

— muss Implementierung von beliebigen virtuellen
Speicherverwaltungs-und -schutzkonzepten oberhalb des
Mikrokernels (d.h. in den Subsystemen) erlauben

— sollte einfach und dem Hardware-Konzept &hnlich sein

e Idee: abstrakte Speicherverwaltung

— rekursive Konstruktion und Verwaltung der Adressrdume
auf Benutzer-(Server-)Ebene
— Mikrokernel stellt dafiir genau drei Operationen bereit:

grant(x) Server iibertréigt Seite = seines AR in AR von Empfinger
map(x) Server bildet Seite z seines AR in AR von Empfinger ab
flush(x) Server entfernt Seite x seines AR aus allen fremden AR

Hierarchische Adressrdume

Rekursive Konstruktion der Adressraumhierarchie

Server und Anwendungenkonnen damit ihren Klienten Seiten des
eigenen Adressraumes zur Verfiigung stellen

Realspeicher: Ur-Adressraum vom pKernel verwaltet

e Speicherverwaltung, Paging... auflerhalb des p-Kernels realisiert

L4: Threadabstraktion

e Thread

— innerhalb eines Adressraumes ablaufende Aktivitét

— Adressraumzuordnung essenziell fiir Threadkonzept

— Bindung an Adressraum: dynamisch oder fest

— Anderung einer dynamischen Zuordnung: darf nur unter
vertrauenswiirdiger Kontrolle erfolgen



Advanced Operating Systems

e Designentscheidung

— Autonomieprinzip

— Konsequenz: Adressraumisolation

— entscheidender Grund zur Realisierung des
Thread-Konzepts innerhalb des Mikrokernels

IPC
e Interprozess-Kommunikation

— Kommunikation iiber Adressraumgrenzen
— vertrauenswiirdig kontrollierte Aufhebung der Isolation
— essenziell fiir (sinnvolles) Multitasking und -threading

e Designentscheidung
— Integritétsprinzip
— vertrauenswiirdige Adressraumisolation im pKernel
— grundlegendes IPC-Konzepts innerhalb des Mikrokernels

Identifikatoren

e Thread-und Ressourcenbezeichner
— miissen vertrauenswiirdig vergeben und verwaltet werden
— essenziell fiir (sinnvolles) Multitasking und -threading
— essenziell fiir vertrauenswiirdige
Kernel-/Server-Schnittstellen

e Designentscheidung

— Integritatsprinzip
— ID-Konzept innerhalb des Mikrokernels

Lessons Learned

1. Ein minimaler Mikrokernel
e stellt Minimalmenge geeigneter Abstraktionen verfiigbar
e flexibel, um Implementierung beliebiger BS zu erméglichen
e Nutzung verschiedener Hardware-Plattformen

2. Geeignete, funktional minimale Mechanismen im pKern:

e Adressraum mit map-, flush-, grant-Operation
e Threadsinklusive IPC
e eindeutige Identifikatoren
3. Wahl der geeigneten Abstraktionen: kritisch fiir Verifizierbarkeit,
Adaptivitidt und optimierte Performanz des Mikrokerns
4. Bisherigen p-Kernel-Abstraktionskonzepte: ungeeignete, zu viele,
zu spezialisierte u. inflexible Abstraktionen
5. Konsequenzen fiir Mikrokernel-Implementierung

e miissen fiir jeden Prozessortyp neu implementiert werden
e deshalb prinzipiell nicht portierbar — L3-/L4-Prototypen:
99% Assemblercode
6. innerhalb eines Mikrokernels sind von Prozessorhardware
abhéngig
(a) grundlegende Implementierungsentscheidungen
(b) meiste Algorithmen u. Datenstrukturen

7. Fazit: Mikrokernel mit akzeptabler Performanz
hardwarespezifische Implementierung minimal erforderlicher vom
Prozessortyp unabhéngiger Abstraktionen

8. L4 heute: Spezifikation Mikrokernels (nicht Implementierung)

Zwischenfazit

e Begrenzung von Fehlerausbreitung (— Folgen von errors)
konsequent modularisierte Architektur aus Subsystemen
Isolationsmechanismen zwischen Subsystemen

statische Isolation auf Quellcodeebene — strukturierte
Programmierung

dynamische Isolation zur Laufzeit — private virtuelle

Adressrdume
Architektur, welche diese Mechanismen komponiert: Mikrokernel

Adressraumisolation fiir sémtlichen nichtvertrauenswiirdigen Code
keine privilegierten Instruktionen in nvw. Code (Serverprozesse)
geringe GroBe (potenziell: Verifizierbarkeit) des Kernels

neben Robustheit: Modularitdtund Adaptivitdtdes Kernels
Behandlung von Ausfillen ( — abstiirzende Gerétetreiber ...)

*x NSNS

5/17

Micro-Reboots
e Kernelfehler potentiell fatal fiir gesamtes System
Anwendungsfehler nicht
kleiner Kernel = geringeres Risiko von Systemausfillen
BS-Code in Serverprozessen: verbleibendes Risiko unabhéngiger
Teilausfille von BS-Funktionalitét
e Erginzung zu Isolationsmechanismen notwendig
e Mechanismen zur Behandlung von Subsystem-Ausfillen
= Mechanismen zur Behandlung Anwendungs-, Server- und
Geriétetreiberfehlen
—  Micro-Reboots

1le

Ansatz

kleinen (als fehlerfrei angenommenen) pKernel

BS-Funktionalitit in bedingt vertrauenswiirdigen Serverprozessen
Treiber/Anwendungen in nicht vertrauenswiirdigen Prozessen
wollen Systemausfille verhindern durch Vermeidung von errors im
Kernel — hochste Prioritédt

Treiber-und Serverausfidlle minimieren durch Verbergen ihrer
Auswirkungen — nachgeordnete Prioritéit (Best-Effort-Prinzip)

e Idee: Ausfille — Neustart durch spezialisierten Serverprozess

Beispiel-Betriebssystem: MINIX

e Ziel: robustes Betriebssystems
— Schutz gegen Sichtbarwerden von Fehlern(= Ausfille) fiir Nutzer
e Fokus auf Anwendungsdominen: Einzelplatzrechner und
eingebettete Systeme
e Anliegen: Robustheit > Verstédndlichkeit > geringer HW-Bedarf

Architektur

Betriebssystem-Serverprozesse

user space

Gerétetreiberprozesse

pKernel kernel space

e Anwendungen (wei}): Systemaufrufe im POSIX-Standard

e Serverprozesse (grau): IPC (botschaftenbasiert), mit Kernel:
spezielle MINIX-API (kernel calls), fiir Anwendungsprozesse
gesperrt

e Betriebssystem-Serverprozesse: Dateisystem (FS),
Prozessmanagement (PM), Netzwerkmanagement (Net)

e Reincarnation Server (RS) — Micro-Reboots jeglicher
Serverprozesse

e Kernelprozesse: systemtask, clocktask

Reincarnation Server

e Implementierungstechnik fiir Micro-Reboots
e Prozesse zum Systemstart (— Kernel Image)

system, clock Kernelprogramm
init Bootstrapping (Initialisierung rs), Fork der Login-Shell
rs Fork aller BS-Serverprozesse inkl. Gerétetreiber

Verfiigbarkeit

komplementéire NFE zu Robustheit: Verfiigbarkeit ( availability )
Verbesserung von Robustheit — Verbesserung von Verfiigbarkeit
Robustheitsmainahmen hinreichend , nicht notwendig

weitere komplementire NFE: Robustheit — Sicherheit (security)
Definition: Grad, zu welchem ein System oder eine Komponente

funktionsfihig und zugénglich (erreichbar) ist, wann immer seine
Nutzung erforderlich ist (IEEE)

e Anteil an Laufzeit eines Systems, in dem dieses seine spezifizierte
Leistung erbringt

o CTotalUptime _ MTTF
Availability = 7oarTifetime = MTTFTMTTE

MTTR: Mean Time to Recovery, MTTF: Mean Time to Failure
Hochverfiigbarkeitsbereich (gefeierte ,,five nines” availability)
MaBnahmen: Robustheit, Redundanz, Ausfallmanagement

einige Verfiigbarkeitsklassen:
Verfiigbarkeit | Ausfallzeit pro Jahr | Ausfallzeit pro Woche

90% > 1 Monat ca. 17 Stunden
99% ca. 4 Tage ca. 2 Stunden
99,9% ca. 9 Stunden ca. 10 Minuten
99,99% ca. 1 Stunde ca. 1 Minute
99,999% ca. 5 Minuten ca. 6 Sekunden
99,9999% ca. 2 Sekunden << 1 Sekunde

QNX Neutrino: Hochverfiigbares Echtzeit-BS

Mikrokern-Betriebssystem

priméres Einsatzfeld: eingebettete Systeme, z.B. Automobilbau
Mikrokernarchitektur mit Adressraumisolation fiir Geratetreiber
(begrenzt) dynamische Micro-Rebootsmdoglich

— Maximierung der Uptime des Gesamtsystems

High-Avalability-Manager Laufzeit-Monitor der
Systemdienste/ Anwendungsprozesse iiberwacht und neustartet —
pReboot-Server

High-Availability-Client-Libraries Funktionen zur transparenten
automatischen Reboot fiir ausgefallene Server-Verbindungen

Sicherheit

Terminologie

Security IT-Sicherheit, Informationssicherheit

e Ziel: Schutz des Rechnersystems
e Systemsicherheit, hier besprochen

Safety Funktionale Sicherheit, Betriebssicherheit

e Ziel: Schutz vor einem Rechnersystem
e an dieser Stelle nicht besprochen

Sicherheitsziele
e Rechnersystem sicher gegen Schidden durch zielgerichtete Angriffe,
insbesondere bzgl Informationen, die im System gespeichert,
verarbeitet und iibertragen werden
e fiir Sicherheitsziele gilt: Daten # Informationen
e sukzessive Konkretisierungen bzgl anwendungsspezifischer
Anforderungen

abstrakte auf konkret definierte Sicherheitsziele

Vertraulichkeit nur fiir einen autorisierten Nutzerkreis zugénglich
Integritédt vor nicht autorisierter Veranderung geschiitzt
Verfiigbarkeit autorisierten Nutzern in angemessener Frist zugénglich
Authentizitéit Urheber eindeutig erkennen

Verbindlichkeit sowohl integer als auch authentisch

Schadenspotenzial
1. Vandalismus, Terrorismus (reine Zerstérungswut)
2. Systemmissbrauch
e illegitime Ressourcennutzung, hocheffektive Folgeangriffe
e Manipulation von Inhalten (— Desinformation)
3. (Wirtschafts-) Spionage und Diebstahl

e Verlust der Kontrolle iiber kritisches Wissen (—
Risikotechnologien)
e immense wirtschaftliche Schiden, z.B. Diebstahl von
industriellem Know-How
4. Betrug, personliche Bereicherung (wirtschaftliche Schéden)
5. Sabotage, Erpressung

e AuBerkraftsetzen lebenswichtiger Infrastruktur
e Erpressung durch reversible Sabotage



Advanced Operating Systems

Bedrohungen
1. Eindringlinge (intruders), Hacker
e Angriff nutzt technische Schwachstelle aus ( exploit )
2. Schadsoftware (malicious software, malware)
e (teil-) automatisierte Angriffe
e Trojanische Pferde: scheinbar niitzliche Software
e Viren, Wiirmer: Funktionalitdt zur eigenen Vervielfdltigung
und/oder Modifikation
e Logische Bomben: trojanischen Pferde, deren Aktivierung
an System- oder Datumsereignisse gebunden
e Root Kits
3. Bots und Botnets
o (weit-) verteilt ausgefiihrte Schadsoftware
e cigentliches Ziel i.d.R. nicht das jeweils infizierte System

Professionelle Malware: Root Kit
e Programm-Paket, das unbemerkt Betriebssystem modifiziert, um
Administratorrechte zu erlangen
e Voraussetzung: eine einzige Schwachstelle...
e ermdoglichen Zugriff auf alle Funktionen und Dienste eines
Betriebssystems
e Angreifer erlangt vollstindige Kontrolle des Systems und kann

— Dateien (Programme) hinzufiigen bzw. &ndern
— Prozesse iiberwachen
— iiber die Netzverbindungen senden und empfangen
— Hintertiiren fiir zukiinftiger Angriffe platzieren
e Ziele eines Rootkits

— seine Existenz verbergen
— zu verbergen, welche Verdnderungen vorgenommen wurden
— vollstdndige und irreversible Kontrolle iiber BS zu erlangen

e erfolgreicher Root-Kit-Angriff ...

— jederzeit, unentdeckbar, nicht reversibel

— systemspezifischem Wissen iiber Schwachstellen

— vollautomatisiert, also reaktiv unverhinderbar

— uneingeschriankte Kontrolle iiber Zielsystem erlangen

Schwachstellen

1. Passwort (erraten, zu einfach, Brute-Force, Abfangen)
2. Programmierfehler (Speicherfehler in

Anwenderprogrammen/Geritemanagern/Betriebssystem
3. Mangelhafte Robustheit

o keine Korrektur fehlerhafter Eingaben
e buffer overrun/underrun (,,Heartbleed”)

4. Nichttechnische Schwachstellen

e physisch, organisatorisch, infrastrukturell
e menschlich ( — Erpressung, socialengineering )

Zwischenfazit

e Schwachstellen sind unvermeidbar
e Bedrohungen sind unkontrollierbar
e ... und nehmen tendeziell zu!
e fiihrt zu operationellen Risiken beim Betrieb eines IT-Systems
— Aufgabe der BS-Sicherheit: Auswirkungen operationeller Risiken
reduzieren

Sicherheitspolitiken

e Herausforderung: korrekte Durchsetzung von Sicherheitspolitiken
e Vorgehensweise: Security Engineering

Sicherheitsziele Welche Sicherheitsanforderungen muss BS erfiillen?
Sicherheitspolitik Durch welche Strategien soll es diese erfiillen?
Sicherheitsmechanismen Wie implementiert BS Sicherheitspolitik?

Sicherheitsarchitektur Wo implementiert BS S.-mechanismen?

6/17

Sicherheitspolitiken und -modelle

Kritisch fiir korrekten Entwurf, Spezifikation, Implementierung

e Sicherheitspolitik (Policy): Menge von Regeln, zum Erreichen
eines Sicherheitsziels
e Sicherheitsmodell: formale Darstellung zur

— Verifikation ihrer Korrektheit
— Spezifikation ihrer Implementierung

Zugriffssteuerungspolitiken

Zugriffssteuerung (access control) Steuerung, welcher Nutzer oder
Prozess mittels welcher Operationen auf welche BS-Ressourcen
zugreifen darf

Zugriffssteuerungspolitik konkrete Regeln, welche die
Zugriffssteuerung in einem BS beschreiben

IBAC (Identity-based AC) Politik spezifiziert, welcher Nutzer an
welchen Ressourcen bestimmte Rechte hat

e Bsp.: ,,Nutzer Anna darf Brief.docx lesen”

TE (Type-Enforcement) Politik spezifiziert Rechte durch zusétzliche
Abstraktion (Typen): welcher Nutzertyp an welchem
Ressourcentyp bestimmte Rechte hat

e Bsp.: ,,Nutzer vom Typ Administrator darf...”

MLS (Multi-Level Security) Politik spezifiziert Rechte, indem aus
Nutzern und Ressourcen hierarchische Klassen (Ebenen,
,,Levels”) gleicher Kritikalitét im Hinblick auf Sicherheitsziele
gebildet werden

e Bsp.: ,,Nutzer der Klasse nicht vertrauenswiirdig...”

DAC (Discretionary AC): Aktionen der Nutzer setzen die
Sicherheitspolitik durch. Typisch: Begriff des Eigentiimers von

BS-Ressourcen

e Bsp.: ,,Der Eigentiimer einer Datei &ndert...”

MAC (Mandatory AC, obligatorische Zugriffssteuerung) Keine
Beteiligung der Nutzer an der Durchsetzung einer (zentral

administrierten) Sicherheitspolitik

e Bsp.: ,,Anhand des Dateisystempfads bestimmt BS...”

Traditionell: DAC, IBAC
Auszug aus der Unix-Sicherheitspolitik:

es gibt Subjekte (Nutzer/Prozesse) und Objekte (Dateien,...)
jedes Objekt hat einen Eigentiimer

Eigentiimer legen Zugriffsrechte an Objekten fest (— DAC)

es gibt drei Zugriffsrechte: read, write, execute

je Objekt gibt es drei Klassen von Subjekten, mit individuellen
Zugriffsrechten: Eigentiimer, Gruppe, Rest

In der Praxis

e identititsbasierte (IBAC), wahlfreie Zugriffssteuerung (DAC)
e hohe individuelle Freiheit der Nutzer bei Durchsetzung der Politik
o hohe Verantwortung

Modellierung: Zugriffsmatrix

e Access Control Matrix (acm): Momentaufnahme der globalen
Rechteverteilung zu einem definierten Zeitpunkt t

o Korrektheitskriterium: Wie kann sich dies nach t moglicherweise
dndern...?

e Rechteausbreitung (privilege escalation): verursacht z.B. durch
Nutzeraktion (— DAC)

e Sicherheitseigenschaft: HRU Safety — Systemsicherheit

Modern: MAC, MLS
Sicherheitspolitik der Windows UAC (user account control)

e es gibt Subjekte (Prozesse) und Objekte (Dateisystemknoten)
e jedem Subjekt ist eine Integritdtsklasse zugewiesen:

Low nicht vertrauenswiirdig

Medium regulidre Nutzerprozesse, die Nutzerdaten manipulieren

High Administratorprozesse, die Systemdaten manipulieren

System (Hintergrund-) Prozesse, die ausschlieBlich
Betriebssystemdienste auf Anwenderebene implementieren

jedem Objekt ist analog eine dieser Integrititsklassen zugewiesen

e siamtliche DAC-Zugriffsrechte miissen mit einer Hierarchie der
Integritétsklassen konsistent sein ( — MAC)

e Nutzer kénnen Konsistenzanforderung selektiv auler Kraft setzen

(— DAC)

MAC-Modellierung: Klassenhierarchie
Beispiel Relation: <=
{(High, Medium), (High, Low), (Medium, Low), (High, High), (Low, Low)}

e reprisentiert Kritikalitdt hinsichtlich der Integritit

e modelliert legale Informationsfliisse zwischen Subjekten und
Objekten — Schutz vor illegalem Uberschreiben

e leitet Zugriffsrechte aus Informationsfliissen ab: lesen/schreiben

Modellkorrektheit: Konsistenz

o Korrektheitskriterium: Garantiert die Politik, dass acm mit <
jederzeit konsistent ist? ( BLP Security )

e clevation-Mechanismus: verédndert nach Nutzeranfrage (— DAC)
sowohl acm als auch <— konsistenzerhaltend?

e anders: verdndern unmittelbar nur acm — konsistenzerhaltend?

Autorisierungsmechanismen
e Sicherheitsmechanismen: Datenstrukturen und Algorithmen,
welche Sicherheitseigenschaften eines BS implementieren
— Sicherheitsmechanismen benétigt man zur Herstellung jeglicher
Sicherheitseigenschaften
e Auswahl im Folgenden: Autorisierungsmechanismen und
-informationen
— Nutzerauthentisierung (Passwort-Hashing, ...)
— Autorisierungsinformationen (Metainformationen...)
— Autorisierungsmechanismen (Rechtepriifung, ...)
— kryptografische Mechanismen (Hashfunktionen, ...)

Traditionell: ACLs, SUID
Autorisierungsinformationen:

e miissen Subjekte (Nutzer) bzw. Objekte (Dateien, Sockets ...) mit
Rechten assoziieren — Implementierung der Zugriffsmatrix (acm),
diese ist:

— groB (— Dateianzahl auf Fileserver)
— diinn besetzt
— in GroBle und Inhalt dynamisch verdnderlich

e Losung: verteilte Implementierung der acm als Spaltenvektoren,
deren Inhalt in den Objekt-Metadaten reprasentiert wird:
Zugriffssteuerungslisten (ACLs)

ACLs: Linux-Implementierung

e objektspezifischer Spaltenvektor = Zugriffssteuerungsliste
e Dateisystem-Metainformationen: implementiert in I-Nodes

Modell einer Unix acm ...

| lesen | schreiben | ausfiihren
Eigentiimer (u) ja ja ja
Gruppe (g) ja nein ja
Rest (o ja nein ja

e 3-clementige Liste, 3-elementige Rechtemenge

— 9 Bits
e Implementierung kodiert in 16-Bit-Wort: 111101101



Advanced Operating Systems

Autorisierungsmechanismen: ACL-Auswertung
Subjekte = Nutzermenge besteht aus Anzahl registrierter Nutzer

e jeder hat eindeutige UID (userID), z.B. integer- Zahl
e Dateien & Prozesse mit UID des Eigentiimers versehen
— bei Dateien: Teil des I-Nodes

— bei Prozessen: Teil des PCB
— standardmaéfBiger Eigentiimer: der Ressource erzeugt hat

Nutzergruppen (groups)

e jeder Nutzer durch Eintrag in Systemdatei (/etc/group)
einer/mehreren Gruppen zugeordnet (— ACL: g Rechte)

Superuser oder root... hat grundsitzlich uneingeschrinkte Rechte.

e UID =0
e darf alle Dateien im System lesen, schreiben, ausfithren

e unabhingig von ACL

ACL-Implementierung Nutzerrechte — Prozessrechte
Durchsetzung: basiert auf Prozessrechten

e Annahme: Prozesse laufen mit UID des Nutzers, der sie gestartet
hat und repréasentieren Nutzerberechtigungen

e technisch: Nutzer beauftragt anderen Prozess, sich zu dublizieren
(fork()) und gewiinschte Programm auszufiihren (exec*())

e Vererbungsprinzip

Autorisierungsmechanismen: Set-UID
Rechtevererbung

konsequente

e Nutzer kénnen im Rahmen der DAC-Politik ACLs manipulieren
e Nutzer kénnen (i.A.) jedoch keine Prozess-UIDs manipulieren
e — und genau so sollte es gem. Unix-Sicherheitspolitik auch sein!

Hintergrund
e Unix-Philosophie ,, everything is a file ”: BS-Ressourcen wie
Sockets, E/A-Gerétehandler als Datei reprisentiert — identische
Schutzmechanismen zum regulidren Dateisystem
e somit: Autorisierungsmechanismen zur Begrenzung des Zugriffs
auf solche Gerdte nutzbar

— root bzw. zweckgebundener Nutzer muss Eigentiimer sein
— ACL als rw- --- --- gesetzt sein
— Nutzerprozesse kénnten z.B. nicht drucken ...

e Losung: Mechanismus zur Rechtedelegation

— durch weiteres Recht in ACL: SUID-Bit (setUID)

— Programmausfiithrung modifiziert Kindprozess, so dass UID
des Programmeigentiimers seine Rechte bestimmt

— Technik: von UID abweichende Prozess-Metainformation
(— PCB) effektive UID (eUID) wird tatséchlich zur
Autorisierung genutzt

Strategie fiir sicherheitskritische Linux-Programme

e Eigentiimer root, SUID-Bit gesetzt
e per eUID delegiert root seine Rechte an genau solche
Kindprozesse, die SUID-Programme ausfiihren
— Nutzerprozesse konnen Systemprogramme ohne permanente
root-Rechte ausfithren

Weiteres Beispiel: passwd

erméglicht Nutzern Andern des (eigenen) Anmeldepassworts
Schreibzugriff auf /etc/shadow (Password-Hashes) erforderlich
Losung: ‘-rws rws r-x 1 root root 1 2005-01-20 10:00 passwd$
passwd-Programm wird mit root-Rechten ausgefiihrt und passwd
schreibt nur eigenen Passwort-Hash

7/17

Modern: SELinux

2000er: sicherheitsfokussiertes Betriebssystemprojekt fiir NSA
Implementierung des puKernel-Architekturkonzepts Flask
heute: Open Source, Teil des mainline Linux Kernels
Klassische UNIXoide: Sicherheitspolitik fest im Kernel

Idee SELinux: Sicherheitspolitikals eigene BS-Abstraktion

— zentrale Datenstruktur fiir Regeln, die erlaubte Zugriffe auf
ein SELinux-System definiert

— erlaubt Modifikation und Anpassung an verschiedene
Sicherheitsanforderungen — NFE Adaptivitét ...

BS-Komponenten

e Auswertung: Security-Server, implementiert als
Linux-Kernelmodul — entscheidet iiber alle Zugriffe auf alle
Objekte

e Durchsetzung der Sicherheitspolitik: LSM Hooks

e Administration: geschrieben in Textform, muss zur Laufzeit in
Security Server installiert werden

Représentation der Sicherheitspolitik

e physisch: in spezieller Datei, die alle Regeln enthilt, die der
Kernel durchsetzen muss L
e Datei wird aus Menge von Quelldateien in einer

Spezifikationssprache fiir SELinux-Sicherheitspolitiken kompiliert
e ermoglicht anforderungsspezifische SELinux-Politiken: kénnen

sich von SELinux-System zum anderen wesentlich unterscheiden
e Politik wird wahrend des Boot-Vorgangs in Kernel geladen

Semantische Konzepte (Auswahl)

e Type Enforcement (TE): Typisierung von

— Subjekten: Prozesse
— Objekten der Klassen: Dateien, Sockets,
Geréateschnittstellen, ...

e Rechte delegation durch Retypisierung (vgl. Unix-SUID)

Autorisierungsinformationen Security Context:
Resprisentiert SELinux-Autorisierungsinformationen fiir jedes Objekt
(Semantik: Prozess bash lduft mit Typ shell_t)

Autorisierungsregeln . werden systemweit festgelegt in
dessen Sicherheitspolitik (— MAC)
Access Vector Rules

e Autorisierungsregeln basierend auf Subjek-/Objekttypen
e Zugriffe miissen explizit gewdhrt werden (default-deny)
e Semantik: Erlaube (7allow”) ...

— jedem Prozess mit Typ shell_t

— ausfithrenden Zugriff (benétigt die Berechtigung execute)
— auf Dateien (also Objekte der Klassefile)

— mit Typ passwd-exec_t

Autorisierungsmechanismen: passwd Revisited

e Losung: Retypisierung bei Ausfithrung
e Prozess wechselt in einen aufgabenspezifischen Typ passwd_t
— massiv verringertes Missbrauchspotenzial!

SELinux: weitere Politiksemantiken

e hier gezeigt: Uberblick iiber TE
e auflerdem relevant fiir SELinux-Politiken (und deren
Administration)

— Einschrinkung von erlaubten Typtransitionen (Welches
Programm darf mit welchem Typ ausgefiihrt werden?)
— weitere Abstraktionsschicht: rollenbasierte Regeln (RBAC)

— Schutz gegen nicht vertrauenswiirdige Nutzer

extrem feingranulare, anwendungsspezifische Sicherheitspolitik
zur Vermeidung von privilege escalation Angriffen
obligatorische Durchsetzung ( — MAC, zusétzlich zu DAC)
Softwareentwicklung: Legacy-Linux-Anwendungen ohne
Einschrankung

Politikentwicklung und -administration komplex
MAC-Mechanismen ala SELinux sind heutzutage in vielerlei
Software bereits zu finden

Ix o s

Isolationsmechanismen
e bekannt: Isolationsmechanismen fiir robuste Betriebssysteme

— strukturierte Programmierung
— Adressraumisolation

e nun: Isolationsmechanismen fiir sichere Betriebssysteme

— krypto. Hardwareunterstiitzung: Intel SGX Enclaves
— sprachbasiert:
* streng typisierte Sprachen und managed code:
Microsoft Singularity
* speichersichere Sprachen (Rust) +
Adressraumisolation (uKernel): RedoxOS

— isolierte Laufzeitumgebungen: Virtualisierung

Intel SGX
o SGX: Software Guard Extensions
e Ziel: Schutz von sicherheitskritischen Anwendungen durch
vollstdndige, hardwarebasierte Isolation
e — strenggenommen kein BS-Mechanismus: Anwendungen miissen
dem BS nicht mehr vertrauen
e Annahmen/Voraussetzungen

1. sdmtliche Software nicht vertrauenswiirdig (potenziell durch
Angreifer kontrolliert)

2. Kommunikation mit dem angegriffenen System nicht
vertrauenswiirdig (weder vertraulich noch verbindlich)

3. kryptografische Algorithmen (Verschliisselung und Signierung)
sind vertrauenswiirdig, also nicht fiir den Angreifer zu brechen

4. Ziel: Vertraulichkeit, Integritit und Authentizitdt von
Anwendungen und durch sie verarbeiteten Informationen

Enclaves

e Idee: geschiitzter Speicherbereich fiir Teilmenge der Seiten (Code
und Daten) einer Task: Enclave Page Cache (EPC)
e Prozessor ver-und entschliisselt EPC-Seiten

ECREATE App — Syscall — BS-Instruktion an CPU
EADD App — Syscall — BS-Instruktion an CPU

e Metainformationen fiir jede hinzugefiigte Seite als Teil der
EPC-Datenstruktur

EINIT App. — Syscall — BS-Instruktion an CPU

e finalisiert gesamten Speicherinhalt fiir diese Enclave
e CPU erzeugt Hashwert = eindeutige Signatur des Enclave -

Speicherinhalts
nicht

EINIT

ECREATE

EADD
EENTER, EEXIT

initialisiert/in

EREMOVE Benutzung

(Abb. nach [CoDe16])

e Zugriff: App — CPU-Instruk. in User Mode (EENTER, EEXIT)
o CPU erfordert, dass EPC-Seiten in vAR der zugreifenden Task


https://www.redox-os.org/

Advanced Operating Systems

SGX: Licht und Schatten

Einfithrung 2015 in Skylake - Mikroarchitektur

seither in allen Modellen verbaut, jedoch nicht immer aktiviert
Konzept hardwarebasierter Isolation ...

liefert erstmals die Moglichkeit zur Durchsetzung von
Sicherheitspolitiken auf Anwendungsebene

setzt Vertrauen in korrekte (und nicht béswillige) Hardwarevoraus
Dokumentation und Entwicklerunterstiitzung (im Ausbau ...)
schiitzt durch Enclaves einzelne Anwendungen aber nicht System
steckt in praktischer Eigenschaften (Performanz, Speicher) noch
in den Anfingen

*x*xOO <KNeoo

Sicherheitsarchitekturen
e Voraussetzung zum Verstehen jeder Sicherheitsarchitektur

— Verstehen des Referenzmonitorprinzips

— friithe Forschungen durch US-Verteidigungsministerium

— Schliisselversffentlichung: Anderson-Report (1972)

— fundamentalen Eigenschaften zur Charakterisierung von
Sicherheitsarchitekturen

e Begriffe des Referenzmonitorprinzips kennen wir schon

— Abgrenzung passiver Ressourcen (Objekte, z.B. Dateien)
— von Subjekten (aktiven Elementen, Prozess) durch BS

Referenzmonitorprinzip

— sémtliche Autorisierungsentscheidungen durch zentralen

Mechanismus = Referenzmonitor
e Bewertet jeden Zugriffsversuch eines Subjekts auf Objekt durch

Anwendung einer Sicherheitspolitik (security policy)

e Architekturbeschreibung, wie Zugriffe auf Ressourcen, die
Sicherheitspolitik erlaubt, eingeschrinkt werden

e Autorisierungsentscheidungen: basieren auf sicherheitsrelevanten
Eigenschaften jedes Subjekts und jedes Objekts

Referenzmonitor ist eine Architekturkomponenten, die

RM 1 bei simtlichen Subjekt/Objekt-Interaktionen involviert sind —
Unumgehbarkeit (total mediation)

RM 2 geschiitzt sind vor unautorisierter Manipulation —
Manipulationssicherheit (tamperproofness)

RM 3 hinreichend klein und wohlstrukturiert sind, fiir formale
Analysemethoden — Verifizierbarkeit (verifyability)

Referenzmonitor in Betriebssystemen Nahezu alle
Betriebssysteme implementieren irgendeine Form eines Referenzmonitors
e Subjekte, Objekte
e Regeln einer Sicherheitspolitik charakterisiert

e Unumgehbarkeit, Manipulationssicherheit
e Verifizierbarkeit ihrer Sicherheitsarchitektur

Beispiel: Standard-Linux
e Subjekte (Prozesse) — haben reale Nutzer-Identifikatoren (UIDs)
e Objekte (Dateien) — haben ACLs (,,rwxrw—-")

e Regeln der Sicherheitspolitik — hart codiert, starr
e Sicherheitsattribute, — Objekten zugeordnet, modifizierbar

Man beurteile die Politikimplementierung in dieser Architektur bzgl.
Unumgehbarkeit, Manipulationssicherheit und Verifizierbarkeit
Referenzmonitorimplementierung: Flask

Subjekt

l Zugriffsversuch

Objekt-
Manager

Security

Anfrage Server

Politk-

Durchsetzung Entscheidung

| gf. Zugriff
v

Objekt

(R noch [5pen07] 5139, Bl 1.1

8/17

SELinux-Architektur: Security Server

e Security Server: Laufzeitumgebung fiir Politik in Schutzdomé&ne
des Kerns

e Objektmanager: implementiert in allen BS-Diensten mittels
,,Linux Security Module Framework ”

e Objektmanager zur Verwaltung verschiedener Objektklassen

e spiegeln Diversitit und Komplexitidt von Linux BS-Abtraktionen
wider: Dateisysteme, Netzwerk, IPC, ...

e jedes Subsystem von SELinux zustédndig fiir

1. Erzeugung neuer Objekte
2. Zugriff auf existierende Objekte

e Beispiele: Prozess-Verwaltung, Dateisystem, Networking-System
Dateisystem als Objektmanager

e Durch Analyse von Linux - Dateisystem und zugehériger API
wurden zu iiberwachenden Objektklassen identifiziert

e ergibt sich unmittelbar aus Linux-API: Dateien, Verzeichnisse,
Pipes

e feingranularere Objektklassen fiir durch Dateien reprisentierte
Objekte (Unix: ,,everything is a file”)

Permissions (Zugriffsrechte)

e fiir jede Objektklasse: Menge an Permissions definiert, um
Zugriffe auf Objekte dieser Klasse zu kontrollieren
e Permissions: abgeleitet aus Dienstleistungen, die
Linux-Dateisystem anbietet
— Objektklassen gruppieren verschiedene Arten von
Zugriffsoperationen auf verschiende Arten von Objekten
e z.B. Permissions fiir alle ,,Datei”-Objektklassen (Auswahl ...)

Trusted Computing Base (TCB)

Begriff zur Bewertung von Referenzmonitorarchitekturen

= notwendige Hard-und Softwarefunktionen eines IT-Systems um
alle Sicherheitsregeln durchzusetzen
e besteht iiblicherweise aus

1. Laufzeitumgebung der Hardware (nicht E/A-Gerite)
2. verschiedenen Komponenten des Betriebssystem-Kernels
3. Benutzerprogrammen mit sicherheitsrelevanten Rechten

e Betriebssystemfunktionen, die Teil der TCB sein miissen,
beinhalten Teile des Prozess-, Speicher-, Datei-,
E/A-Managements

Echtzeitfihigkeit

Jedes System, bei dem der Zeitpunkt, zu dem der Output erzeugt wird,
von Bedeutung ist. Dies liegt in der Regel daran, dass die Eingabe einer
Bewegung in der physischen Welt entspricht und die Ausgabe sich auf
dieselbe Bewegung beziehen muss. Die Verzogerung zwischen Eingabe-
und Ausgabezeit muss fiir eine akzeptable Aktualitit ausreichend klein
sein.

Spektrum von Echtzeitsystemen

1. Regelungssysteme: z.B. eingebettete Systeme, Flugsteuerung
2. Endanwender-Rechnersysteme: z.B. Multimediasysteme
3. Lebewesen: Menschen, Tiere, z.B. Gesundheitsiiberwachung

Murphy‘s Law: If something can go wrong, it will got wrong

e Murphy‘s Constant: Damage to an object is proportional to its
value

e Johnson‘s Law: If a system stops working, it will do it at the
worst possible time

e Sodd‘s Law: Sooner or later, the worst possible combination of
circumstances will happen

e Realisierung von Echtzeiteigenschaften: komplex und fragil

Antwortzeit Zeitintervall, das ein System braucht, um (irgend)eine
Ausgabe als Reaktion auf (irgend)eine Eingabe zu erzeugen
e bei EZS ist genau dieses At kritisch, d.h. je nach Art des
Systems darf dieses auf keinen Fall zu grof3 werden
e Frist (deadline) d, die angibt bis zu welchem Zeitpunkt
spatestmoglich die Reaktion erfolgt sein muss, bzw. wie
grofl das Intervall At maximal sein darf
Echtzeitfihigkeit und Korrektheit e Wird genau dieses
maximale Zeitintervall in die Spezifikation eines Systems
einbezogen, bedeutet dies, dass ein Echtzeitsystem nur
dann korrekt arbeitet, wenn seine Reaktion bis zur
spezifizierten Frist erfolgt
e Frist trennt korrektes von inkorrektem Verhalten des
Systems
Harte und weiche Echtzeitsysteme
erfordern oft Unterscheidung
e hartes EZS: keine Frist jemals iiberschreiten
e weiches EZS: maBvolles Frist Uberschreiten tolerierbar

Frist

e Praktische Anwendungen

Charakteristika von Echtzeit-Prozessen

e recale Echtzeitanwendungen beinhalten periodische oder
aperiodische Prozesse (oder Mischung aus beiden)
e Periodische Prozesse

— zeitgesteuert (typisch: periodische Sensorauswertung)
— oft: kritische Aktivitdten — harte Fristen

e Aperiodische Prozesse

— ereignisgesteuert
— Abhéngig von Anwendung: harte oder weiche Fristen

Periodische Prozesse (pP)

hiufigster Fall bei Echtzeit-Anwendungen
Prozessaktivierung ereignisgesteuert oder zeitgesteuert
Prozesse, die Eingangsdaten verarbeiten: meist ereignisgesteuert
Prozesse, die Ausgangsdaten erzeugen: meist zeitgesteuert
Fristen e hart oder weich (anwendungsabhéngig)
e innerhalb einer Anwendung sind sowohl Prozesse mit
harten oder weichen Fristen méglich
e Frist: spitestens am Ende der aktuellen Periode, mdglich
auch friithere Frist
Modellierung unendliche Folge identischer Aktivierungen: Instanzen,
aktiviert mit konstanter Rate (Periode)
Aufgaben des Betriebssystems e Wenn alle Spezifikationen
eingehalten werden, muss Betriebssystem garantieren, dass
e zeitgesteuerte pP: mit ihrer spezifizierten Rate aktiviert
werden und ihre Frist einhalten kénnen
e creignisgesteuerte pP: ihre Frist einhalten kénnen

Aperiodische Prozesse (aP)

typisch fiir unregelmiflig auftretende Ereignisse, z.B.:

e Uberfahren der Spurgrenzen, Unterschreiten des
Sicherheitsabstands — Reaktion des Fahrassistenzsystems
e Nutzereingaben in Multimediasystemen ( — Spielkonsole)

Prozessaktivierung ereignisgesteuert

Fristen oft weich (aber anwendungsabhingig)

Aufgaben des Betriebssystems unter Einhaltung der
Prozessspezifikationen muss BS fiir Einhaltung der Fristen sorgen

Modellierung bestehen ebenfalls aus (maximal unendlicher) Folge
identischer Aktivierungen (Instanzen); aber:
Aktivierungszeitpunkte nicht regelméBig (mdoglich: nur genau eine
Aktivierung)



Advanced Operating Systems

Parameter von Echtzeit-Prozessen

l G L LE X G
7 7

t i
a s fid a s d !

Ankunftszeitpunkt a; Prozess wird ablauffihig

Startzeitpunkt s; Prozess beginnt mit Ausfithrung

Beendigungszeitpunkt f; Prozess beendet Ausfithrung

Frist (deadline) d; Prozess sollte Ausfithrung spitestens beenden

Bearbeitungszeit (computation time) C; Zeit die Prozessor zur
Bearbeitung der Instanz benétigt (ohne Unterbrechungen)

Unpiinktlichkeit (lateness) L, = f; — d; Zeit um die Prozess
frither /spéter als Frist beendet

Verspéatung (exceeding time) E; = maxz(0, L;) Zeitbetrag, den ein
Prozess noch nach seiner Frist aktiv ist

Spielraum (Laxity) X; = d; — a; — C; maximale Verzdgerungszeit bis
Frist beendet werden kann (f; = d;)

criticality Konsequenzen einer Fristiiberschreitung (hart/weich)

Wert V; Ausdruck relativer Wichtigkeit eines Prozesses

Echtzeitfihige Betriebssysteme

1. Algorithmen, die Rechnersysteme echtzeitfihig machen

e grundlegende Algorithmen zum Echtzeitscheduling
e Besonderheiten der Interruptbehandlung
e Besonderheiten der Speicherverwaltung

2. Probleme, die behandelt werden miissen

e Prioritdtsumkehr

e Uberlast . L
e Kommunikation-und Synchronisationsprobleme

Echtzeitscheduling

Scheduling wichtigster Einflussfaktor auf Zeitverhalten des
Gesamtsystems
Echtzeit-Scheduling unter Beriicksichtigung der Fristen

Fundamentale/wichtigste Strategien

1. Ratenmonotones Scheduling (RM)
2. Earliest Deadline First (EDF)

Annahmen der Scheduling-Strategien

1. Alle Instanzen eines periodischen Prozesses t; treten regelmiflig
und mit konstanter Rate auf. Das Zeitintervall T; zwischen zwei
aufeinanderfolgenden Aktivierungen heifit Periode des Prozesses

2. Alle Instanzen eines periodischen Prozesses t; haben den gleichen
Worst-Case-Rechenzeitbedarf C;

3. Alle Instanzen eines periodischen Prozesses t; haben die gleiche
relative Frist D;, welche gleich der Periodendauer T ist

4. Alle Prozessesind kausal unabhingig voneinander (d.h. keine
Vorrang- und Betriebsmittel-Restriktionen)

5. Kein Prozess kann sich selbst suspendieren, z.B. E/A-Op

6. Alle Prozesse werden mit ihrer Aktivierung sofort rechenbereit

7. Jeglicher Betriebssystem-Overhead wird vernachlissigt

5-7 sind weitere Annahmen des Scheduling Modells
Ratenmonotones Scheduling (RM)

e Voraussetzung: nur periodische Prozesse/Threads
e Strategie RM

— Prozess/Thread mit hochster Ankunftsrate bekommt
hochste statische Prioritét

— Kriterium: Wie oft pro Zeiteinheit wird Prozess bereit?

— Scheduling-Zeitpunkt: nur einmal zu Beginn bzw. wenn
neuer periodischer Prozess auftritt

9/17

— prédemptiv: keine Verdrédngung gleicher Prioritdten

e Optimalitdt: Unter allen Verfahren mit festen Prioritéiten
optimaler Algorithmus
e Prozessor-Auslastungsfaktor
— Bei Menge von n Prozessen U = > 7 | %
— mit % Anteil an Prozessorzeit fiir jeden Prozess t;
B
— und Zeit U zur Ausfithrung der gesamten Prozessmenge

e Prozessorlast: U ist folglich Maf8 fiir die durch Prozessmenge
verursachte Last am Prozessor — Auslastungsfaktor
e Planbarkeitsanalyse einer Prozessmenge

— allgemein kann RM Prozessor nicht 100% auslasten
— kleinste obere Grenze des Auslastungsfaktors Uy,
— lub: ,,least upper bound”

e Obere Auslastungsgrenze bei RM

1
— nach Buttazzo bei n Prozessen: U, = n(2n — 1)

— fiir n — oo konvergiert U;,p zu In 2 &~ 0,6931...

— Wert nicht iiberschritten — beliebige Prozessmengen

Earliest Deadline First (EDF)

e Voraussetzung: kann periodische/aperiodische Prozesse planen

e Optimalitdt: EDF in Klasse der Schedulingverfahren mit
dynamischen Prioritéiten: optimaler Algorithmus

e Strategie EDF

— Prozess mit frithester Frist hochste dynamische Prioritit
— Scheduling-Zeitpunkt: Bereitwerden eines Prozesses
— préaemptiv: keine Verdrédngung gleicher Prioritdten

e Planbarkeitsanalyse

— mit Regeln 1 — 7 max. Prozessorauslastung: U;,p = 1 —
Auslastung bis 100%

— Menge von n Tasks planbar: U = 77 | % <1

i

< U>1 ubersteigt die verfiigbare Prozessorzeit; folglich kann
niemals eine Prozessmenge mit dieser Gesamtauslastung
planbar sein

— Beweis durch Widerspruch. Annahme: U < 1 und die

Prozessmenge ist nicht planbar. Dies fiihrt zu einem
Schedule mit Fristverletzung zu einem Zeitpunkt to

Vergleich: EDF vs. RM

7y B C D
1 n 1 v \4 4 vi
72
EDF | A Il B Il B 1V C 4 C Vi D
/ A I A g8 Il B IV By C V C % D
RM T T
-ttt
0 5 10 15 20 t
(Abb. nach infHandbuch97, Bid3, S. 740)
e RM
— Prozessorwechsel: 16 . .
— im allgemeinen Fall nicht immer korrekte Schedules bei
100% Auslastung
— statisch Implementiert: jeweils eine Warteschlange pro
Prioritat
— Einfiigen und Entfernen von Tasks: O(1)
e EDF

— Prozessorwechsel: 12
— erzeugt auch bei Prozessorauslastung bis 100% (immer)

korrekte Schedules . .
— dynamisch Implementiert: balancierter Bindrbaum zur

Sortierung nach Prioritédten
— Einfiigen und Entfernen von Tasks: O(log n)

Prozesstypen in Multimedia-Anwendungen

1. Echte periodische Multimedia-Prozesse (weiche Fristen)

(a) piinktliche periodische Prozesse mit konstantem
Prozessorzeitbedarf C fiir jede Instanz (unkomprimierte
Audio- und Videodaten)

(b) piinktliche periodische Prozesse mit unterschiedlichem C
einzelner Instanzen (komprimierte Audio- und Videodaten)

(c) unpiinktliche periodische Prozesse: verspétet/verfriihte

2. Prozesse nebenldufiger Nicht-Multimedia-Anwendungen

e interaktiv: keine Fristen , keine zu langen Antwortzeiten
Ansatz, maximal tolerierbare Verzégerung

e Hintergrund: zeitunkritisch, keine Fristen, diirfen nicht
verhungern

RC Algorithmus

e Ziel: spezifikationstreue Prozesse nicht bestrafen durch
Fristiiberschreitung aufgrund abweichender Prozesse
o Idee

— grundsitzlich: Scheduling nach frithester Frist aufsteigend
— fiir vollsténdig spezifikationstreue Prozessmenge wie EDF
— Frist einer Instanz wird dynamisch angepasst: basierend auf
derjenigen Periode, in der sie eigentlich sein sollte
— Bsp.: U; = % = % (spez. Aktivitdtsrate 0,5/Periode)
e Variablen
— a;: Ankunftszeit der zuletzt bereitgewordenen Instanz
tVirt: virtuelle verbrauchte Zeit in aktueller Periode
— ¢Vt verbrauchte Netto-Rechenzeit
— d;: dynamische Frist von ¢; fiir Prioritdt (EDF)

e Strategie

— fiir eine bereite (lauffihige) Instanz von t;: adaptiere
dynamisch d; basierend auf tf”t

— fiir eine bereit gewordene Instanz von ¢;: aktualisiere tfiﬁ‘

auf akt. Systemzeit (t) — etwaiger ,,Zeitkredit” verfillt

o Zeitpunkte, zu denen der Scheduler aktiv wird
— aktuell laufender Prozess t; blockiert: RC(t;)
— Prozesse t;...; werden bereit: for x € [i,j] : RC(tz)
— periodischer ,,clock tick” (Scheduling Interrupt) RC(t;)

Umgang mit abweichenden Prozessen unter RC
Auswirkung auf verschiedene Prozesstypen

piinktlich Einhaltung der Frist in jeder Periode garantiert

verspétet nur aktuelle Periode betrachtet, Nachholen ,,ausgelassener
Perioden” nicht méglich

gierig Prozessorentzug, sobald andere lauffihige Prozesse friihere
Fristen aufweisen

nicht-periodische Hintergrundprozesse pro ,,Periode” wird
spezifizierte Prozessorrate garantiert

Umgang mit gemischten Prozessmengen

RM oder EDF
periodische Prozesse
Teilwarteschlange mit héchster Prioritét
aperiodische Prozesse 4FS, SUF, EDF ...

niedrigste Prioritat

e rechenbereite Prozesse auf 2 Warteschlangen aufgeteilt (einfache
Variante eines Mehr-Ebenen-Scheduling )
o Warteschlange 1
— alle periodischen Prozesse
— mit hochster Prioritdt mittels RM oder EDF bedient
o Warteschlange 2

— alle aperiodischen Prozesse
— nur bedient, wenn keine wartenden Prozesse in W1



Advanced Operating Systems

Hintergrund-Scheduling: Vor- und Nachteile

e Hauptvorteil einfache Implementierung
e Nachteile

— Antwortzeit aperiodischer Prozesse kann zu lang werden
—  Verhungern moglich
— nur fiir relativ zeitunkritische aperiodische Prozesse

Optimierung: Server-Prozess

e Prinzip: periodisch aktivierter Prozess benutzt zur Ausfithrung
aperiodischer Prozessoranforderungen

e Beschreibung Server-Prozess: durch Parameter dquivalent zu
wirklichem periodischen Prozess

e Arbeitsweise Server-Prozess folgend

e geplant mit gleichem S-Algorithmus wie periodische Prozesse

e zum Aktivierungszeitpunkt vorliegende aperiodische
Anforderungen bedient bis zur Kapazitit des Servers

e keine aperiodischen Anforderungen: Server suspendiert sich bis
Beginn der nichsten Periode

e Kapazitit in jeder Server-Periode neu’

>aufgeladen”
Optimierung: Slack-Stealing

Prinzip: passiver Prozess ,,slack stealer” (kein periodischer Server)
so viel Zeit wie moglich fiir aperiodische Anforderungen sammeln
realisiert durch ,,slackstealing” bei periodischen Prozessen
letztere auf Zeit-Achse so weit nach hinten geschoben, dass Frist
und Beendigungszeitpunkt zusammenfallen

e Sinnvoll, da Beenden vor Frist keine Vorteile bringt
— Verbesserung der Antwortzeiten fiir aperiodische Anforderungen

Prioritatsumkehr

Mechanismen zur Synchronisation und Koordination sind h&ufige
Ursachen fiir kausale Abhéngigkeiten zwischen Prozessen

e kritischer Abschnitt: Sperrmechanismen stellen wechselseitigen
Ausschluss durch nebenlédufige Prozesse sicher

e Benutzung von exklusiven, nichtentziehbaren Betriebsmitteln

— Wenn ein Prozess einen kritischen Abschnitt betreten hat, darf er

aus diesem nicht verdriangt werden

e Konflikt: kritische Abschnitte vs. Echtzeit-Prioritdten

e Prozess mit hoherer Prioritidt ablauffihig — muss abwarten bis
niederpriorisierter Prozess kritischen Abschnitt verlidsst

e (zeitweise) Prioritdtsumkehr méglich

Ursache der Prioritdtsumkehr
[ normaler Prozessablauf

B gemeinsamer kritischer
Abschnitt

7 blockiert fiir t, — t,
[ |
Prioritéts-
umkehr

o
l:_
z I

Prioritat(z;) > Prioritat(z) t t

/3

(Abb. nach [Buttazzo97) Bid 7.3, 5. 183)

e Prioritdtsumkehr bei Blockierung an nichtentziehbarem,
exklusivem Betriebsmittel
e — unvermeidlich

Folgen der Prioritdtsumkehr

e Kritisch bei zusétzlichen Prozessen mittlerer Prioritit

[0 normater Prozessablau Prioritéit(z1) > Prioritat(z) > Prioritat(r)

W goroinsamor ischor Abschnitt

#1 blockiert fir ts — t;

|

f—
&, & unkontrolicfoar. vermeidbar!
[ . i
° o t t t ts 5t t

e Losung: Priority Inheritance Protocol (PIP)

10/17

Uberlast

e Definition: kritische Situation, bei der benétigte Menge an
Prozessorzeit die Kapazitidt des vorhandenen Prozessors
iibersteigt

— nicht alle Prozesse kénnen Fristen einhalten
e Hauptrisiko: kritische Prozesse kénnen Fristen nicht einhalten —

Gefidhrdung funktionaler und anderer nichtfkt. Eigenschaften ( —
harte Fristen!)

e Stichwort: ,,graceful degradation” statt unkontrollierbarer
Situation — Wahrung von Determinismus

Wichtigkeit eines Prozesses

e Unterscheidung zwischen Zeitbeschrinkungen (Fristen) und
tatsédchlicher Wichtigkeit eines Prozesses fiir System

o Wichtigkeit eines Prozesses ist unabhéngig von seiner
Periodendauer und irgendwelchen Fristen

e z.B. kann Prozess trotz spéterer Frist wichtiger als anderer mit
fritherer Frist sein

Umgang mit Uberlast: alltigliche Analogien

1. Weglassen weniger wichtiger Aktionen (kein Friihstiick...)
2. Verkiirzen von Aktivititen (Katzenwésche...)
3. Kombinieren (kein Friihstiick + Katzenwésche + ungekéimmt)

Wichtung von Prozessen

e Parameter V fiir jeden Prozess/Thread einer Anwendung

e spezifiziert relative Wichtigkeit eines Prozesses/Thread im
Verhéltnis zu anderen der gleichen Anwendung

e bei Scheduling: V stellt zusétzliche Randbedingung (primér:
Prioritdt aufgrund von Frist, sekundir: Wichtigkeit)

Obligatorischer und optionaler Prozessanteil

e Aufteilung der Gesamtberechnung eines Prozesses in zwei Phasen
e Moglichkeit der Nutzung des anpassbaren Prozessorzeitbedarfs
e Bearbeitungszeitbedarf eines Prozesses zerlegt in

1. obligatorischer Teil: unbedingt und immer ausfithren —
liefert bedingt akzeptables Ergebnis

2. optionaler Teil: nur bei ausreichender Lapazitit ausfiihren
— verbessert erzieltes Ergebnis

e Prinzip in unterschiedlicher Weise verfeinerbar

Echtzeit-Interruptbehandlung

e Fristiiberschreitung durch ungeeignete Interruptbearbeitung

e Interrupt wird nur registriert (deterministischer Zeitaufwand)

e tatsichliche Bearbeitung der Interruptroutine muss durch
Scheduler eingeplant werden — Pop-up Thread

Echtzeit-Speicherverwaltung
e Hauptanliegen: Fristen einhalten
e unkontrollierbare Verzdgerungen der Prozessbearbeitung
vermeiden
o Ressourcenzuordnung, deswegen:
1. keine Ressourcen-Zuordnung ,,on-demand” sondern
,,Pre-Allokation” (=Vorab)
2. keine dynamische Ressourcenzuordnung, sondern
Zuordnung maximal benétigter Menge bei Pre-Allokation

Hauptspeicherverwaltung

e bei Anwendung existierender Paging-Systeme

e durch unkontrolliertes Ein-/Auslagern ,,zeitkritischer” Seiten
(-inhalte): unkontrollierbare Zeitverzégerungen méglich

e Technik: ,,Festnageln” von Seiten im Speicher (Memory Locking)

Sekundéirspeicherverwaltung

e Primirziel: Wahrung der Echtzeitgarantien

— naheliegend: EA-Scheduling nach Fristen — EDF
— fiir Zugriffsreihenfolge auf Datenblécke: lediglich deren
Fristen maBigebend (weitere Regeln existieren nicht)

o Resultat bei HDDs

— ineffiziente Bewegungen der Lese-/Schreibkdpfe
— nichtdeterministische Positionierzeiten
— geringer Durchsatz

e Fazit: Echtzeit-Festplattenscheduling — Kompromiss zwischen

Zeitbeschrankungen und Effizienz
e bekannte Losungen: Modifikation/Kombination von EDF

— realisierte Strategien:

1. SCAN-EDF (Kopfbewegung in eine Richtung bis
Mitte-/Randzylinder; EDF iiber alle angefragten Blécke in dieser
Richtung)

Group Sweeping (SCAN nach Fristen gruppenweiser Bedienung)
Mischstrategien

LN

e Vereinfachung: o.g. Algorithmen i.d.R. zylinderorientiert
— beriicksichtigen bei Optimierung nur Positionierzeiten
(Positionierzeit meist >> Latenzzeit)

Positionierzeit
mechanisch: Armbewegung

Arm mit
Lese/Schreibkspfen
Latenzzeit

mechanisch: Fest- =,
plattendrehung

Kommunikation und Synchronisation

e zeitlichen Nichtdeterminismus vermeiden:
Interprozess-Kommunikation

— Minimierung blockierender Kommunikationsoperationen
— indirekte Kommunikation — Geschwindigkeitsausgleich
— keine FIFO-Ordnungen (nach Fristen priorisieren)

e Synchronisation: keine FIFO-Ordnungen

Cyclic Asynchronous Buffer (CAB)

o

O neu, ungelesen
@ alt, ungelesen
O gelesen

Sender —
(dberschroibi)

Kommunikation zwischen 1 Sender und n Empfingern

e nach erstem Schreibzugriff: garantiert niemals undefinierte
Wartezeiten durch Blockierung von Sender/Empfianger

e Lesen/Uberschreiben in zyklischer Reihenfolge:

o Most-Recently-Written (MRW) Zeiger auf jiingstes, durch Sender
vollstéandig geschriebenes Element

e Least-Recently-Written (LRW) Zeiger auf dltestes durch Sender
geschriebenes Element

e sowohl MRW als auch LRW konnen ausschliefSlich durch Sender
manipuliert werden — keine inkonsistenten Zeiger durch

konkurrierende Schreibzugriffe

e sowohl MRW als auch LRW zeigen niemals auf ein Element, das
gerade geschrieben wird — keine inkonsistenten Inhalte durch
konkurrierende Schreib-/Lesezugriffe

o Regeln fiir Sender

— muss nach jedem Schreiben MRW auf geschriebenes

Element setzen
— muss bevor LRW geschrieben wird LRW inkrementieren



Advanced Operating Systems

e Regel fiir Empfianger: muss immer nach Lesen von MRW als
néchstes LRW anstelle des Listennachbarn lesen

Sonderfall 1: Empfianger schneller als Sender

e nach Zugriff auf MRW muss auf Lesesequenz bei LRW fortgesetzt
werden — transparenter Umgang mit nicht-vollem Puffer

e Abschwichung der Ordnungsgarantien:Empfanger weifl nur, dass
Aktualitdt der Daten zwischen LRW und MRW liegt

e Empfianger niemals durch leeren Puffer blockiert

Sonderfall 2: Sender schneller als Empfianger

e Schreiben in Puffer in Reihenfolge der Elemente — keine
blockierenden Puffergrenzen — niemals Blockierung des Senders
e keine Vollstandigkeitsgarantien: Empfanger kann nicht sicher sein,
eine temporal stetige Sequenz zu lesen
— Szenarien, in denen Empfinger sowieso nur an aktuellsten Daten
interessiert (z.B. Sensorwerte)

Konkurrierende Zugriffe

e ... sind durch Empfinger immer unschédlich (da lesend)

e ... miissen vom Sender nach Inkrementieren von LRW
nicht-blockierend erkannt werden (Semaphormodell ungeeignet)

e schnellerer Sender iiberspringtein gesperrtes Element durch
erneutes Inkrementieren von LRW, MRW muss nachziehen

Archltekturen
miissen Echtzeitmechanismen unterstiitzen; ermoglicht
entsprechende Strategien zur Entw1ck1ungs—oder Laufzeit
e miissen funktional geringe Komplexitidt aufweisen — theoretische
und praktische Beherrschung von Nichtdeterminismus
e Architekturen fiir komplementire NFE

— Sparsamkeit — hardwarespezifische Kernelimplementierung
— Adaptivitit — pKernel, Exokernel

e zu vermeiden
— starke HW-Abstraktion — Virtualisierungsarchitekturen

— Kommunikation und Synchronisationskosten — verteilte BS
— Hardwareunabhéngigkeit und Portabilitdt — vgl. Mach

Beispiel-Betriebssysteme
VRTX (Versatile Real-Time Executive)

e Entwickler: Hunter & Ready

Eckdaten: Makrokernel

war erstes kommerzielles Echtzeitbetriebssystem fiir eingebettete
Systeme

e Nachfolger (1993 bis heute): Nucleus RTOS (Siemens)

e Anwendung: Eingebettete Systeme in Automobilen, Mobiltelefone
e Einsatzgebiete im Hubble-Weltraumteleskop

VxWorks

Entwickler: Wind River Systems (USA)

Eckdaten: modularer Makrokernel
Erfolgsfaktor: POSIX-konforme API

ahnlich QNX: ,,skalierbarer” Kernel, zuschneidbar auf
Anwendungsdomine (— Adaptivitdtsansatz)

e Anwendung: eingebettete Systeme, Luft-und Raumfahrt,

Unterhaltungselektronik

e Einsatzgebiete: NASA Mars Rover, SpaceX Dragon
DRYOS
Entwickler: Canon Inc.
Eckdaten: Mikrokernel(Gré8e: 16 kB)
Echtzeit-Middleware (Gerdtetreiber — Objektive)
Anwendungen: AE-und AF-Steuerung/-Automatik, GUI,

Bildbearbeitung, RAW-Konverter, ...
e POSIX-kompatible Prozessverwaltung

DROPS (Dresden Real-Time Operating System)

e Entwickler: TU Dresden, Lehrstuhl Betriebssysteme
e Eckdaten: Multi-Server-Architektur auf Basis eines L4-Mikrokerns

11/17

Adapt1v1t it (Flexibility)

als unmittelbar geforderte NFE: eingebettete Systeme, Systeme in
garstiger Umwelt
e diese Anwendungsdominen fordern typischerweise auch andere
wesentliche NFE
— Adaptivitit als komplementéire NFE zur Férderung von

Robustheit funktionale Adaptivitdtdes BS reduziert Kernelkomplexitét

Sicherheit TCB-Grofle — Verifizierbarkeit, adaptive Reaktion auf
Bedrohungen

Echtzeitfihigkeit adaptives Scheduling/Uberlast/Interruptbehandlung

Performanz Last-und Hardwareadaptivitit

Erweiterbarkeit von Abstraktionen, Schnittstellen, Multiplexing

‘Wartbarkeit Anpassung des BS an Anwendungen, nicht umgekehrt

Sparsamkeit Lastadaptivitit, adaptive Datenstrukturen

e Begriff

— Fahigkeit eines Systems, sich an breites Spektrum
verschiedener Anforderungen anzupassen

= so gebaut, dass breites Spektrum verschiedener nicht
funktionaler Eigenschaften unterstiitzt

— letztere: komplementir zur allgemeinen NFE Adaptivitit

e Adaptivitit jeweils anhand komplementirer Eigenschaften
dargestellt:

— Exokernel: {Adaptivitit}U{Performanz,
Echtzeitfihigkeit, Wartbarkeit, Sparsamkeit }

— Virtualisierung: {Adaptivitidt}U{Wartbarkeit, Sicherheit,
Robustheit}

— Container: {Adaptivitidt}U{Wartbarkeit, Portabilitét,
Sparsamkeit }

e Beispielsysteme

— Exokernel OS: Aegis/ExOS, Nemesis, MirageOS
— Virtualisierung: Vmware, VirtualBox, Xen
— Containersoftware: Docker

Exokernelarchitektur
e Grundfunktion von Betriebssystemen

— physische Hardware darstellen als abstrahierte Hardware
mit komfortableren Schnittstellen

— Schnittstelle zu Anwendungen (API): Abstraktionen der
Hardware

e Problem: Implementierungsspielraumfiir Anwendungen wird
begrenzt

1. Vorteile doménenspezifischer Optimierungender
Hardwarebenutzung kénnen nicht ausgeschépft werden —
Performanz, Sparsamkeit

2. die Implementierung existierender Abstraktionen kann bei
verdnderten Anforderungen nicht an Anwendungen
angepasst werden — Wartbarkeit

3. Hardwarespezifikationen, insbesondere des Zeitverhaltens
(E/A, Netzwerk etc.), werden von Effekten des
BS-Management iiberlagert — Echtzeitfahigkeit

Exokernelmechanismen

User Space
Library-Betriebssysteme

Keme space { ! Exokemel | far App, absra
i physische Hardware | Hardware

e Trennung von Schutz und Abstraktion der Ressourcen
o Ressourcen-Schutz und -Multiplexing verbleibt beim Kernel
o Ressourcen-Abstraktion Aufgabe der Library-Betriebssysteme

— autonome Management-Strategien durch in Anwendungen
importierte Funktionalitit

1. systemweit(durch jeweiliges BS vorgegebene) starre
Hardware-Abstraktionen vermieden

2. anwendungsdoméinenspezifische Abstraktionen sehr einfach

3. (Wieder-) Verwendung eigener/fremder
Managementfunktionalitit wesentlich erleichtert —
komplementéire NFEn (Performanz, Sparsambkeit, ...)

e Funktion des Exokernels

— Prinzip: definiert Low-level-Schnittstelle (so hardwarenah
wie moglich)

— Adressierung erméglichen ohne Informationen iiber Seiten,
Segmente, Paging-Attribute, ...

— Library-Betriebssysteme: implementieren darauf jeweils
geeignete anwendungsnahe Abstraktionen

— Anwendungsprogrammierer: wihlen geeignete
Library-Betriebssysteme bzw. schreiben ihre eigenen
Exokernelmechanismen

e prinzipielle Exokernelmechanismen am Beispiel Aegis/ExOS

implementiert Multiplexing der Hardware-Ressourcen
exportiert geschiitzte Hardware-Ressourcen

e minimal: drei Arten von Mechanismen

Secure Binding erlaubt geschiitzte Verwendung von Hardware-
Ressourcen durch Anwendungen, Behandlung von Ereignissen

Visible Resource Revocation beteiligt Anwendungen am Entzug von
Ressourcen mittels (kooperativen) Ressourcen-Entzugsprotokolls

Abort-Protokoll erlaubt ExokernelBeendigung von
Ressourcenzuordnungen bei unkooperativen Applikationen

Secure Binding

e Schutzmechanismus, trennt Autorisierung zur Benutzung einer
Ressource von tatsdchlicher Benutzung

e implementiert fiir Exokernel erforderliches Zuordnungswissen von
(HW-)Ressource zu Mangement-Code

e — ”Binding” in Aegis implementiert als Unix-Hardlink auf
Metadatenstruktur zu einem Gerdt im Kernelspeicher

e Zur Implementierung benétigt

— Hardware-Unterstiitzung zur effizienten Rechtepriifung
(HW-Caching)

— Software-Caching von Autorisierungsentscheidungen im
Kernel

— Downloading von Applikationscode in Kernel zur effizienten
Durchsetzung

e . Secure Binding” erlaubt Exokernel Schutz von Ressourcen ohne
deren Semantik verstehen zu miissen

Visible Resource Revocation

monolithische BS: entziehen Ressourcen ,,unsichtbar”, d.h. transparent
fiir Anwendungen

e Vorteil: im allgemeinen geringere Latenzzeiten, einfacheres und
komfortableres Programmiermodell
e Nachteil: Anwendungen erhalten keine Kenntnis iiber Entzug
— erforderliches Wissen fiir Management-Strategien

Exokernel-BS: entziehen Ressourcen ,,sichtbar”
Exokernel und Library-BS

— Dialog zwischen

e Vorteil: effizientes Management durch Library-BS moglich
e Nachteil: Performanz bei sehr hiufigem Entzug, Verwaltungs-und
Fehlerbehandlungsstrategien zwischen verschiedenen Library-BS
miissen korrekt und untereinander kompatibel sein...
— Abort-Protokoll notwendig, falls dies nicht gegeben ist



Advanced Operating Systems

Abort-Protokoll

e Ressourcenentzug bei unkooperativen Library-Betriebssystemen
e notwendig aufgrund von Visible Ressource Revocation
e Dialog:

— Exokernel: ,,Bitte Seitenrahmen x freigeben.”

— Library-BS: ,,...”

— Exokernel: ,,Seitenrahmen x innerhalb von 50 us freigeben”
— Library-BS: ,,...”

— Exokernel: (fithrt Abort-Protokoll aus)

— Library-BS: X (,,Abort” hier Prozess terminieren)

e harte Echtzeit-Fristen in wenigsten Anwendungen beriicksichtigt
— Abort = nur Widerruf der Secure Bindings, nicht Terminierung
— anschlieBend: Informieren des entsprechenden Library-BS
e ermoglicht sinnvolle Reaktion des Library-BS
e bei zustandsbehafteten Ressourcen: Exokernel kann Zustand auf
Hintergrundspeicher sichern — Management-Informationen zum
Aufrdumen durch Library-BS

Aegis mit Library-OS ExOS

e sechr effiziente Exokerne, begrenzte Anzahl einfacher
Systemaufrufe ( 10) und Kernel-interne Primitiven

e sicheres Hardware-Multiplexing auf niedriger Abstraktionsebene
(,,Jow-level”) mit geringem Overhead

e trad. Abstraktionen (VMM, IPC) auf Anwendungsebene effizient
implementierbar — einfache Erweiter-/Spezialisierbarkeit

e hochspezialisierte Implementierungen von Abstraktionen
generierbar

e geschiitzte Kontrollflussiibergabe: als IPC-Primitive im
Aegis-Kernel, 7-mal schneller als zuvor

e Ausnahmebehandlung bei Aegis: 5-mal schneller als bei damals
bester Implementierung

e durch Aegis: Flexibilitdt von ExOS, mit Mikrokernel nicht
erreichbar

e Aegis erlaubt Anwendungen Konstruktion effizienter
IPC-Primitiven (ApKernel: nicht vertrauenswiirdige
Anwendungen kénnen keinerlei spezialisierte IPC-Primitiven
nutzen)

Xok mit Library-OS ExOS

e fiir x86-Hardware implementiert

Kernel-Aufgaben: Multiplexing von Festplatte, Speicher,
Netzwerk,...

Standard Lib-BS (wie Aegis): ExOS ,,Unix as a Library”
hochperformant

Abstraktionen und Operationen auf Exokernel-Basis
Secure Bindings fiir Metadaten-Modifikation

Fazit Exokernelarchitektur
e Abstraktionen und Mechanismen des Betriebssystems kénnen den
Erfordernissen der Anwendungen angepasst werden
— Ergebnis: betrichtliche Performanzsteigerungen

Performanz, Sparsamkeit ermoglicht direkte HW-Benutzung und
Effizienzoptimierung

Wartbarkeit Hardwareabstraktionen flexibel an Anwendungsdomé&nen
anpassbar, ohne BS modifizieren/wechseln

Echtzeitfihigkeit Zeitverhalten des Gesamtsystems durch direkte
Steuerung der Hardware weitestgehend kontrollierbar

Idee

e User-Space: anwendungsspezifische Hardwareabstraktionen
e Kernel-Space: nur Multiplexing und Schutz der HW-Schnittstellen
e Praxis: kooperativer Ressourcenentzug zwischen Kernel, Lib. OS

Ergebnisse

hochperformante Hardwarebenutzung durch spez. Anwendungen
funktional kleiner Exokernel (— Sparsamkeit, Korrektheit)
flexible Nutzung problemgerechter HW-Abstraktionen

keine Isolation von Anwendungen — Parallelisierbarkeit: teuer
und schwach— keine Robustheit und Sicherheit der Anwendungen

12/17

Virtualisierung

VM, VM,

M

API, APl

o5, Jil os: ]

’ Virtualisierungssoftware ‘

virtueller
User Mode

virtueller
Kernel Mode

—t— ——

===

| physische Hardware \

— auf gleicher Hardware mehrere unterschiedliche Betriebssysteme
ausfithrbar machen
Ziele von Virtualisierung

e Adaptivitidt (dhnlich wie Exokernen)
o Wartbarkeit
e Sicherheit
— Isolation von Anwendungs-und Kernelcode durch getrennte
Adressrdume
— Einschriankung der Fehlerausbreitung — angreifbare
Schwachstellen
— Uberwachung der Kommunikation zwischen Teilsystemen
— Sandboxing (vollstéindig von logischer Ablaufumgebung
isolierte Software)

e Robustheit: siehe Sicherheit

Architekturvarianten - drei unterschiedliche Prinzipien:

1. Typ-1-Hypervisor (frither: VMM - ,,Virtual Machine Monitor”)
2. Typ-2-Hypervisor
3. Paravirtualisierung

Typ-1-Hypervisor
e Idee des Typ-1-Hypervisors:

— Multiplexing & Schutz der Hardware (ermdoglicht
Multiprozess-Betrieb)

— abstrahierte Maschine mit ,,angenehmerer” Schnittstelle als
die reine Hardware (z.B. Dateien, Sockets, Prozesse, ...)

e Typ-1-Hypervisor trennt beide Kategorien

— lauft wie ein Betriebssystem unmittelbar iiber der Hardware

— bewirkt Multiplexing der Hardware, liefert aber keine
erweiterte Maschine an Anwendungsschicht

— ,,Multi-Betriebssystem-Betrieb”

e Bietet mehrmals die unmittelbare Hardware-Schnittstelle an,
wobei jede Instanz eine virtuelle Maschine jeweils mit den
unverdnderten Hardware-Eigenschaften darstellt

e Urspriinge: Time-Sharing an Grofirechnern

e heute: Forderungen nach Virtualisierung von Betriebssystemen

— universeller Einsatz des PC fiir Einzel- und
Serveranwendungen — verdnderte Anforderungen an
Virtualisierung

— Wartbarkeit: vor allem 6konomische Griinde

1. Anwendungsentwicklung und -bereitstellung
(Lizenzkosten)

2. Administration: einfache Sicherung, Migration
virtueller Maschinen

3. Legacy-Software

— spéter: Sicherheit, Robustheit — Cloud-Computing
e ideal hierfiir: Typ-1-Hypervisor

v Gast-BS angenehm wartbar
v Softwarekosten beherrschbar
Anwendungen isolierbar

Hardware-Voraussetzungen

e Ziel: Nutzung von Virtualisierung auf PC-Hardware

o systematische Untersuchung der Virtualisierbarkeit von
Prozessoren bereits 1974 durch Popek & Goldberg

— Gast-BS (aus Sicht der CPU im User Mode) muss sicher
sein kénnen, dass privilegierte Instruktionen
(Maschinencode im Kernel) ausgefiihrt werden

— dies geht nur, wenn tatséchlich der HV diese Instruktionen
ausfiihrt

— dies geht nur, wenn CPU bei jeder solchen Instruktion im
Nutzermodus Kontextwechsel zum HV ausfithren, welcher
Instruktion emuliert

e virtualisierbare Prozessoren bis ca. 2006:

v IBM-Architekturen (PowerPC, bis 2006 Apple-Standard)
X Intel x86-Architekturen (386, Pentium, teilweise Core i)

Privilegierte Instruktionen ohne Hypervisor

1. User Mode: Anwendung bereitet Befehl und Parameter vor

2. User Mode: Privilegierte Instruktion — CPU veranlasst
Kontext-und Privilegierungswechsel, Ziel: BS-Kernel

3. Kernel Mode: BS-Dispatcher behandelt Befehl und Parameter,
ruft weitere privilegierte Instruktionen auf

Privilegierte Instruktionen mit Typ-1-Hypervisor

1. User Mode: Anwendung bereitet Befehl und Parameter vor

2. User Mode: Trap — Kontext-und Privilegierungswechsel, Ziel:
Typ-1-HV

3. Kernel Mode: HV-Dispatcher ruft Dispatcher im Gast-BS auf

4. User Mode: BS-Dispatcher behandelt Befehl und Parameter, ruft
weitere privilegierte Instruktionen auf — Kontext-und
Privilegierungswechsel, Ziel: Typ-1-HV

5. Kernel Mode: HV fiihrt privilegierte Instruktionen anstelle des
Gast-BS aus

Sensible und privilegierte Instruktionen

e Maschinenbefehlen, die nur im Kernel Mode ausgefiihrt werden
diirfen — sensible Instruktionen

o Maschinenbefehlen im User Mode, die Wechsel des
Privilegierungsmodus auslésen — privilegierte Instruktionen

o Prozessor virtualisierbar falls sensible Instr. C privilegierte Instr.

o Befehl im UserM. nicht erlaubt — 16st Privilegierungswechsel aus

e kritische Instruktionen = sensible Instr. \ privilegierte Instr.

e Beispiele fiir sensible Instruktionen bei Intel x86: mov auf
Steuerregistern

Folgen fiir Virtualisierung

e privilegierte Instruktionen bei virtualisierbaren Prozessoren

e bei Ausfithrung einer privilegierten Instruktion in virtueller
Maschine: immer Kontrollflussiibergabe an im Kernel-Modus
laufende Systemsoftware - hier Typ-1-HV

e HV kann (anhand des virtuellen Privilegierungsmodus) feststellen

1. ob sensible Anweisung durch Gast-BS
2. oder durch Nutzerprogramm (Systemaufruf!) ausgelst

e Folgen

1. privilegierte Instruktionen des Gast-Betriebssystems
werden ausgefiithrt — ,,trap-and-emulate”

2. Einsprung in Betriebssystem, hier also Einsprung in
Gast-Betriebssystem — Upcall durch HV

e privilegierte Instruktionen bei nicht virtualisierbaren Prozessoren
typischerweise ignoriert

Intel-Architektur ab 386

e keine Unterstiitzung fiir Virtualisierung ...

e kritische Instruktionen im User Mode werden von CPU ignoriert
e Pentium-Familie konnte Kernel-Code explizit feststellen, ob im
Kernel- oder Nutzermodus — Gast-BS trifft evtl. fehlerhafte

Entscheidungen

e Diese Architekturprobleme (bekannt seit 1974) wurden 20 Jahre
lang im Sinne von Riickwirtskompatibilitiat auf
Nachfolgeprozessoren iibertragen ...



Advanced Operating Systems

Typ-2-Hypervisor

Virtualisierung ohne Hardwareunterstiitzung:

e keine Moglichkeit, trap-and-emulate zu nutzen
e keine Moglichkeit, um

1. korrekt (bei sensiblen Instruktionen im Gast-Kernel) den
Privilegierungsmodus zu wechseln
2. den korrekten Code im HV auszufiihren

Ubersetzungsstrategie in Software:

e vollstindige Ubersetzung des Maschinencodes, der in VM
ausgefiihrt wird, in Maschinencode, der im HV ausgefiihrt wird

e praktische Forderung: HV sollte selbst abstrahierte
HW-Schnittstelle zur Ausfiithrung des (komplexen!)
Ubersetzungscodes zur Verfiigung haben (z.B. Nutzung von
Geritetreibern)

e — Typ-2-HV als Kompromiss:

— korrekte Ausfithrung von virtualisierter Software auf
virtualisierter HW X .
— beherrschbare Komplexitit der Implementierung

aus Nutzersicht

e liuft als gewohnlicher Nutzer-Prozess auf Host-Betriebssystem
(z.B. Windows oder Linux)

e VMware bedienbarwie physischer Rechner (bspw. erwartet
Bootmedium in virtueller Reprisentation eines physischen
Laufwerks)

e persistente Daten des Gast-BS auf virtuellem Speichermedium (
tatsdchlich: Image-Datei aus Sicht des Host-Betriebssystems)

Mechanismus: Code-Inspektion

e Bei Ausfithrung eines Bindrprogramms in der virtuellen Maschine
(egal ob Bootloader, Gast-BS-Kernel, Anwendungsprogramm):
zunéchst inspiziert Typ-2-HV den Code nach Basisblocken

— Basisblock: Befehlsfolge, die mit privilegierten Befehlen
oder solchen Befehlen abgeschlossen ist, die den
Kontrollfluss d&ndern (sichtbar an Manipulation des
Programm-Zihlers eip), z.B. jmp, call, ret.

e Basisblocke werden nach sensiblen Instruktionen abgesucht

e diese werden jeweils durchAufruf einer HV-Prozedur ersetzt, die
jeweilige Instruktion behandelt

e gleiche Verfahrensweise mit letzter Instruktion eines Basis-Blocks

Mechanismus: Binary Translation (Bindrcodeiibersetzung)

e modifizierter Basisblock: wird innerhalbdes HVin
Cachegespeichert und ausgefiihrt

e Basisblock ohne sensible Instruktionen: liuft unter Typ-2-HV
exakt so schnell wie unmittelbar auf Hardware (weil er auch
tatsdchlich unmittelbar auf der Hardware lduft, nur eben im
HV-Kontext)

e sensible Instruktionen: nach dargestellter Methode abgefangen
und emuliert — dabei hilft jetzt das Host-BS (z.B. durch eigene
Systemaufrufe, Geritetreiberschnittstellen)

Mechanismus: Caching von Basisblécken

e HYV nutzt zwei parallel arbeitende Module (Host-BS-Threads!):

— Translator: Code-Inspektion, Binary Translation
— Dispatcher: Basisblock-Ausfiihrung

zusétzliche Datenstruktur: Basisblock-Cache
Dispatcher: sucht Basisblock mit jeweils nichster auszufiihrender

Befehlsadresse im Cache; falls miss — suspendieren (zugunsten
Translator)

13/17

e Translator: schreibt Basisblécke in Basisblock-Cache

e Annahme: irgendwann ist Grofiteil des Programms im Cache,
dieses lduft dann mit nahezu Original-Geschwindigkeit
(theoretisch)

Performanzmessungen

e zeigen gemischtes Bild: Typ2-HV keinesfalls so schlecht, wie einst
erwartet wurde L .
e qualitativer Vergleich mit virtualisierbarer Hardware

(Typl-Hypervisor):

e ,.trap-and-emulate,,: erzeugt Vielzahl von Traps —
Kontextwechsel zwischen jeweiliger VM und HV

e insbesondere bei Vielzahl an VMs sehr teuer: CPU-Caches, TLBs,
Heuristiken zur spekulativen Ausfithrung werden verschmutzt

e wenn andererseits sensible Instruktionen durch Aufruf von
VMware-Prozeduren innerhalb des ausfiihrenden Programms

ersetzt: keine Kontextwechsel-Overheads

Studie: (von Vmware) [Adams& Agesen06]

e last-und anwendungsabhingig kann Softwarelésung sogar
Hardwarelésung iibertreffen

e Folge: viele moderne Typl-HV benutzen aus Performanzgriinden
ebenfalls Binary Translation

Paravirtualisierung

Funktionsprinzip

e ... unterscheidet sich prinzipiell von Typ-1/2-Hypervisor

e wesentlich: Quellcode des Gast-Betriebssystems modifiziert

e sensible Instruktionen: durch Hypervisor-Calls ersetzt

e Folge: Gast-Betriebssystem arbeitet jetzt vollstindig wie
Nutzerprogramm, welches Systemaufrufe zum Betriebssystem
(hier dem Hypervisor) ausfiihrt

e dazu:

— Hypervisor: muss geeignetes Interface definieren (HV-Calls)

— Menge von Prozedur-Aufrufen zur Benutzung durch
Gast-Betriebssystem

— bilden eine HV-API als Schnittstelle fiir
Gast-Betriebssysteme (nicht fiir Nutzerprogramme!)

e mehr dazu: Xen
Verwandtschaft mit Mikrokernel-Architekturen

e Geht man vom Typ-1-HV noch einen Schritt weiter ...

— und entfernt alle sensiblen Instruktionen aus
Gast-Betriebssystem ...

— und ersetzt diese durch Hypervisor-Aufrufe, um
Systemdienste wie E/A zu benutzen, ...

— hat man praktisch den Hypervisor in Mikrokernel
transformiert.

e ... und genau das wird auch schon gemacht: L*Linux (TU
Dresden)

— Basis: stringente L*y Kernel-Implementierung
(Typ-1-HV-artiger Funktionsumfang)

— Anwendungslaufzeitumgebung: paravirtualisierter
Linux-Kernel als Serverprozess

— Ziele: Isolation (Sicherheit, Robustheit), Echtzeitfihigkeit
durch direktere HW-Interaktion (vergleichbar
Exokernel-Ziel)

Zwischenfazit Virtualisierung

e Ziele: Adaptivitdt komplementir zu...

— Wartbarkeit : 6konomischer Betrieb von Cloud-und
Legacy-Anwendungen ohne dedizierte Hardware

— Sicherheit : sicherheitskritische Anwendungen kénnen
vollstéindig von nichtvertrauenswiirdigen Anwendungen
(und untereinander) isoliert werden

— Robustheit : Fehler in VMs (= Anwendungsdoméinen)

koénnen nicht andere VMs beeintriachtigen
o Idee: drei géngige Prinzipien:

— Typ-1-HV: unmittelbares HW-Multiplexing,
trap-and-emulate

— Typ-2-HV: HW-Multiplexing auf Basis eines Host-OS,
binarytranslation

— Paravirtualisierung: Typ-1-HV fiir angepasstes Gast-OS,
kein trap-and-emulate n6tig — HV &dhnelt pKern

e Ergebnisse:

v VMs mit individuell anpassbarer Laufzeitumgebung
v isolierteVMs
v kontrollierbare VM-Interaktion (untereinander und mit

HW)
X keine hardwarespezifischen Optimierungen aus VM heraus
moglich — Performanz, Echtzeitfihigkeit, Sparsamkeit!

Container
Ziele:

e Adaptivitit , im Dienste von ...
e ... Wartbarkeit: einfachen Entwicklung, Installation,
Rekonfiguration durch Kapselung von

— Anwendungsprogrammen
- * durch sie benutzte Bibliotheken
— * Instanzen bestimmter BS-Ressourcen
e ... Portabilitdt: Betrieb von Anwendungen, die lediglich von
einem bestimmten BS-Kernel abhéingig sind (ndmlich ein solcher,
der Container unterstiitzt); insbesondere hinsichtlich:

— Abhingigkeitskonflikten (Anwendungen und Bibliotheken)
— fehlenden Abhéngigkeiten (Anwendungen und Bibliotheken)
— Versions-und Namenskonflikten
e ... Sparsamkeit: problemgerechtes ,,Packen,, von Anwendungen in
Container — Reduktion an Overhead: selten (oder gar nicht)
genutzter Code, Speicherbedarf, Hardware, ...

Idee:

e private Sichten (Container) bilden = private
User-Space-Instanzen fiir verschiedene Anwendungsprogramme

e Kontrolle dieser Container i.S.v. Multiplexing, Unabhingigkeit
und API: BS-Kernel

e somit keine Form der BS-Virtualisierung, eher:
,,User-Space-Virtualisierung,,

Anwendungsfille fiir Container

e Anwendungsentwicklung:
— konfliktfreies Entwickeln und Testen unterschiedlicher

Software, fiir unterschiedliche Zielkonfigurationen
BS-User-Space

e Anwendungsbetrieb und -administration:

— Entschéirfung von ,,dependency hell,,

— einfache Migration, einfaches Backup von Anwendungen
ohne den (bei Virtualisierungsimages als Ballast
auftretenden) BS-Kernel

— einfache Verteilung generischer Container fiir bestimmte
Aufgaben

— = Kombinationen von Anwendungen

e Anwendungsisolation? — Docker
Zwischenfazit: Container

e Ziele: Adaptivitdt komplementar zu...

— Wartbarkeit : Vermeidung von Administrationskosten fiir
Laufzeitumgebung von Anwendungen
— Portabilitdt : Vereinfachung von Abhingigkeitsverwaltung



Advanced Operating Systems

— Sparsamkeit : Optimierung der Speicher-und
Verwaltungskosten fiir Laufzeitumgebung von
Anwendungen

o Idee:

— unabhingige User-Space-Instanz fiir jeden einzelnen
Container
— Aufgaben des Kernels: Unterstiitzung der

Containersoftware bei Multiplexing und Herstellung der
Unabhéngigkeitdieser Instanzen

e Ergebnisse:

v vereinfachte Anwendungsentwicklung

v vereinfachter Anwendungsbetrieb

X Infrastruktur nétig iiber (lokale) Containersoftware hinaus,
um Containern zweckgerecht bereitzustellen und zu warten

X keine vollstdndige Isolationméglich

Beispielsysteme (Auswahl)

e Virtualisierung: VMware, VirtualBox

e Paravirtualisierung: Xen

e Exokernel: Nemesis, MirageOS, RustyHermit
e Container: Docker, LupineLinux

Hypervisor

VMware

e ... ist Unternehmenin PaloAlto, Kalifornien (USA)
e gegriindet 1998 von 5 Informatikern
e stellt verschiedene Virtualisierungs-Softwareprodukte her:

1. VMware Workstation

— war erstes Produkt von VMware (1999)

— mehrere unabhéngige Instanzen von x86- bzw.
x86-64-Betriebssystemen auf einer Hardware
betreibbar

VMware Fusion: &hnliches Produkt fiir Intel
Mac-Plattformen

VMware Player: (eingestellte) Freeware fiir
nichtkommerziellen Gebrauch

VMware Server (eingestellte Freeware, ehem. GSX Server)
VMware vSphere (ESXi)

— Produkte 1 ... 3: fiir Desktop-Systeme
— Produkte 4 ... 5: fiir Server-Systeme
— Produkte 1 ... 4: Typ-2-Hypervisor

o woN

e bei VMware-Installation: spezielle vin- Treiber in
Host-Betriebssystem eingefiigt

e diese ermoglichen: direkten Hardware-Zugriff

e durch Laden der Treiber: entsteht ,,Virtualisierungsschicht”
(VMware-Sprechweise)

— Typl- Hypervisor- Architektur
— Anwendung nur bei VMware ESXi

— Entsprechende Produkte in Vorbereitung

VirtualBox

e Virtualisierungs-Software fiir x86- bzw. x86-64-Betriebssysteme
fiir Industrie und ,,Hausgebrauch” (urspriinglich: Innotek , dann
Sun , jetzt Oracle )

e frei verfiigbare professionelle Lésung, als Open Source Software
unter GNU General Public License(GPL) version 2. ...

o (gegenwirtig) lauffihig auf Windows, Linux, Macintosh und

Solaris Hosts
e unterstiitzt groSe Anzahl von Gast-Betriebssystemen: Windows

(NT 4.0, 2000, XP, Server 2003, Vista, Windows 7),
DOS/Windows 3.x, Linux (2.4 and 2.6), Solaris and OpenSolaris ,
0OS/2 , and OpenBSD u.a.

e reiner Typ-2-Hypervisor

14/17

Paravirutalisierung: Xen

e entstanden als Forschungsprojekt der University of Cambridge
(UK), dann XenSource Inc., danach Citrix, jetzt: Linux
Foundation (,,self-governing”)

e frei verfiigbar als Open Source Software unter GNU General
Public License (GPL)

e lauffihig auf Prozessoren der Typen x86, x86-64, PowerPC, ARM,

. uMnItIZrSst{jtzt grole Anzahl von Gast-Betriebssystemen: FreeBSD,
GNU/Hurd/Mach, Linux, MINIX, NetBSD, Netware,
OpenSolaris, OZONE, Plan 9

e . Built for the cloud before it was called cloud.” (Russel Pavlicek,

Citrix)

bekannt fiir Paravirtualisierung

e unterstiitzt heute auch andere Virtualisierungs-Prinzipien

Xen : Architektur

e Gast-BSe laufen in Xen Doménen (,,dom;”, analog V M;)

e es existiert genau eine, obligatorische, vertrauenswiirdige
Domaéne: domg

e Aufgaben (Details umseitig):

— Bereitstellen und Verwalten der virtualisierten Hardware
fiir andere Doménen (Hypervisor-API, Scheduling-Politiken
fiir Hardware-Multiplexing)

— Hardwareverwaltung/-kommunikation fiir paravirtualisierte
Gast-BSe (Gerétetreiber)

— Interaktionskontrolle (Sicherheitspolitiken)

e domg im Detail: ein separates, hochkritisch administriertes,
vertrauenswiirdiges BS mit eben solchen Anwendungen (bzw.
Kernelmodulen) zur Verwaltung des gesamten virtualisierten
Systems

— es existieren hierfiir spezialisierte Variantenvon Linux,
BSD, GNU Hurd

Xen : Sicherheit

e Sicherheitsmechanismusin Xen: Xen Security Modules (XSM)

e illustriert, wie (Para-) Typ-1-Virtualisierung von BS die NFE
Sicherheit unterstiitzt

e PDP: Teil des vertrauenswiirdigen BS in domg, PEPs: XSMs im
Hypervisor

e Beispiel: Zugriff auf Hardware

— Sicherheitspolitik-Integration, Administration, Auswertung:
domg

e Beispiel: Inter-Doménen-Kommunikation

— Interaktionskontrolle (Aufgaben wie oben): domg
— Beispiel: VisorFlow
— selber XSM kontrolliert Kommunikation fiir zwei Doménen

Exokernel
Nemesis

o Betriebssystemaus EU-Verbundprojekt ,,Pegasus,, zur
Realisierung eines verteilten multimediafihigen Systems (1.
Version: 1994/95)

e Entwurfsprinzipien:

1. Anwendungen: sollen Freiheit haben, Betriebsmittel in fiir
sie geeignetster Weise zu nutzen (= Exokernel-Prinzip)
2. Realisierung als sog. vertikal strukturiertes Betriebssystem:

— weitaus meiste Betriebssystem-Funktionalitit
innerhalb der Anwendungen ausgefiihrt (=
Exokernel-Prinzip)

— Echtzeitanforderungen durch Multimedia —
Vermeidung von Client-Server-Kommunikationsmodell
wegen schlecht beherrschbarer zeitlicher
Verzdgerungen (neu)

MirageOS + Xen

e Spezialfall: Exokernel als paravirtualisiertes BS auf Xen

e Ziele : Wartbarkeit (Herkunft: Virtualisierungsarchitekturen ...)
— Okonomischer HW-Einsatz
— Unterstiitzung einfacher Anwendungsentwicklung
— nicht explizit: Unterstiitzung von Legacy-Anwendungen!
e Idee: ,,Unikernel” — eine Anwendung, eine API, ein Kernel

e umfangreiche Dokumentation, Tutorials, ...
e Unikernel - Idee

— ausprobieren

— Architekturprinzip:
— in MirageOS:

e Ergebnis: Kombination von Vorteilen zweier Welten

— Virtualisierungs vorteile: Sicherheit, Robustheit ( — Xen -
Prinzip genau einer vertrauenswiirdigen, isolierten Doméne
domyg)

— Exokernelvorteile: Wartbarkeit, Sparsamkeit

— nicht: Exokernelvorteil der hardwarenahen
Anwendungsentwicklung... ( — Performanz und

Echzeitfahigkeit )

Container: Docker

e Idee: Container fiir einfache Wartbarkeit von
Linux-Anwendungsprogrammen ...

— ... entwickeln
— ... testen
— ... konfigurieren

— ... portieren — Portabilitat

e Besonderheit: Container kénnen - unabhéngig von ihrem
Einsatzzweck - wie Software-Repositories benutzt, verwaltet,
aktualisiert, verteilt ... werden

e Management von Containers: Docker Client — leichtgewichtiger
Ansatz zur Nutzung der Wartbarkeitsvorteile von Virtualisierung

e Forsetzung unter der OCI (Open Container Initiative)

— ,,Docker does a nice job [...] for a focused purpose, namely
the lightweight packaging and deployment of applications.”
(Dirk Merkel, Linux Journal)

e Implementierung der Containertechnik basierend auf
Linux-Kernelfunktionen:

— Linux Containers (LXC): BS-Unterstiitzung fiir
Containermanagement

— cgroups: Accounting/Beschrinkung der
Ressourcenzuordnung

— union mounting: Funktion zur logischen Reorganisation
hierarchischer Dateisysteme

Performanz und Parallelitit

Motivation
e Performanz: Wer hitte gern einen schnell(er)en Rechner...?
e Wer braucht schnelle Rechner:

— Hochleistungsrechnen, HPC (,,high
performancecomputing”)

* wissenschaftliches Rechnen(z.B. Modellsimulation
natiirlicher Prozesse,
Radioteleskop-Datenverarbeitung)

* Datenvisualisierung(z.B. Analysen grofler Netzwerke)

* Datenorganisation-und speicherung(z.B.
Kundendatenverarbeitung zur Personalisierung von
‘Werbeaktivitdten, Biirgerdatenverarbeitung zur
Personalisierung von Geheimdienstaktivitidten)

— nicht disjunkt dazu: kommerzielle Anwendungen

* ,,Big Data”: Dienstleistungen fiir Kunden, die o. g.
Probleme auf gigantischen Eingabedatenmengen zu
16sen haben (Software wie Apache Hadoop )


https://www.flyn.org/projects/VisorFlow/
https://mirage.io/wiki/learning

Advanced Operating Systems

* Wettervorhersage
— anspruchsvolle Multimedia- Anwendungen

* Animationsfilme
* VR-Rendering

Performanzbegriff

e Performance: The degree to which a system or component
accomplishes its designated functions within given constraints,
such as speed, accuracy, or memory usage. (IEEE)

e Performanz im engeren Sinne dieses Kapitels: Minimierung der
fiir korrekte Funktion (= Lésung eines Berechnungsproblems) zur
Verfiigung stehenden Zeit.

e oder technischer: Maximierung der Anzahl pro Zeiteinheit
abgeschlossener Berechnungen.

Roadmap

e Grundlegende Erkenntnis: Performanz geht nicht (mehr) ohne
Parallelitit — Hochleistungsrechnen = hochparalleles Rechnen
e daher in diesem Kapitel: Anforderungen hochparallelen Rechnens
an ...
— Hardware: Prozessorarchitekturen
— Systemsoftware: Betriebssystemmechanismen
— Anwendungssoftware: Parallelisierbarkeitvon Problemen

e BS-Architekturen anhand von Beispielsystemen:

— Multikernel: Barrelfish
— verteilte Betriebssysteme

Hardware-Voraussetzungen
e Entwicklungstendenzen der Rechnerhardware:

— Multicore-Prozessoren: seit ca. 2006 (in gréSerem Umfang)

— Warum neues Paradigma fiir Prozessoren? bei
CPU-Taktfrequenz >> 4 GHz: z.Zt. physikalische Grenze,
u.a. nicht mehr sinnvoll handhabbare Abwérme

— Damit weiterhin:

1. Anzahl der Kerne wichst nicht linear
2. Taktfrequenz wichst asymptotisch, nimmt nur noch

marginal zu

Performanz durch Parallelisierung ...
Folgerungen

1. weitere Performanz-Steigerung von Anwendungen: primér durch
Parallelitéit (aggressiverer) Multi-Threaded-Anwendungen

2. erforderlich: Betriebssystem-Unterstiitzung — Scheduling,
Sychronisation

3. weiterhin erforderlich: Formulierungsmdoglichkeiten (Sprachen),
Compiler, verteilte Algorithmen ... — hier nicht im Fokus

... auf Prozessorebene
Vorteile von Multicore-Prozessoren

1. moglich wird: Parallelarbeit auf Chip-Ebene — Vermeidung
der Plagen paralleler verteilter Systeme

2. bei geeigneter Architektur: Erkenntnisse und Software aus Gebiet
verteilter Systeme als Grundlage verwendbar

3. durch gemeinsame Caches (architekturabhéngig): schnellere
Kommunikation (speicherbasiert), billigere Migration von
Aktivitdten kann méglich sein

4. hohere Energieeffizienz: mehr Rechenleistung pro Chipfliche,
geringere elektrische Leistungsaufnahme — weniger
Gesamtabwérme, z.T. einzelne Kerne abschaltbar (vgl.
Sparsamkeit , mobile Gerite)

5. Baugrofle: geringeres physisches Volumen

Nachteile von Multicore-Prozessoren

1. durch gemeinsam genutzte Caches und Busstrukturen: Engpésse
(Bottlenecks) moglich

15/17

2. zur Vermeidung thermischer Zerstérungen: Lastausgleich
zwingend erforderlich! (Ziel: ausgeglichene Lastverteilung auf
einzelnen Kernen)

3. zum optimalen Einsatz zwingend erforderlich:

(a) Entwicklung Hardwarearchitektur
(b) zusitzlich: Entwicklung geeigneter Systemsoftware
(c) zusitzlich: Entwicklung geeigneter Anwendungssoftware

Multicore-Prozessoren

e Sprechweise in der Literatur gelegentlich uniibersichtlich...
e daher: Terminologie und Abkiirzungen:

— MC ...multicore(processor)

— CMP ...chip-level multiprocessing, hochintegrierte Bauweise
fir ,,MC”

— SMC ...symmetric multicore — SMP ... symmetric
multi-processing

— AMC ...asymmetric (auch: heterogeneous ) multicore —
AMP ... asymmetric multi-processing

— UP ...uni-processing , Synonym zu singlecore(SC) oder
uniprocessor

Architekturen von Multicore-Prozessoren

e A. Netzwerkbasiertes Design

— Prozessorkerne des Chips u. ihre lokalen Speicher (oder
Caches): durch Netzwerkstruktur verbunden

— damit: gréfte Ahnlichkeit zu traditionellen verteilten
Systemen

— Verwendung: bei Vielzahl von Prozessorkernen
(Skalierbarkeit!)

— Beispiel: Intel Teraflop-Forschungsprozessor Polaris (80
Kerne als 8x10-Gitter)

e B. Hierarchisches Design
— mehrere Prozessor-Kerne teilen sich mehrere baumartig
angeordnete Caches
— meistens:
* jeder Prozessorkern hat eigenen L1-Cache
* L2-Cache, Zugriff auf (externen) Hauptspeicher u.
Grofiteil der Busse aber geteilt
— Verwendung: typischerweise Serverkonfigurationen
— Beispiele:
* IBM Power
* Intel Core 2, Core i
# Sun UltraSPARCT1 (Niagara)
e C. Pipeline-Design
— Daten durch mehrere Prozessor-Kerne schrittweise
verarbeitet
— durch letzten Prozessor: Ablage im Speichersystem
— Verwendung:

* Graphikchips
* (hochspezialisierte) Netzwerkprozessoren
— Beispiele: Prozessoren X10 u. X11 von Xelerator zur
Verarbeitung von Netzwerkpaketen in Hochleistungsroutern
(X11: bis zu 800 Pipeline-Prozessorkerne)

Symmetrische u. asymmetrische Multicore-Prozessoren

e symmetrische Multicore-Prozessoren (SMC)

— alle Kerne identisch, d.h. gleiche Architektur und gleiche
Fahigkeiten
— Beispiele:
* Intel Core 2 Duo
* Intel Core 2 Quad
* ParallaxPropeller

e asymmetrische MC-Prozessoren (AMC)

o Multicore-Architektur, jedoch mit Kernen unterschiedlicher
Architektur und/oder unterschiedlichen Fahigkeiten
o Beispiel: Kilocore:

— 1 Allzweck-Prozessor (PowerPC)
— * 256 od. 1024 Datenverarbeitungsprozessoren

Superskalare Prozessoren
e Bekannt aus Rechnerarchitektur: Pipelining

— parallele Abarbeitung von Teilen eines Maschinenbefehls in
Pipeline-Stufen
— ermoglicht durch verschiedene Funktionseinheiten eines
Prozessors fiir verschiedene Stufen:
* Control Unit (CU)
* ArithmeticLogicUnit (ALU)
* Float Point Unit (FPU)
* Memory Management Unit (MMU)
* Cache
— sowie mehrere Pipeline-Register
e superskalare Prozessoren: solche, bei denen zur Bearbeitung einer
Pipeling-Stufe erforderlichen Funktionseinheiten n-fach vorliegen
o Ziel:
— Skalarprozessor (mit Pipelining): 1 Befehl pro Takt
(vollstéandig) bearbeitet
— Superskalarprozessor: bis zu n Befehle pro Taktbearbeitet

e Verbereitung heute: universell (bis hin zu allen
Desktop-Prozessorfamilien)

Parallelisierung in Betriebssystemen
e Basis fiir alle Parallelarbeit aus BS-Sicht: Multithreading
e wir erinnern uns ...:
— Kernel-Level-Threads (KLTs): BS implementiert Threads
— Scheduler kann mehrere Threads nebenldufig planen —
Parallelitat moglich
— User-Level-Threads (ULTs): Anwendung implementiert
Threads — keine Parallelitdt moglich!
e grundlegend fiir echt paralleles Multithreading;:
— parallelisierungsfihige Hardware
— kausal unabhéngige Threads
— passendes (und korrekt eingesetztes!) Programmiermodell,
insbesondere Synchronisation!
— Programmierer + Compiler

Vorlaufiges Fazit:

e BS-Abstraktionen miissen Parallelitit unterstiitzen (Abstraktion
nebenldufiger Aktivitdten: KLTs)
e BS muss Synchronisationsmechanismen implementieren
Synchronisations- und Sperrmechanismen
e Synchronisationsmechanismen zur Nutzung

— ... durch Anwendungen — Teil der API
— ... durch den Kernel (z.B. Implementierung
Prozessmanagement, E/A, ...)

e Aufgabe: Verhinderung konkurrierender Zugriffe auf logische oder
physische Ressourcen

— Vermeidung von raceconditions
— Herstellung einer korrekten Ordnung entsprechend
Kommunikationssemantik (z.B. ,,Schreiben vor Lesen”)

e (alt-) bekanntes Bsp.: Reader-Writer-Problem
Erinnerung: Reader-Writer-Problem
e Begriffe: (bekannt)

— wechselseitiger Ausschluss ( mutual exclusion)
— kritischer Abschnitt (critical section)



Advanced Operating Systems

e Synchronisationsprobleme:

— Wie verhindern wir ein write in vollen Puffer?
Wie verhindern wir ein read aus leerem Puffer?
— Wie verhindern wir, dass auf ein Element wiahrend des read

durch ein gleichzeitiges write zugegriffen wird? (Oder
umgekehrt?)

Sperrmechanismen ( Locks )

e Wechselseitiger Ausschluss ...

— ... ist in nebenldufigen Systemen zwingend erforderlich

— ... ist in echt parallelen Systemen allgegenwartig

— ... skaliert duflerst unfreundlich mit Code-Komplexitdt —
(monolithischer) Kernel-Code!

e Mechanismen in Betriebssystemen: Locks
e Arten von Locks am Beispiel Linux:

— Big Kernel Lock (BKL)

* historisch (1996-2011): lockkernel(); ... unlockkernel();
* ineffizient durch massiv gestiegene Komplexitit des
Kernels
— atomic-Operationen
— Spinlocks
— Semaphore (Spezialform: Reader/Writer Locks)

atomic*

e Bausteine der komplexeren Sperrmechanismen:

— Granularitit: einzelne Integer- (oder sogar Bit-) Operation

— Performanz: mittels Assembler implementiert, nutzt
Atomaritéits garantiender CPU ( TSL - Anweisungen:
,,test-set-lock” )

e Benutzung:

— atomic_* Geschmacksrichtungen: read, set, add, sub, inc,

dec u. a.
— keine explizite Lock-Datenstruktur — Deadlocks durch

Mehrfachsperrung syntaktisch unméoglich
— definierte Liange des kritischen Abschnitts (genau diese eine
Operation) — unnétiges Sperren sehr preiswert

Zusammenfassung

Funktionale und nichtfunktionale Eigenschaften
e Funktionale Eigenschaften: beschreiben, was ein
(Software)-Produkt tun soll
e Nichtfunktionale Eigenschaften: beschreiben, wie funktionale
Eigenschaften realisiert werden, also welche sonstigen
Eigenschaftendas Produkt haben soll ... unterteilbar in:

1. Laufzeiteigenschaften (zur Laufzeit sichtbar)
2. Evolutionseigenschaften (beim Betrieb sichtbar:
Erweiterung, Wartung, Test usw.)

Roadmap (... von Betriebssystemen)

Sparsamkeit und Effizienz
Robustheit und Verfiigbarkeit

Sicherheit
Echtzeitfahigkeit

Adaptivitit
Performanzund Parallelitét

Sparsamkeit und Effizienz

e Sparsamkeit: Die Eigenschaft eines Systems, seine Funktion mit
minimalem Ressourcenverbrauch auszuiiben.

e Effizienz: Der Grad, zu welchem ein System oder eine seiner
Komponenten seine Funktion mit minimalem
Ressourcenverbrauch ausiibt. — Ausnutzungsgrad begrenzter
Ressourcen

16/17

e Die jeweils betrachtete(n) Ressource(n) muss /(miissen) dabei
spezifiziert sein!
e sinnvolle Moglichkeiten bei Betriebssystemen:

1. Sparsamer Umgang mit Energie , z.B. energieeffizientes
Scheduling

2. Sparsamer Umgang mit Speicherplatz (Speichereffizienz)

3. Sparsamer Umgang mit Prozessorzeit

4. ..

Sparsamkeit mit Energie

e Sparsamkeit mit Energie als heute extrem wichtigen Ressource,
mit nochmals gesteigerter Bedeutung bei mobilen bzw.
vollstindig autonomen Gerdten Mafinahmen:

1. Hardware-Ebene: momentan nicht oder nicht mit maximaler
Leistung benétigte Ressourcen in energiesparenden Modus
bringen: abschalten, Standby, Betrieb mit verringertem
Energieverbrauch ( abwigen gegen verminderte Leistung).
(Geeignete Hardware wurde/wird ggf. erst entwickelt)

2. Software-Ebene: neue Komponenten entwickeln, die in der Lage
sein miissen:

o Bedingungenzu erkennen, unter denen ein energiesparender
Modus moglich ist;

e Steuerungs-Algorithmen fiir Hardwarebetrieb so zu
gestalten, dass Hardware-Ressourcen moéglichst lange in
einem energiesparenden Modus betrieben werden.

e Energie-Verwaltungsstrategien: energieeffizientes Scheduling
zur Vermeidung von Unfairness und Priorititsumkehr

e Beispiele: energieeffizientes Magnetfestplatten-Prefetching,
energiebewusstes RR-Scheduling

Sparsamkeit mit Speicherplatz

e Betrachtet: Sparsamkeit mit Speicherplatz mit besonderer
Wichtigkeit fiir physisch beschrinkte, eingebettete und autonome
Geriite

e Mafinahmen Hauptspeicherauslastung:

1. Algorithmus und Strategie z.B.:
— Speicherplatz sparende Algorithmen zur Realisierung
gleicher Strategien
2. Speicherverwaltung von Betriebssystemen:

— physische vs. virtuelle Speicherverwaltung
— speichereffiziente Ressourcenverwaltung
— Speicherbedarfdes Kernels

— direkte Speicherverwaltungskosten

e MafBnahmen Hintergrundspeicherauslastung:

1. Speicherbedarf des Betriebssystem-Images
2. dynamische SharedLibraries
3. VMM-Auslagerungsbereich
4. Modularitdt und Adaptivitit des Betriebssystem-Images
e Nicht betrachtet: Sparsamkeit mit Prozessorzeit — 99%
Uberschneidung mit NFE Performanz

Robustheit und Verfiigbarkeit

e Robustheit: Zuverlidssigkeit unter Anwesenheit externer Ausfille
e fault, aktiviert — error, breitet sich aus — failure

Robustheit

e Erhshung der Robustheit durch Isolation:
— Mafinahmen zur Verhinderung der Fehlerausbreitung:

1. Adressraumisolation: Mikrokernarchitekturen,
2. kryptografische HW-Unterstiitzung: Intel SGX und
3. Virtualisierungsarchitekturen

e Erhshung der Robustheit durch Behandlung von Ausfillen:
Micro-Reboots

Vorbedingung fiir Robustheit: Korrektheit

o Korrektheit: Eigenschaft eines Systems sich geméif seiner
Spezifikation zu verhalten (unter der Annahme, dass bei dieser
keine Fehler gemacht wurden).

e MaBnahmen (nur angesprochen):

1. diverse Software-Tests:

e konnen nur Fehler aufspiiren, aber keine Fehlerfreiheit
garantieren!

2. Verifizierung:

e Durch umfangreichen mathematischen Apparat wird
Korrektheit der Software bewiesen.

e Aufgrund der Komplexitit ist Grofle verifizierbarer
Systeme (bisher?) begrenzt.

e Betriebssystem-Beispiel: verifizierter Mikrokern seL

Verfiigbarkeit

o Verfiigbarkeit: Der Anteil an Laufzeit eines Systems, in dem
dieses seine spezifizierte Leistung erbringt.

angesprochen: Hochverfiigbare Systeme

e Mafinahmen zur Erhchung der Verfiigbarkeit:

Robustheitsmaf3nahmen
Redundanz

Redundanz

Redundanz
Ausfallmanagement

Bdlatad e

Sicherheit
e Sicherheit (IT-Security): Schutz eines Systems gegen Schiiden
durch zielgerichtete Angriffe, insbesondere in Bezug auf die
Informationen, die es speichert, verarbeitet und kommuniziert.
e Sicherheitsziele:

Vertraulichkeit (Confidentiality)
Integritét (Integrity)
Verfiigbarkeit (Availability)
Authentizitit (Authenticity)
Verbindlichkeit (Non-repudiability)

oW

Security Engineering

e Sicherheitsziele — Sicherheitspolitik — Sicherheitsarchitektur —

Sicherheitsmechanismen . . . o
e Sicherheitspolitik: Regeln zum Erreichen eines Sicherheitsziels.

— hierzu formale Sicherheitsmodelle:
— IBAC, TE, MLS
— DAC, MAC

e Sicherheitsmechanismen: Implementierung der Durchsetzung einer
Sicherheitspolitik.

— Zugriffssteuerungslisten(ACLs)
— SELinux

e Sicherheitsarchitektur: Platzierung, Struktur und Interaktion von
Sicherheitsmechanismen.

— wesentlich: Referenzmonitorprinzipien

— RM1: Unumgehbarkeit — vollstéindiges Finden aller
Schnittstellen

— RM2: Manipulationssicherheit — Sicherheit
einerSicherheitspolitik selbst

— RM3: Verifizierbarkeit — wohlstrukturierte und per
Designkleine TCBs



Advanced Operating Systems

Echtzeitfihigkeit

e Echtzeitfihigkeit: Fahigkeit eines Systems auf eine Eingabe
innerhalb eines spezifizierten Zeitintervalls eine korrekte Reaktion
hervorzubringen.

e Maximum dieses relativen Zeitintervalls: Frist d

1. echtzeitfahige Scheduling-Algorithmen fiir Prozessoren
e zentral: garantierte Einhaltung von Fri"sten
e wichtige Probleme: Prioritdtsumkehr, Uberlast, kausale
Abhéngigkeit
2. echtzeitfdhige Interrupt-Behandlung
e zweiteilig:asynchron registrieren, geplant bearbeiten
3. echtzeitfdhige Speicherverwaltung

e Primirspeicherverwaltung, VMM (Pinning)
e Sekundéirspeicherverwaltung, Festplattenscheduling

Adaptivitat
e Adaptivitit: Eigenschaft eines Systems, so gebaut zu sein, dass es
ein gegebenes (breites) Spektrum nichtfunktionaler Eigenschaften
unterstiitzt.
e Beobachtung: Adaptivitdt i.d.R. als komplementéir und
synergetisch zu anderen NFE:
— Sparsamkeit
— Robustheit

— Sicherheit
— Echzeitfahigkeit

— Performanz
— Wartbarkeit und Portierbarkeit

Adaptive Systemarchitekturen
e Zielstellungen:

— Exokernel: { Adaptivitdt } U { Performanz,
Echtzeitfahigkeit, Wartbarkeit, Sparsamkeit }

— Virtualisierung: { Adaptivitit } U { Wartbarkeit,
Sicherheit, Robustheit }

— Container: { Adaptivitdt } U { Wartbarkeit, Portabilitét,
Sparsamkeit }

17/17

Performanz und Parallelitét
e Performanz (wie hier besprochen): Eigenschaft eines Systems, die
fiir korrekte Funktion (= Berechnung) benédtigte Zeit zu
minimieren.
e hier betrachtet: Kurze Antwort-und Reaktionszeiten

1. vor allen Dingen: Parallelisierung auf Betriebssystemebene
zur weiteren Steigerung der Performanz/Ausnutzung von
Multicore-Prozessoren(da Steigerung der
Prozessortaktfrequenz kaum noch méglich)

2. weiterhin: Parallelisierung auf Anwendungsebene zur
Verringerung der Antwortzeiten von Anwendungen und
Grenzen der Parallelisierbarkeit(fiir Anwendungen auf
einem Multicore-Betriebssystem).

Mechanismen, Architekturen, Grenzen der Parallelisierung

e Hardware:

— Multicore-Prozessoren
— Superskalaritit

e Betriebssystem:
— Multithreading(KLTs) und Scheduling
— Synchronisation und Kommunikation
— Lastangleichung

e Anwendung(sprogrammierer):

— Parallelisierbarkeiteines Problems
— optimaler Prozessoreneinsatz, Effizienz

Synergetische und kontrire Eigenschaften
e Normalerweise:
— Eine nichtfunktionale Eigenschaft bei IT-Systemen meist

nicht ausreichend . . .
— Beispiel: Was niitzt ein Echtzeit-Betriebssystem - z.B.

innerhalb einer Flugzeugsteuerung - wenn es nicht auch
verlésslich arbeitet?

e In diesem Zusammenhang interessant:

— Welche nichtfunktionalen Eigenschaften mit Mainahmen
erreichbar, die in gleiche Richtung zielen, bei welchen
wirken Maflnahmen eher gegenldufig?

— Erstere sollen synergetische, die zweiten kontrire (also in
Widerspruch zueinander stehende) nichtfunktionale
Eigenschaften genannt werden.

— Zusammenhang nicht immer eindeutig und offensichtlich,
wie z.B. bei: ,,Sicherheit kostet Zeit.” (d.h. Performanz und
Sicherheit sind nichtsynergetische Eigenschaften)

Notwendige NFE-Paarungen

e Motivation: Anwendungen (damit auch Betriebssysteme) fiir
bestimmte Einsatzgebiete brauchen oft mehrere nichtfunktionale
Eigenschaften gleichzeitig - unabhéngig davon, ob sich diese
synergetisch oder nichtsynergetisch zueinander verhalten.

o Beispiele:

— Echtzeit und Verlisslichkeit: ,,SRU”-Systeme an potentiell
gefdhrlichen Einsatzgebieten (Atomkraftwerk,
Flugzeugsteuerung, Hinderniserkennung an Fahrzeugen, ...)

— Echtzeit und Sparsamkeit: Teil der eingebetteten Systeme

— Robustheit und Sparsamkeit: unter entsprechenden
Umweltbedingungen eingesetzte autonome Systeme, z.B.
smart-dust-Systeme

Uberblick: NFE und Architekturkonzepte

v ... Zieleigenschaft

e (V) ... synergetische Eigenschaft

X ... kontrire Eigenschaft

o Leere Zellen: keine pauschale Aussage moglich.

Fazit: Breites und offenes Forschungsfeld — werden Sie aktiv!



	Funktionale und nichtfunktionale Eigenschaften
	Hardwarebasis
	Betriebssystemarchitektur
	Ressourcenverwaltung
	Betriebssystemabstraktionen
	Betriebssysteme als Softwareprodukte

	Sparsamkeit und Effizienz
	Motivation
	Energieeffizienz
	Energieeffiziente Dateizugriffe
	Prefetching-Mechanismus
	Energieeffizientes Prozessormanagement
	Energieeffizientes Scheduling
	Systemglobale Energieeinsparungsmaßnahmen
	Hardwaretechnologien

	Speichereffizienz
	Hauptspeicherauslastung
	Hintergrundspeicherauslastung

	Architekturentscheidungen
	Makrokernel (monolithischer Kernel)
	Mikrokernel
	BS: TinyOS
	BS: RIOT


	Robustheit und Verfügbarkeit
	Robustheitsbegriff
	Fehler, Ausfälle und ihre Vermeidung

	Fehlerhafter Zustand
	Isolationsmechanismen
	Strukturierte Programmierung
	Adressraumisolation

	Mikrokernelarchitektur
	Modularer Makrokernel vs. Mikrokernel
	Mikrokernel: Mach
	L4
	Mikrokernel - Designprinzipien

	Micro-Reboots
	Beispiel-Betriebssystem: MINIX

	Verfügbarkeit
	QNX Neutrino: Hochverfügbares Echtzeit-BS


	Sicherheit
	Sicherheitsziele
	Schadenspotenzial
	Bedrohungen
	Professionelle Malware: Root Kit
	Schwachstellen
	Zwischenfazit

	Sicherheitspolitiken
	Sicherheitspolitiken und -modelle
	Zugriffssteuerungspolitiken
	Traditionell: DAC, IBAC
	Modellierung: Zugriffsmatrix
	Modern: MAC, MLS

	Autorisierungsmechanismen
	Traditionell: ACLs, SUID

	Modern: SELinux
	Isolationsmechanismen
	Intel SGX

	Sicherheitsarchitekturen
	Referenzmonitorprinzip
	Trusted Computing Base (TCB)


	Echtzeitfähigkeit
	Charakteristika von Echtzeit-Prozessen
	Periodische Prozesse (pP)
	Aperiodische Prozesse (aP)
	Parameter von Echtzeit-Prozessen

	Echtzeitfähige Betriebssysteme
	Echtzeitscheduling
	RC Algorithmus
	Umgang mit gemischten Prozessmengen
	Prioritätsumkehr
	Überlast
	Echtzeit-Interruptbehandlung

	Echtzeit-Speicherverwaltung
	Kommunikation und Synchronisation
	Architekturen
	Beispiel-Betriebssysteme

	Adaptivität (Flexibility)
	Exokernelarchitektur
	Exokernelmechanismen
	Secure Binding
	Visible Resource Revocation
	Abort-Protokoll
	Aegis mit Library-OS ExOS
	Xok mit Library-OS ExOS
	Fazit Exokernelarchitektur

	Virtualisierung
	Typ-1-Hypervisor
	Typ-2-Hypervisor
	Paravirtualisierung

	Container
	Hypervisor
	Paravirutalisierung: Xen
	Exokernel
	Container: Docker


	Performanz und Parallelität
	Motivation
	Performanzbegriff
	Roadmap
	Hardware-Voraussetzungen
	Performanz durch Parallelisierung ...
	... auf Prozessorebene
	Multicore-Prozessoren
	Superskalare Prozessoren

	Parallelisierung in Betriebssystemen
	Synchronisations- und Sperrmechanismen


	Zusammenfassung
	Funktionale und nichtfunktionale Eigenschaften
	Sparsamkeit und Effizienz
	Robustheit und Verfügbarkeit
	Sicherheit
	Echtzeitfähigkeit
	Adaptivität
	Performanz und Parallelität
	Synergetische und konträre Eigenschaften
	Notwendige NFE-Paarungen


