
Advanced Operating Systems

Funktionale und nichtfunktionale Eigenschaften
• Requirements: (nicht-)Funktionale Eigenschaften entstehen durch

Erfüllung von (nicht-)funktionalen Anforderungen
• funktionale Eigenschaft: was ein Produkt tun soll
• nichtfunktionale Eigenschaft (NFE): wie ein Produkt dies tun soll
• andere Bezeichnungen NFE: Qualitäten, Quality of Service

Hardwarebasis
• Einst: Einprozessor-Systeme
• Heute: Mehrprozessor-/hochparallele Systeme
• neue Synchronisationsmechanismen erforderlich
→ unterschiedliche Hardware und deren Multiplexing

Betriebssystemarchitektur

• Einst: Monolithische und Makrokernel-Architekturen
• Heute: Mikrokernel(-basierte) Architekturen
• Exokernelbasierte Architekturen (Library-Betriebssysteme)
• Virtualisierungsarchitekturen
• Multikernel-Architekturen
→ unterschiedliche Architekturen

Ressourcenverwaltung

• Einst: Batch-Betriebssysteme, Stapelverarbeitung (FIFO)
• Heute: Echtzeitgarantien für Multimedia und Sicherheit
• echtzeitfähige Scheduler, Hauptspeicherverwaltung,

Ereignismanagement, Umgang mit Überlast/Prioritätsumkehr ...
→ unterschiedliche Ressourcenverwaltung

Betriebssystemabstraktionen

• Reservierung von Ressourcen ( → eingebettete Systeme)
• Realisierung von QoS-Anforderungen ( → Multimediasysteme)
• Erhöhung der Ausfallsicherheit ( → verfügbarkeitskritisch)
• Schutz vor Angriffen und Missbrauch ( → sicherheitskritisch)
• flexiblen und modularen Anpassen des BS ( → hochadaptiv)
→ höchst diverse Abstraktionen von Hardware

Betriebssysteme als Softwareprodukte

• Betriebssystem: endliche Menge von Quellcode
• besitzen differenzierte Aufgaben → funktionale Eigenschaften
• Anforderungen an Nutzung und Pflege → Evolutionseigenschaften
• können für Betriebssysteme höchst speziell sein
→ spezielle Anforderungen an das Softwareprodukt BS

Grundlegende funktionale Eigenschaften von BS: Hardware-

Abstraktion Ablaufumgebung auf Basis der Hardware bereitstellen
Multiplexing Ablaufumgebung zeitlich/logisch getrennt einzelnen

Anwendungen zuteilen
Schutz gemeinsame Ablaufumgebung gegen Fehler und Manipulation

Nichtfunktionale Eigenschaften (Auswahl) von Betriebssystemen:

• Laufzeiteigenschaften: zur Laufzeit eines Systems beobachtbar

– Sparsamkeit und Effizienz
– Robustheit, Verfügbarkeit
– Sicherheit (Security)
– Echtzeitfähigkeit, Adaptivität, Performanz

• Evolutionseigenschaften: charakterisieren (Weiter-) Entwicklung-
und Betrieb eines Systems

– Wartbarkeit, Portierbarkeit
– Offenheit, Erweiterbarkeit

Sparsamkeit und Effizienz
Motivation
Sparsamkeit (Arbeitsdefinition): Die Eigenschaft eines Systems, seine
Funktion mit minimalem Ressourcenverbrauch auszuüben → Effizienz
bei Nutzung der Ressourcen
Effizienz: Der Grad, zu welchem ein System oder eine seiner
Komponenten seine Funktion mit minimalem Ressourcenverbrauch
ausübt. (IEEE)
Beispiele:

• mobile Geräte: Sparsamkeit mit Energie
• Sparsamkeit mit weiteren Ressourcen, z.B. Speicherplatz
• Betriebssystem (Kernel + User Space): geringer Speicherbedarf
• optimale Speicherverwaltung durch Betriebssystem zur Laufzeit
• Baugrößenoptimierung(Platinen-und Peripheriegerätegröße)
• Kostenoptimierung(kleine Caches, keine MMU, ...)
• massiv reduzierte HW-Schnittstellen (E/A-Geräte, Peripherie)

Mobile und eingebettete Systeme (kleine Auswahl)

• mobile Rechner-Endgeräte
• Weltraumfahrt und -erkundung
• Automobile
• verteilte Sensornetze (WSN)
• Chipkarten
• Multimedia-und Unterhaltungselektronik

Energieeffizienz
zeitweiliges Abschalten momentan nicht benötigter Ressourcen
Betriebssystemmechanismen

1. Dateisystem-E/A: energieeffizientes Festplatten-Prefetching
2. CPU-Scheduling: energieeffizientes Scheduling
3. Speicherverwaltung: Lokalitätsoptimierung
4. Netzwerk: energiebewusstes Routing
5. Verteiltes Rechnen: temperaturabhängige Lastverteilung

Energieeffiziente Dateizugriffe
HDD/Netzwerkgeräte/... sparen nur bei relativ langer Inaktivität Energie

• Aufgabe: kurze, intensive Zugriffsmuster → lange Inaktivität
• HDD-Geräten: Zustände mit absteigendem Energieverbrauch:

1. Aktiv: einziger Arbeitszustand
2. Idle: Platte rotiert, Elektronik teilweise abgeschaltet
3. Standby: Rotation abgeschaltet
4. Sleep: gesamte restliche Elektronik abgeschaltet

• ähnliche, noch stärker differenzierte Zustände bei DRAM
• durch geringe Verlängerungen des idle - Intervalls kann signifikant

der Energieverbrauch reduziert werden

Prefetching-Mechanismus
• Prefetching (,,Speichervorgriff”, vorausschauend) & Caching

– Standard-Praxis bei moderner Datei-E/A
– Voraussetzung: Vorwissen über benötigte Folge von

zukünftigen Datenblockreferenzen
– Ziel: Performanzverbesserung durch Durchsatzerhöhung

und Latenzzeit-Verringerung
– Idee: Vorziehen möglichst vieler E/A-Anforderungen an

Festplatte + zeitlich gleichmäßige Verteilung verbleibender
– Umsetzung: Caching dieser vorausschauend gelesenen

Blöcke in ungenutzten PageCache

→ Inaktivität überwiegend sehr kurz → Energieeffizienz ...?
• Zugriffs-/Festplattenoperationen

– access(x) ... greife auf Inhalt von Festplattenblock x im
PageCache zu

– fetch(x) ... hole Block x nach einem access(x) von Festplatte

– prefetch(x) ... hole Block x ohne access(x) von Festplatte

• Fetch-on-Demand-Strategie bisher (kein vorausschauendes Lesen)
• Traditionelles Prefetching

– traditionelle Prefetching-Strategie: bestimmt

∗ wann Block von der Platte holen (HW aktiv)
∗ welcher Block zu holen ist
∗ welcher Block zu ersetzen ist

1. Optimales Prefetching: Jedes prefetch sollte den nächsten
Block im Referenzstrom in den Cache bringen, der noch
nicht dort ist

2. Optimales Ersetzen: Bei jedem ersetzenden prefetch sollte
der Block überschrieben werden, der am spätesten in der
Zukunft wieder benötigt wird

3. ,,Richte keinen Schaden an”: Überschreibe niemals Block A
um Block B zu holen, wenn A vor B benötigt wird

4. Erste Möglichkeit: Führe nie ein ersetzendes prefetch aus,
wenn dieses schon vorher hätte ausgeführt werden können

• Energieeffizientes Prefetching

– versucht Länge der Disk-Idle-Intervalle zu maximieren

1. Optimales Prefetching: Jedes prefetch sollte den nächsten
Block im Referenzstrom in den Cache bringen, der noch
nicht dort ist

2. Optimales Ersetzen: Bei jedem ersetzenden prefetch sollte
der Block überschrieben werden, der am spätesten in der
Zukunft wieder benötigt wird

3. ,,Richte keinen Schaden an”: Überschreibe niemals Block A
um Block B zu holen, wenn A vor B benötigt wird

4. Maximiere Zugriffsfolgen: Führe immer dann nach einem
fetch/prefetch ein weiteres prefetch aus, wenn Blöcke für
eine Ersetzung geeignet sind

5. Beachte Idle-Zeiten: Unterbrich nur dann eine
Inaktivitätsperiode durch ein prefetch, falls dieses sofort
ausgeführt werden muss, um Cache-Miss zu vermeiden

Allgemeine Schlussfolgerungen

1. Hardware-Spezifikation nutzen: Modi, in denen wenig Energie
verbraucht wird

2. Entwicklung von Strategien, die langen Aufenthalt in
energiesparenden Modi ermöglichen und dabei
Leistungsparameter in vertretbarem Umfang reduzieren

3. Implementieren dieser Strategien in Betriebssystemmechanismen
zur Ressourcenverwaltung

Energieeffizientes Prozessormanagement
• CMOS z.Zt. meistgenutzte Halbleitertechnologie für Prozessor
• Komponenten für Energieverbrauch P = Pswitch + Pleak + ...

– Pswitch: für Schaltvorgänge notwendige Leistung
– Pleak: Verlustleistung durch verschiedene Leckströme
– ...: weitere Einflussgrößen (technologiespezifisch)

Schaltleistung: Pswitching

• Energiebedarf kapaz. Lade-/Entladevorgänge während Schaltens
• für momentane CMOS dominanter Anteil am Energieverbrauch
• Einsparpotenzial: Verringerung von Versorgungsspannung

(quadratische Abhängigkeit!) und Taktfrequenz
→ längere Schaltvorgänge, größere Latenz zwischen Schaltvorgängen
⇒ Energieeinsparung nur mit Qualitätseinbußen

– Anpassung des Lastprofils (Zeit-Last? Fristen kritisch?)
– Beeinträchtigung der Nutzererfahrung (Reaktivität?)

Verlustleistung: Pleak

• Energiebedarf baulich bedingter Leckströme
• Hardware-Miniaturisierung → zunehmender Anteil Pleak an P
⇒ Leckströme kritisch für energiesparenden Hardwareentwurf

1/17



Advanced Operating Systems

Regelspielraum: Nutzererfahrung

• Nutzererwartung: wichtigstes Kriterium zur Bewertung von auf
einem Rechner aktiven Anwendungen durch Nutzer →
Nutzererwartung bestimmt Nutzererfahrung

• Typ einer Anwendung entscheidet über jeweilige Nutzererwartung

1. Hintergrund (z.B. Compiler): Gesamt-Bearbeitungsdauer,
Durchsatz

2. Echtzeit (z.B. Video-Player): ,,flüssiges” Abspielen von
Video oder Musik

3. Interaktiv (z.B. Webbrowser): Reaktivität, d.h. keine
(wahrnehmbare) Verzögerung zwischen Nutzer-Aktion und
Rechner-Reaktion

• Insbesondere kritisch: Echtzeit-/interaktive Anwendungen
• Reaktivität: Reaktion von Anwendungen; abhängig z.B. von

1. Hardware an sich
2. Energieversorgung der Hardware (z.B. Spannungspegel)
3. Software-Gegebenheiten (z.B. Scheduling, Management)

• Zwischenfazit: Nutzererfahrung

– bietet Regelspielraum für Hardwareparameter
– Betriebssystemmechanismen zum energieeffizienten

Prozessormanagement müssen mit Nutzererfahrung(jeweils
erforderlicher Reaktivität) ausbalanciert werden

Energieeffizientes Scheduling
• Scheduling-Probleme beim Energiesparen: Fairness &

Prioritätsumkehr
• Beispiel: Round Robin (RR) mit Prioritäten

– Ebudget
i ... Energiebudget von ti

– Elimit
i ... Energielimit von ti

– Plimit ... maximale Leistungsaufnahme [Energie/Zeit]
– T ... resultierende Zeitscheibenlänge

• Problem 1: Unfaire Energieverteilung
• Problem 2: energieintensive Threads behindern nachfolgende

Threads gleicher Priorität
• Problem 3: energieintensive Threads niedrigerer Priorität

behindern spätere Threads höherer Priorität
• RR Strategie 1: faire Energieverteilung (einheitliche

Energielimits)

– 1 ≤ i ≤ 4 : Elimit
i = Plimit ∗ T

• faire bzw. gewichtete Aufteilung begrenzter Energie optimiert
Energieeffizienz

• Problem: lange, wenig energieintensive Threads verzögern
Antwort-und Wartezeiten kurzer, energieintensiver Threads

– Lösung im Einzelfall: Wichtung per Elimit
i

– globale Reaktivität → Nutzererfahrung?

• RR Strategie 2: maximale Reaktivität ( → klassisches RR)
• Problem: sparsame Threads werden bestraft durch Verfallen des

ungenutzten Energiebudgets
• Idee: Ansparen von Energiebudgets → mehrfache Ausführung

eines Threads innerhalb einer Scheduling-Periode
• RR Strategie 3: Reaktivität, dann faire Energieverteilung

Implementierungsfragen

• Kosten ggü. klassischem RR? (durch Prioritäten...?)
• Scheduling-Zeitpunkte?

– welche Accounting-Operationen (Buchführung)?
– wann Accounting-Operationen?
– wann Verdrängung?

• Datenstrukturen?

– ... im Scheduler → Warteschlange(n)?

– ... im Prozessdeskriptor?

• Pro

– Optimierung der Energieverteilung nach Schedulingzielen
– Berücksichtigung prozessspezifischer Verbrauchsmuster

• Kontra

– sekundäre Kosten: Energiebedarf des Schedulers,
Kontextwechsel, Implementierungskosten

– Voraussetzung: Monitoring des Energieverbrauchs

• Alternative: energieintensive Prozesse verlangsamen →
Regelung der CPU-Leistungsparameter

Systemglobale Energieeinsparungsmaßnahmen
• Traditionelle: zu jedem Zeitpunkt Spitzen-Performanz angestrebt

– viele Anwendungen benötigen keine Spitzen-Performanz
– viel Hardware-Zeit in Leerlaufsituationen bzw. keine

Spitzen-Performanz erforderlich

• Konsequenz (besonders für mobile Systeme)

– Hardware mit Niedrigenergiezuständen
– Betriebssystem kann Energie-Management realisieren

Hardwaretechnologien
DPM: Dynamic Power Management

• versetzt leerlaufende Hardware selektiv in Zustände mit
niedrigem Energieverbrauch

• Zustandsübergänge durch Power-Manager gesteuert, bestimmte
DPM-Strategie (Firmware) zugrunde, um gutes Verhältnis
zwischen Performanz/Reaktivität und Energieeinsparung zu
erzielen

• bestimmt, wann und wie lange eine Hardware in
Energiesparmodus

Greedy Hardware-Komponente sofort nach Erreichen des Leerlaufs in
Energiesparmodus, ,,Aufwecken” durch neue Anforderung

Time-out Energiesparmodus erst nachdem ein definiertes Intervall im
Leerlauf, ,,Aufwecken” wie bei Greedy-Strategien

Vorhersage Energiesparmodus sofort nach Erreichen des Leerlaufs,
wenn Heuristik vorhersagt,dass Kosten gerechtfertigt

Stochastisch Energiesparmodus auf Grundlage stochastischen Modells

DVS: Dynamic Voltage Scaling

• effizientes Verfahren zur dynamischen Regulierung von
Taktfrequenz gemeinsam mit Versorgungsspannung

• Nutzung quadratischer Abhängigkeit der dynamischen Leistung
von Versorgungsspannung

• Steuerung/Strategien: Softwareunterstützung notwendig
• Ziel: Unterstützung von DPM-Strategien durch Maßnahmen auf

Ebene von Compiler, Betriebssystem und Applikationen
• Betriebssystem (prädiktives Energiemanagement)

– kann Benutzung verschiedener Ressourcen beobachten
– kann darüber Vorhersagen tätigen
– kann notwendigen Performanzbereich bestimmen

• Anwendungen können Informationen über jeweils für sie
notwendige Performanz liefern

→ Kombination mit energieefizientem Scheduling

Speichereffizienz
• ... heißt: Auslastung des verfügbaren Speichers
• oft implizit: Hauptspeicherauslastung (memoryfootprint)
• für kleine/mobile Systeme: Hintergrundspeicherauslastung
• Maße zur Konkretisierung:

– zeitlich: Maximum vs. Summe genutzten Speichers?
– physischer Speicherverwaltung? → Belegungsanteil pAR
– virtuelle Speicherverwaltung? → Belegungsanteil vAR

• Konsequenzen für Ressourcenverwaltung durch BS

– Taskverwaltung (Accounting, Multiplexing, Fairness, ...)
– Programmiermodell, API (dynamische

Speicherreservierung)
– Sinnfrage und Strategien virtueller Speicherverwaltung

(VMM)

• Konsequenzen für Betriebssystem selbst

– minimaler Speicherbedarf durch Kernel
– minimale Speicherverwaltungskosten (obiger Aufgaben)

Hauptspeicherauslastung
Problem: externe Fragmentierung

• Lösungen

– First Fit, Best Fit, WorstFit, Buddy
– Relokation

• Kompromissloser Weg: kein Multitasking

Problem: interne Fragmentierung

• Lösung

– Seitenrahmengröße verringern
– Tradeoff: dichter belegte vAR → größere Datenstrukturen

für Seitentabellen

• direkter Einfluss des Betriebssystems auf Hauptspeicherbelegung

→ Speicherbedarf des Kernels
– statische (min) Größe des Kernels (Anweisungen+Daten)
– dynamische Speicherreservierung durch Kernel
– bei Makrokernel: Speicherbedarf von Gerätecontrollern

weitere Einflussfaktoren: Speicherverwaltungskosten

• VMM: Seitentabellengröße → Mehrstufigkeit
• Metainformationen über laufende Programme: Größe von

Taskkontrollblöcken (Prozess-/Threaddeskriptoren ...)
• dynamische Speicherreservierung durch Tasks

Hintergrundspeicherauslastung
Einflussfaktoren des Betriebssystems

• statische Größe des Kernel-Images, beim Bootstrapping gelesen
• statische Größe von Programm-Images (Standards wie ELF)
• statisches vs. dynamisches Einbinden von Bibliotheken
• VMM: Größe des Auslagerungsbereichs (inkl. Teilen der

Seitentabelle) für Anwendungen
• Modularisierung (zur Kompilierzeit) des Kernels: gezielte

Anpassung an Einsatzdomäne möglich
• Adaptivität (zur Kompilier-und Laufzeit) des Kernels: gezielte

Anpassung an sich ändernde Umgebungsbedingungen möglich

Architekturentscheidungen
• typische Einsatzgebiete sparsamer BS: eingebettete Systeme
• eingebettetes System

– Computersystem, das in ein größeres technisches System,
welches nicht zur Datenverarbeitung dient, physisch
eingebunden ist

– Wesentlicher Bestandteil dieses größeren Systems
– Liefert Ausgaben in Form von Informationen/Daten

• spezielle, anwendungsspezifische Ausprägung der Aufgaben

– reduzierter Umfang von HW-Abstraktion, hardwarenähere
Ablaufumgebung

– begrenzte Notwendigkeit von HW-Multiplexing & Schutz

• eng verwandte NFE: Adaptivität von sparsamen BS

2/17



Advanced Operating Systems

• sparsame Betriebssysteme:

– energieeffizient: geringe Architekturanforderungen an
energieintensive Hardware

– speichereffizient: Auskommen mit kleinen Datenstrukturen

• Konsequenz: geringe logische Komplexität des
Betriebssystemkerns

• sekundär: Adaptivität des Betriebssystemkerns

Makrokernel (monolithischer Kernel)
• User Space:

– Anwendungstasks
– CPU im unprivilegierten Modus (Unix ,,Ringe” 1...3)
– Isolation von Tasks durch Programmiermodell/VMM

• Kernel Space:

– Kernel und Gerätecontroller (Treiber)
– CPU im privilegierten Modus (Unix ,,Ring” 0)
– keine Isolation

• Vergleich

3 vglw. geringe Kosten von Kernelcode (Energie, Speicher)
3 VMM nicht zwingend erforderlich
3 Multitasking nicht zwingend erforderlich
7 Kernel (inkl. Treibern) jederzeit im Speicher
7 Robustheit, Sicherheit, Adaptivität

Mikrokernel
• User Space:

– Anwendungstasks, Kernel- und Treibertasks
– CPU im unprivilegierten Modus
– Isolation von Tasks durch VMM

• Kernel Space:

– funktional minimaler Kernel (µKernel)
– CPU im privilegierten Modus
– keine Isolation (Kernel wird in alle vAR eingeblendet)

• Vergleich

3 Robustheit, Sicherheit, Adaptivität
3 Kernelspeicherbedarf gering, Serverprozesse nur wenn

benötigt ( → Adaptivität)
7 hohe IPC-Kosten von Serverprozessen
7 Kontextwechselkosten von Serverprozessen
7 VMM, Multitasking i.d.R. erforderlich

BS: TinyOS
• Beispiel für sparsame BS im Bereich eingebetteter Systeme
• verbreitete Anwendung: verteilte Sensornetze (WSN)
• ,,TinyOS” ist ein quelloffenes, BSD-lizenziertes Betriebssystem
• für drahtlose Geräte mit geringem Stromverbrauch
• Architektur

– monolithisch (Makrokernel) mit Besonderheiten:
– keine klare Trennung zwischen der Implementierung von

Anwendungen und BS (aber von funktionalen Aufgaben)
→ zur Laufzeit: 1 Anwendung + Kernel

• Mechanismen:

– kein Multithreading, keine echte Parallelität
→ keine Synchronisation zwischen Tasks
→ keine Kontextwechsel bei Taskwechsel
– Multitasking realisiert durch Programmiermodell
– nicht-präemptives FIFO-Scheduling
– kein Paging → keine Seitentabellen, keine MMU

• in Zahlen:

– Kernelgröße: 400 Byte
– Kernelimagegröße: 1-4 kByte
– Anwendungsgröße: typisch ca. 15 kB, DB: 64 kB

• Programmiermodell:

– BS+Anwendung als Ganzes übersetzt: statische
Optimierungen durch Compiler (Laufzeit, Speicherbedarf)

– Nebenläufigkeit durch ereignisbasierte Kommunikation zw.
Anwendung und Kernel

∗ command: API-Aufruf, z.B. EA-Operation
∗ event: Reaktion auf diesen durch Anwendung

– sowohl commands als auch events : asynchron

BS: RIOT
• sparsames BS,optimiert für anspruchsvollere Anwendungen
• Open-Source-Mikrokernel-basiertes Betriebssystem für IoT
• Architektur

– halbwegs: Mikrokernel
– energiesparende Kernelfunktionalität

∗ minimale Algorithmenkomplexität
∗ vereinfachtes Threadkonzept → keine

Kontextsicherung erforderlich
∗ keine dynamische Speicherallokation
∗ energiesparende Hardwarezustände vom Scheduler

ausgelöst (inaktive CPU)

– Mikrokerneldesign unterstützt komplementäre NFE:
Adaptivität, Erweiterbarkeit

– Kosten: IPC (hier gering)

• Mechanismen:

– Multithreading-Programmiermodell
– modulare Implementierung von Dateisystemen, Scheduler,

Netzwerkstack

• in Zahlen:

– Kernelgröße: 1,5 kByte
– Kernelimagegröße: 5 kByte

Robustheit und Verfügbarkeit
Motivation

• allgemein: verlässlichkeitskritische Anwendungsszenarien
• Forschung in garstiger Umwelt (Weltraum)
• hochsicherheitskritische Systeme (Finanz, Cloud Dienste)
• hochverfügbare System (öffentliche Infrastruktur, Strom)
• HPC (high performance computing)

Allgemeine Begriffe

• Verlässlichkeit: Fähigkeit, eine Leistung zu erbringen, der man
berechtigterweise vertrauen kann

• Untereigenschaften

1. Verfügbarkeit (availability)
2. Robustheit (robustness, reliability
3. (Funktions-) Sicherheit (safety)
4. Vertraulichkeit (confidentiality)
5. Integrität (integrity)
6. Wartbarkeit (maintainability) (vgl.: evolutionäre

Eigenschaften)

→ nicht für alle Anwendungen sind alle Untereigenschaften
erforderlich

Robustheitsbegriff

• Untereigenschaften von Verlässlichkeit: Robustheit (reliability)
• Ausfall: beobachtbare Verminderung der Leistung eines Systems,

gegenüber seiner als korrekt spezifizierten Leistung
• Robustheit: Verlässlichkeit unter Anwesenheit externer Ausfälle

(= Ursache außerhalb des betrachteten Systems)

Fehler, Ausfälle und ihre Vermeidung
• Fehler → fehlerhafter Zustand → Ausfall

Ausfall (failure) liegt vor, wenn tatsächliche Leistung(en), die ein
System erbringt, von als korrekt spezifizierter Leistung abweichen

• Korrektheit testen/beweisen( → formale Verifikation)

fehlerhafter Zustand (error) notwendige Ursache eines Ausfalls (nicht
jeder error muss zu failure führen)

• Maskierung, Redundanz
• Isolation von Subsystemen
→ Isolationsmechanismen

Fehler (fault) Ursache für fehlerhaften Systemzustand ( error ), z.B.
Programmierfehler

• Ausfallverhalten spezifizieren
• Ausfälle zur Laufzeit erkennen und Folgen beheben,

abschwächen...
→ Micro-Reboots

Fehlerhafter Zustand
interner und externer Zustand (internal & external state)

• externer Zustand: der Teil des Gesamtzustands, der an externer
Schnittstelle sichtbar wird

• interner Zustand: restlicher Teilzustand
• erbrachte Leistung: zeitliche Folge externer Zustände

Fehlerausbreitung und (externer) Ausfall

• Wirkungskette: Treiber-Programmierfehler (fault) → fehlerhafter
interner Zustand des Treibers (error)

– Ausbreitung dieses Fehlers (failure des Treibers)
⇒ fehlerhafter externer Zustand des Treibers
⇒ fehlerhafter interner Zustand des Kernels (error)
⇒ Kernelausfall (failure)

• Auswirkung: fehlerhafter Zustand weiterer Kernel-Subsysteme
→ Robustheit: Isolationsmechanismen

Isolationsmechanismen
• Isolationsmechanismen für robuste Betriebssysteme

– durch strukturierte Programmierung
– durch Adressraumisolation

• noch mehr für sichere Betriebssysteme

– durch kryptografische Hardwareunterstützung: Enclaves
– durch streng typisierte Sprachen und managed code
– durch isolierte Laufzeitumgebungen: Virtualisierung

Strukturierte Programmierung
Monolithisches BS... in historischer Reinform:

• Anwendungen, Kernel, gesamte BS-Funktionalität
• programmiert als Sammlung von Prozeduren
• jede darf jede davon aufrufen, keine Modularisierung
• keine definierten internen Schnittstellen

Monolithisches Prinzip

• Ziel: Isolation zwischen Anwendungen und Betriebssystem
• Mechanismus: Prozessor-Privilegierungsebenen (user/kernelspace)
• Konsequenz: fast keine Strukturierung des Kernels

Strukturierte Makrokernarchitektur

• schwach strukturierter (monolithischer) Makrokernel
⇒ Schichtendifferenzierung ( layered operating system )
• Modularisierung

Modularer Makrokernel

• Kernelfunktionen in Module unterteilt → Erweiter-/Portierbarkeit
• klar definierte Modulschnittstellen
• Module zur Kernellaufzeit dynamisch einbindbar (Adaptivität)

3/17



Advanced Operating Systems

Fehlerausbreitung beim Makrokernel

3 Wartbarkeit
3 Portierbarkeit
3 Erweiterbarkeit
• (begrenzt) Adaptivität
• Schutz gegen statische Programmierfehler nur durch Compiler
7 kein Schutz gegen dynamische Fehler

Adressraumisolation
Private virtuelle Adressräume und Fehlerausbreitung

• private virtuelle Adressräume zweier Tasks (i 6= j)
• korrekte private vAR: kollisionsfreie Seitenabbildung
• Magie in Hardware: MMU (BS steuert und verwaltet...)

Robustheit: Vorteil von privaten vAR?

3 nichtvertrauenswürdiger Code kann keine beliebigen physischen
Adressen schreiben

3 Kommunikation zwischen nvw. Code muss durch
IPC-Mechanismen explizit hergestellt werden → Überwachung
und Validierung zur Laufzeit möglich

3 Kontrollfluss begrenzen: Funktionsaufrufe können i.A. keine
AR-Grenzen überschreiten

→ BS-Zugriffssteuerung kann nicht durch Taskfehler
ausgehebelt werden

→ unabsichtliche Terminierungsfehler(unendliche Rekursion)
erschwert ...

• keine Isolation zwischen Fehlern innerhalb des Kernels

Mikrokernelarchitektur
Fortschritt ggü. Makrokernel

• Strukturierungskonzept

– strenger durchgesetzt durch konsequente Isolation
voneinander unabhängiger Kernel-Subsysteme

– zur Laufzeit durchgesetzt → Reaktion auf fehlerhafte
Zustände möglich!

• zusätzlich zu vertikaler Strukturierung des Kernels: horizontale
Strukturierung eingeführt

→ funktionale Einheiten: vertikal (Schichten)
→ isolierte Einheiten: horizontal (private vAR)

⇒ Kernel (alle BS-Funktionalität) → µKernel (minimale BS-Funk.)
• Rest: ,,gewöhnliche” Anwendungsprozesse mit AR-isolation
• Kommunikation: botschaftenbasierte IPC (client-server OS)
• Nomenklatur: Mikrokernel und Serverprozesse

Modularer Makrokernel vs. Mikrokernel
• minimale Kernelfunktionalität:
• keine Dienste, nur allgemeine Schnittstellenfür diese
• keine Strategien, nur grundlegende Mechanismen zur

Ressourcenverwaltung
• neues Problem: minimales Mikrokerneldesign

Robustheit von Mikrokernen
• = Gewinn durch Adressraumisolation innerhalb des Kernels
3 kein nichtvertrauenswürdiger Code im Kernelspace, der dort

beliebige physische Adressen manipulieren kann
3 Kommunikation zwischen nvw. Code (nicht zur zwischen

Anwendungstasks)muss durch IPC explizit hergestellt werden →
Überwachung und Validierung zur Laufzeit

3 Kontrollfluss begrenzen: Zugriffssteuerung auch zwischen
Serverprozessen, zur Laufzeit unabhängiges Teilmanagement von
Code (Kernelcode) möglich (z.B.: Nichtterminierung erkennen)

• Neu:
3 nvw. BS-Code muss nicht mehr im Kernelspace laufen
3 verbleibender Kernel: klein, funktional weniger komplex, leichter

zu entwickeln, zu testen, evtl. formal zu verifizieren
3 daneben: Adaptivität durch konsequentere Modularisierung des

Kernels gesteigert

Mikrokernel: Mach
• 1975: Aleph (BS des ,,Rochester Intelligent Gateway”)
• 1979/81: Accent (verteiltes BS), CMU
• Mach 3.0 (1989): einer der ersten praktisch nutzbaren µKerne
• Ziel: API-Emulation ( 6= Virtualisierung) von UNIX und

-Derivaten auf unterschiedlichen Prozessorarchitekturen
• mehrere unterschiedliche Emulatoren gleichzeitig lauffähig

– Emulation außerhalb des Kernels
– Komponente im Adressraum des Applikationsprogramms
– 1...n Server, unabhängig von Applikationsprogramm

µKernel-Funktionen

1. Prozessverwaltung
2. Speicherverwaltung
3. IPC-und E/A-Dienste, einschließlich Gerätetreiber

unterstützte Abstraktionen ( → API, Systemaufrufe):

1. Prozesse, Threads, Speicherobjekte
2. Ports (generisches, ortstransparentes Adressierungskonzept)
3. Botschaften, ... (sekundäre, von den obigen genutzte

Abstraktionen)

Architektur

• Systemaufrufkosten:

– IPC-Benchmark (1995): i486 Prozessor, 50 MHz
– Messung mit verschiedenen Botschaftenlängen( x - Werte)
– ohne Nutzdaten (0 Byte Botschaftenlänge): 115 µs

(Tendenz unfreundlich ...)

• Bewertung aus heutiger Sicht:

– funktional komplex
– 153 Systemaufrufe
– mehrere Schnittstellen, parallele Implementierungen für

eine Funktion
→ Adaptivität (Auswahl durch Programmierer)

• Fazit:

– zukunftsweisender Ansatz
– langsame und ineffiziente Implementierung

Lessons Learned

• Umsetzung: Designkriterien weitgehend unbekannt
• Folgen für Performanz und Programmierkomfort: [Heis19]
7 ,,complex”, ,,inflexible”, ,,slow”
• wissen etwas über Kosten: IPC-Performanz, Kernelabstraktionen
• wissen nichts über guten µKern-Funktionsumfang und gute

Schnittstellen

L4
Analyse des Mach-Kernels:

1. falsche Abstraktionen
2. unperformante Kernelimplementierung
3. prozessorunabhängige Implementierung

L3 und L4

• Mikrokerne der 2. Generation
• vollständige Überarbeitung des Mikrokernkonzepts

First generation Second Generation Third generation
Eg Mach Eg L4 seL4

180 syscalls ∼ 7 syscalls ∼ 3 syscalls
100 kLOC ∼ 10 kLOC 9 kLOC
100 µs IPC ∼ 1 µs IPC 0, 2− 1µs IPC

Mikrokernel - Designprinzipien

• Was gehört in einen Mikrokern?
• Konzeptsicht → Funktionalität
• Implementierungssicht → Performanz
→ 1. Generation: durch Performanzentscheidungen aufgeweicht
→ Effekt in Praxis gegenteilig: schlechte (IPC-) Performanz

Designprinzipien für Mikrokernel-Konzept

1. System interaktive und nicht vollständig vertrauenswürdige
Applikationen unterstützen ( → HW-Schutz,-Multiplexing),

2. Hardware mit virtueller Speicherverwaltung und Paging

Designprinzipien

Autonomie Subsystem muss so implementiert werden, dass es von
keinem anderen Subsystem gestört oder korrumpiert werden kann

Integrität Subsystem S1 muss sich auf Garantien von S2 verlassen
können. D.h. beide Subsysteme müssen miteinander
kommunizieren können, ohne dass ein drittes Subsystem diese
Kommunikation stören, fälschen oder abhören kann.

L4: Speicherabstraktion

• Adressraum: Abbildung, die jede virtuelle Seite auf einen
physischen Seitenrahmen abbildet oder als ,,nicht zugreifbar”
markiert

• Implementierung über Seitentabellen, unterstützt durch
MMU-Hardware

• Aufgabe des Mikrokernels (Schicht aller Subsysteme): muss
Hardware-Konzept des Adressraums verbergen und durch eigenes
Adressraum-Konzept überlagern

• Mikrokernel-Konzept des Adressraums:

– muss Implementierung von beliebigen virtuellen
Speicherverwaltungs-und -schutzkonzepten oberhalb des
Mikrokernels (d.h. in den Subsystemen) erlauben

– sollte einfach und dem Hardware-Konzept ähnlich sein

• Idee: abstrakte Speicherverwaltung

– rekursive Konstruktion und Verwaltung der Adressräume
auf Benutzer-(Server-)Ebene

– Mikrokernel stellt dafür genau drei Operationen bereit:

grant(x) Server überträgt Seite x seines AR in AR von Empfänger
map(x) Server bildet Seite x seines AR in AR von Empfänger ab
flush(x) Server entfernt Seite x seines AR aus allen fremden AR

Hierarchische Adressräume

• Rekursive Konstruktion der Adressraumhierarchie
• Server und Anwendungenkönnen damit ihren Klienten Seiten des

eigenen Adressraumes zur Verfügung stellen
• Realspeicher: Ur-Adressraum vom µKernel verwaltet
• Speicherverwaltung, Paging... außerhalb des µ-Kernels realisiert

L4: Threadabstraktion

• Thread

– innerhalb eines Adressraumes ablaufende Aktivität
→ Adressraumzuordnung essenziell für Threadkonzept
– Bindung an Adressraum: dynamisch oder fest
– Änderung einer dynamischen Zuordnung: darf nur unter

vertrauenswürdiger Kontrolle erfolgen

4/17



Advanced Operating Systems

• Designentscheidung

→ Autonomieprinzip
→ Konsequenz: Adressraumisolation
→ entscheidender Grund zur Realisierung des

Thread-Konzepts innerhalb des Mikrokernels

IPC

• Interprozess-Kommunikation

– Kommunikation über Adressraumgrenzen
– vertrauenswürdig kontrollierte Aufhebung der Isolation
→ essenziell für (sinnvolles) Multitasking und -threading

• Designentscheidung

→ Integritätsprinzip
→ vertrauenswürdige Adressraumisolation im µKernel
→ grundlegendes IPC-Konzepts innerhalb des Mikrokernels

Identifikatoren

• Thread-und Ressourcenbezeichner

– müssen vertrauenswürdig vergeben und verwaltet werden
→ essenziell für (sinnvolles) Multitasking und -threading
→ essenziell für vertrauenswürdige

Kernel-/Server-Schnittstellen

• Designentscheidung

→ Integritätsprinzip
→ ID-Konzept innerhalb des Mikrokernels

Lessons Learned

1. Ein minimaler Mikrokernel

• stellt Minimalmenge geeigneter Abstraktionen verfügbar
• flexibel, um Implementierung beliebiger BS zu ermöglichen
• Nutzung verschiedener Hardware-Plattformen

2. Geeignete, funktional minimale Mechanismen im µKern:

• Adressraum mit map-, flush-, grant-Operation
• Threadsinklusive IPC
• eindeutige Identifikatoren

3. Wahl der geeigneten Abstraktionen: kritisch für Verifizierbarkeit,
Adaptivität und optimierte Performanz des Mikrokerns

4. Bisherigen µ-Kernel-Abstraktionskonzepte: ungeeignete, zu viele,
zu spezialisierte u. inflexible Abstraktionen

5. Konsequenzen für Mikrokernel-Implementierung

• müssen für jeden Prozessortyp neu implementiert werden
• deshalb prinzipiell nicht portierbar → L3-/L4-Prototypen:

99% Assemblercode

6. innerhalb eines Mikrokernels sind von Prozessorhardware
abhängig

(a) grundlegende Implementierungsentscheidungen
(b) meiste Algorithmen u. Datenstrukturen

7. Fazit: Mikrokernel mit akzeptabler Performanz
hardwarespezifische Implementierung minimal erforderlicher vom
Prozessortyp unabhängiger Abstraktionen

8. L4 heute: Spezifikation Mikrokernels (nicht Implementierung)

Zwischenfazit

• Begrenzung von Fehlerausbreitung (→ Folgen von errors)
• konsequent modularisierte Architektur aus Subsystemen
• Isolationsmechanismen zwischen Subsystemen
• statische Isolation auf Quellcodeebene → strukturierte

Programmierung
• dynamische Isolation zur Laufzeit → private virtuelle

Adressräume
• Architektur, welche diese Mechanismen komponiert: Mikrokernel
3 Adressraumisolation für sämtlichen nichtvertrauenswürdigen Code
3 keine privilegierten Instruktionen in nvw. Code (Serverprozesse)
3 geringe Größe (potenziell: Verifizierbarkeit) des Kernels
3 neben Robustheit: Modularitätund Adaptivitätdes Kernels
7 Behandlung von Ausfällen ( → abstürzende Gerätetreiber ...)

Micro-Reboots
• Kernelfehler potentiell fatal für gesamtes System
• Anwendungsfehler nicht
→ kleiner Kernel = geringeres Risiko von Systemausfällen
→ BS-Code in Serverprozessen: verbleibendes Risiko unabhängiger

Teilausfälle von BS-Funktionalität
• Ergänzung zu Isolationsmechanismen notwendig
• Mechanismen zur Behandlung von Subsystem-Ausfällen
= Mechanismen zur Behandlung Anwendungs-, Server- und

Gerätetreiberfehlen
→ Micro-Reboots

Ansatz

• kleinen (als fehlerfrei angenommenen) µKernel
• BS-Funktionalität in bedingt vertrauenswürdigen Serverprozessen
• Treiber/Anwendungen in nicht vertrauenswürdigen Prozessen
• wollen Systemausfälle verhindern durch Vermeidung von errors im

Kernel → höchste Priorität
• Treiber-und Serverausfälle minimieren durch Verbergen ihrer

Auswirkungen → nachgeordnete Priorität (Best-Effort-Prinzip)
• Idee: Ausfälle → Neustart durch spezialisierten Serverprozess

Beispiel-Betriebssystem: MINIX
• Ziel: robustes Betriebssystems
→ Schutz gegen Sichtbarwerden von Fehlern(= Ausfälle) für Nutzer
• Fokus auf Anwendungsdomänen: Einzelplatzrechner und

eingebettete Systeme
• Anliegen: Robustheit > Verständlichkeit > geringer HW-Bedarf

Architektur

•
• Anwendungen (weiß): Systemaufrufe im POSIX-Standard
• Serverprozesse (grau): IPC (botschaftenbasiert), mit Kernel:

spezielle MINIX-API (kernel calls), für Anwendungsprozesse
gesperrt

• Betriebssystem-Serverprozesse: Dateisystem (FS),
Prozessmanagement (PM), Netzwerkmanagement (Net)

• Reincarnation Server (RS) → Micro-Reboots jeglicher
Serverprozesse

• Kernelprozesse: systemtask, clocktask

Reincarnation Server

• Implementierungstechnik für Micro-Reboots
• Prozesse zum Systemstart (→ Kernel Image)

system, clock Kernelprogramm
init Bootstrapping (Initialisierung rs), Fork der Login-Shell
rs Fork aller BS-Serverprozesse inkl. Gerätetreiber

Verfügbarkeit
• komplementäre NFE zu Robustheit: Verfügbarkeit ( availability )
• Verbesserung von Robustheit → Verbesserung von Verfügbarkeit
• Robustheitsmaßnahmen hinreichend , nicht notwendig
• weitere komplementäre NFE: Robustheit → Sicherheit (security)
• Definition: Grad, zu welchem ein System oder eine Komponente

funktionsfähig und zugänglich (erreichbar) ist, wann immer seine
Nutzung erforderlich ist (IEEE)

• Anteil an Laufzeit eines Systems, in dem dieses seine spezifizierte
Leistung erbringt

• Availability = TotalUptime
TotalLifetime = MTTF

MTTF+MTTR

• MTTR: Mean Time to Recovery, MTTF: Mean Time to Failure
• Hochverfügbarkeitsbereich (gefeierte ,,five nines” availability)
• Maßnahmen: Robustheit, Redundanz, Ausfallmanagement

einige Verfügbarkeitsklassen:
Verfügbarkeit Ausfallzeit pro Jahr Ausfallzeit pro Woche
90% > 1 Monat ca. 17 Stunden
99% ca. 4 Tage ca. 2 Stunden
99,9% ca. 9 Stunden ca. 10 Minuten
99,99% ca. 1 Stunde ca. 1 Minute
99,999% ca. 5 Minuten ca. 6 Sekunden
99,9999% ca. 2 Sekunden << 1 Sekunde

QNX Neutrino: Hochverfügbares Echtzeit-BS
• Mikrokern-Betriebssystem
• primäres Einsatzfeld: eingebettete Systeme, z.B. Automobilbau
• Mikrokernarchitektur mit Adressraumisolation für Gerätetreiber
• (begrenzt) dynamische Micro-Rebootsmöglich
• → Maximierung der Uptime des Gesamtsystems

High-Avalability-Manager Laufzeit-Monitor der
Systemdienste/Anwendungsprozesse überwacht und neustartet →
µReboot-Server

High-Availability-Client-Libraries Funktionen zur transparenten
automatischen Reboot für ausgefallene Server-Verbindungen

Sicherheit
Terminologie

Security IT-Sicherheit, Informationssicherheit

• Ziel: Schutz des Rechnersystems
• Systemsicherheit, hier besprochen

Safety Funktionale Sicherheit, Betriebssicherheit

• Ziel: Schutz vor einem Rechnersystem
• an dieser Stelle nicht besprochen

Sicherheitsziele
• Rechnersystem sicher gegen Schäden durch zielgerichtete Angriffe,

insbesondere bzgl Informationen, die im System gespeichert,
verarbeitet und übertragen werden

• für Sicherheitsziele gilt: Daten 6= Informationen
• sukzessive Konkretisierungen bzgl anwendungsspezifischer

Anforderungen

abstrakte auf konkret definierte Sicherheitsziele

Vertraulichkeit nur für einen autorisierten Nutzerkreis zugänglich
Integrität vor nicht autorisierter Veränderung geschützt
Verfügbarkeit autorisierten Nutzern in angemessener Frist zugänglich
Authentizität Urheber eindeutig erkennen
Verbindlichkeit sowohl integer als auch authentisch

Schadenspotenzial
1. Vandalismus, Terrorismus (reine Zerstörungswut)
2. Systemmissbrauch

• illegitime Ressourcennutzung, hocheffektive Folgeangriffe
• Manipulation von Inhalten (→ Desinformation)

3. (Wirtschafts-) Spionage und Diebstahl

• Verlust der Kontrolle über kritisches Wissen (→
Risikotechnologien)

• immense wirtschaftliche Schäden, z.B. Diebstahl von
industriellem Know-How

4. Betrug, persönliche Bereicherung (wirtschaftliche Schäden)
5. Sabotage, Erpressung

• Außerkraftsetzen lebenswichtiger Infrastruktur
• Erpressung durch reversible Sabotage

5/17



Advanced Operating Systems

Bedrohungen
1. Eindringlinge (intruders), Hacker

• Angriff nutzt technische Schwachstelle aus ( exploit )

2. Schadsoftware (malicious software, malware)

• (teil-) automatisierte Angriffe
• Trojanische Pferde: scheinbar nützliche Software
• Viren, Würmer: Funktionalität zur eigenen Vervielfältigung

und/oder Modifikation
• Logische Bomben: trojanischen Pferde, deren Aktivierung

an System- oder Datumsereignisse gebunden
• Root Kits

3. Bots und Botnets

• (weit-) verteilt ausgeführte Schadsoftware
• eigentliches Ziel i.d.R. nicht das jeweils infizierte System

Professionelle Malware: Root Kit
• Programm-Paket, das unbemerkt Betriebssystem modifiziert, um

Administratorrechte zu erlangen
• Voraussetzung: eine einzige Schwachstelle...
• ermöglichen Zugriff auf alle Funktionen und Dienste eines

Betriebssystems
• Angreifer erlangt vollständige Kontrolle des Systems und kann

– Dateien (Programme) hinzufügen bzw. ändern
– Prozesse überwachen
– über die Netzverbindungen senden und empfangen
– Hintertüren für zukünftiger Angriffe platzieren

• Ziele eines Rootkits

– seine Existenz verbergen
– zu verbergen, welche Veränderungen vorgenommen wurden
– vollständige und irreversible Kontrolle über BS zu erlangen

• erfolgreicher Root-Kit-Angriff ...

– jederzeit, unentdeckbar, nicht reversibel
– systemspezifischem Wissen über Schwachstellen
– vollautomatisiert, also reaktiv unverhinderbar
– uneingeschränkte Kontrolle über Zielsystem erlangen

Schwachstellen
1. Passwort (erraten, zu einfach, Brute-Force, Abfangen)
2. Programmierfehler (Speicherfehler in

Anwenderprogrammen/Gerätemanagern/Betriebssystem
3. Mangelhafte Robustheit

• keine Korrektur fehlerhafter Eingaben
• buffer overrun/underrun (,,Heartbleed”)

4. Nichttechnische Schwachstellen

• physisch, organisatorisch, infrastrukturell
• menschlich ( → Erpressung, socialengineering )

Zwischenfazit
• Schwachstellen sind unvermeidbar
• Bedrohungen sind unkontrollierbar
• ... und nehmen tendeziell zu!
• führt zu operationellen Risiken beim Betrieb eines IT-Systems
→ Aufgabe der BS-Sicherheit: Auswirkungen operationeller Risiken

reduzieren

Sicherheitspolitiken
• Herausforderung: korrekte Durchsetzung von Sicherheitspolitiken
• Vorgehensweise: Security Engineering

Sicherheitsziele Welche Sicherheitsanforderungen muss BS erfüllen?

Sicherheitspolitik Durch welche Strategien soll es diese erfüllen?

Sicherheitsmechanismen Wie implementiert BS Sicherheitspolitik?

Sicherheitsarchitektur Wo implementiert BS S.-mechanismen?

Sicherheitspolitiken und -modelle
Kritisch für korrekten Entwurf, Spezifikation, Implementierung

• Sicherheitspolitik (Policy): Menge von Regeln, zum Erreichen
eines Sicherheitsziels

• Sicherheitsmodell: formale Darstellung zur

– Verifikation ihrer Korrektheit
– Spezifikation ihrer Implementierung

Zugriffssteuerungspolitiken

Zugriffssteuerung (access control) Steuerung, welcher Nutzer oder
Prozess mittels welcher Operationen auf welche BS-Ressourcen
zugreifen darf

Zugriffssteuerungspolitik konkrete Regeln, welche die
Zugriffssteuerung in einem BS beschreiben

IBAC (Identity-based AC) Politik spezifiziert, welcher Nutzer an
welchen Ressourcen bestimmte Rechte hat

• Bsp.: ,,Nutzer Anna darf Brief.docx lesen”

TE (Type-Enforcement) Politik spezifiziert Rechte durch zusätzliche
Abstraktion (Typen): welcher Nutzertyp an welchem
Ressourcentyp bestimmte Rechte hat

• Bsp.: ,,Nutzer vom Typ Administrator darf...”

MLS (Multi-Level Security) Politik spezifiziert Rechte, indem aus
Nutzern und Ressourcen hierarchische Klassen (Ebenen,
,,Levels”) gleicher Kritikalität im Hinblick auf Sicherheitsziele
gebildet werden

• Bsp.: ,,Nutzer der Klasse nicht vertrauenswürdig...”

DAC (Discretionary AC): Aktionen der Nutzer setzen die
Sicherheitspolitik durch. Typisch: Begriff des Eigentümers von
BS-Ressourcen

• Bsp.: ,,Der Eigentümer einer Datei ändert...”

MAC (Mandatory AC, obligatorische Zugriffssteuerung) Keine
Beteiligung der Nutzer an der Durchsetzung einer (zentral
administrierten) Sicherheitspolitik

• Bsp.: ,,Anhand des Dateisystempfads bestimmt BS...”

Traditionell: DAC, IBAC
Auszug aus der Unix-Sicherheitspolitik:

• es gibt Subjekte (Nutzer/Prozesse) und Objekte (Dateien,. . . )
• jedes Objekt hat einen Eigentümer
• Eigentümer legen Zugriffsrechte an Objekten fest (→ DAC)
• es gibt drei Zugriffsrechte: read, write, execute
• je Objekt gibt es drei Klassen von Subjekten, mit individuellen

Zugriffsrechten: Eigentümer, Gruppe, Rest

In der Praxis

• identitätsbasierte (IBAC), wahlfreie Zugriffssteuerung (DAC)
• hohe individuelle Freiheit der Nutzer bei Durchsetzung der Politik
• hohe Verantwortung

Modellierung: Zugriffsmatrix

• Access Control Matrix (acm): Momentaufnahme der globalen
Rechteverteilung zu einem definierten Zeitpunkt t

• Korrektheitskriterium: Wie kann sich dies nach t möglicherweise
ändern...?

• Rechteausbreitung (privilege escalation): verursacht z.B. durch
Nutzeraktion (→ DAC)

• Sicherheitseigenschaft: HRU Safety → Systemsicherheit

Modern: MAC, MLS
Sicherheitspolitik der Windows UAC (user account control)

• es gibt Subjekte (Prozesse) und Objekte (Dateisystemknoten)
• jedem Subjekt ist eine Integritätsklasse zugewiesen:

Low nicht vertrauenswürdig
Medium reguläre Nutzerprozesse, die Nutzerdaten manipulieren
High Administratorprozesse, die Systemdaten manipulieren
System (Hintergrund-) Prozesse, die ausschließlich

Betriebssystemdienste auf Anwenderebene implementieren

• jedem Objekt ist analog eine dieser Integritätsklassen zugewiesen
• sämtliche DAC-Zugriffsrechte müssen mit einer Hierarchie der

Integritätsklassen konsistent sein ( → MAC)
• Nutzer können Konsistenzanforderung selektiv außer Kraft setzen

(→ DAC)

MAC-Modellierung: Klassenhierarchie
Beispiel Relation: ≤=
{(High,Medium), (High, Low), (Medium,Low), (High,High), (Low,Low)}

• repräsentiert Kritikalität hinsichtlich der Integrität
• modelliert legale Informationsflüsse zwischen Subjekten und

Objekten → Schutz vor illegalem Überschreiben
• leitet Zugriffsrechte aus Informationsflüssen ab: lesen/schreiben

Modellkorrektheit: Konsistenz
• Korrektheitskriterium: Garantiert die Politik, dass acm mit ≤

jederzeit konsistent ist? ( BLP Security )
• elevation-Mechanismus: verändert nach Nutzeranfrage (→ DAC)

sowohl acm als auch ≤→ konsistenzerhaltend?
• anders: verändern unmittelbar nur acm → konsistenzerhaltend?

Autorisierungsmechanismen
• Sicherheitsmechanismen: Datenstrukturen und Algorithmen,

welche Sicherheitseigenschaften eines BS implementieren
→ Sicherheitsmechanismen benötigt man zur Herstellung jeglicher

Sicherheitseigenschaften
• Auswahl im Folgenden: Autorisierungsmechanismen und

-informationen

– Nutzerauthentisierung (Passwort-Hashing, ...)
– Autorisierungsinformationen (Metainformationen...)
– Autorisierungsmechanismen (Rechteprüfung, ...)
– kryptografische Mechanismen (Hashfunktionen, ...)

Traditionell: ACLs, SUID
Autorisierungsinformationen:

• müssen Subjekte (Nutzer) bzw. Objekte (Dateien, Sockets ...) mit
Rechten assoziieren → Implementierung der Zugriffsmatrix (acm),
diese ist:

– groß (→ Dateianzahl auf Fileserver)
– dünn besetzt
– in Größe und Inhalt dynamisch veränderlich

• Lösung: verteilte Implementierung der acm als Spaltenvektoren,
deren Inhalt in den Objekt-Metadaten repräsentiert wird:
Zugriffssteuerungslisten (ACLs)

ACLs: Linux-Implementierung
• objektspezifischer Spaltenvektor = Zugriffssteuerungsliste
• Dateisystem-Metainformationen: implementiert in I-Nodes

Modell einer Unix acm ...
lesen schreiben ausführen

Eigentümer (u) ja ja ja
Gruppe (g) ja nein ja

Rest (o) ja nein ja

• 3-elementige Liste, 3-elementige Rechtemenge
→ 9 Bits
• Implementierung kodiert in 16-Bit-Wort: 1 1 1 1 0 1 1 0 1

6/17



Advanced Operating Systems

Autorisierungsmechanismen: ACL-Auswertung
Subjekte = Nutzermenge besteht aus Anzahl registrierter Nutzer

• jeder hat eindeutige UID (userID), z.B. integer- Zahl
• Dateien & Prozesse mit UID des Eigentümers versehen

– bei Dateien: Teil des I-Nodes
– bei Prozessen: Teil des PCB
– standardmäßiger Eigentümer: der Ressource erzeugt hat

Nutzergruppen (groups)

• jeder Nutzer durch Eintrag in Systemdatei (/etc/group)
einer/mehreren Gruppen zugeordnet (→ ACL: g Rechte)

Superuser oder root... hat grundsätzlich uneingeschränkte Rechte.

• UID = 0
• darf alle Dateien im System lesen, schreiben, ausführen
• unabhängig von ACL

ACL-Implementierung Nutzerrechte → Prozessrechte
Durchsetzung: basiert auf Prozessrechten

• Annahme: Prozesse laufen mit UID des Nutzers, der sie gestartet
hat und repräsentieren Nutzerberechtigungen

• technisch: Nutzer beauftragt anderen Prozess, sich zu dublizieren
(fork()) und gewünschte Programm auszuführen (exec*())

• Vererbungsprinzip

Autorisierungsmechanismen: Set-UID konsequente
Rechtevererbung

• Nutzer können im Rahmen der DAC-Politik ACLs manipulieren
• Nutzer können (i.A.) jedoch keine Prozess-UIDs manipulieren
• → und genau so sollte es gem. Unix-Sicherheitspolitik auch sein!

Hintergrund

• Unix-Philosophie ,, everything is a file ”: BS-Ressourcen wie
Sockets, E/A-Gerätehandler als Datei repräsentiert → identische
Schutzmechanismen zum regulären Dateisystem

• somit: Autorisierungsmechanismen zur Begrenzung des Zugriffs
auf solche Geräte nutzbar

– root bzw. zweckgebundener Nutzer muss Eigentümer sein
– ACL als rw- --- --- gesetzt sein
→ Nutzerprozesse könnten z.B. nicht drucken ...

• Lösung: Mechanismus zur Rechtedelegation

– durch weiteres Recht in ACL: SUID-Bit (setUID)
– Programmausführung modifiziert Kindprozess, so dass UID

des Programmeigentümers seine Rechte bestimmt
– Technik: von UID abweichende Prozess-Metainformation

(→ PCB) effektive UID (eUID) wird tatsächlich zur
Autorisierung genutzt

Strategie für sicherheitskritische Linux-Programme

• Eigentümer root, SUID-Bit gesetzt
• per eUID delegiert root seine Rechte an genau solche

Kindprozesse, die SUID-Programme ausführen
→ Nutzerprozesse können Systemprogramme ohne permanente

root-Rechte ausführen

Weiteres Beispiel: passwd

• ermöglicht Nutzern Ändern des (eigenen) Anmeldepassworts
• Schreibzugriff auf /etc/shadow (Password-Hashes) erforderlich
• Lösung: ‘-rws rws r-x 1 root root 1 2005-01-20 10:00 passwd$
• passwd-Programm wird mit root-Rechten ausgeführt und passwd

schreibt nur eigenen Passwort-Hash

Modern: SELinux
• 2000er: sicherheitsfokussiertes Betriebssystemprojekt für NSA
• Implementierung des µKernel-Architekturkonzepts Flask
• heute: Open Source, Teil des mainline Linux Kernels
• Klassische UNIXoide: Sicherheitspolitik fest im Kernel
• Idee SELinux: Sicherheitspolitikals eigene BS-Abstraktion

– zentrale Datenstruktur für Regeln, die erlaubte Zugriffe auf
ein SELinux-System definiert

– erlaubt Modifikation und Anpassung an verschiedene
Sicherheitsanforderungen → NFE Adaptivität ...

BS-Komponenten

• Auswertung: Security-Server, implementiert als
Linux-Kernelmodul → entscheidet über alle Zugriffe auf alle
Objekte

• Durchsetzung der Sicherheitspolitik: LSM Hooks
• Administration: geschrieben in Textform, muss zur Laufzeit in

Security Server installiert werden

Repräsentation der Sicherheitspolitik

• physisch: in spezieller Datei, die alle Regeln enthält, die der
Kernel durchsetzen muss

• Datei wird aus Menge von Quelldateien in einer
Spezifikationssprache für SELinux-Sicherheitspolitiken kompiliert

• ermöglicht anforderungsspezifische SELinux-Politiken: können
sich von SELinux-System zum anderen wesentlich unterscheiden

• Politik wird während des Boot-Vorgangs in Kernel geladen

Semantische Konzepte (Auswahl)

• Type Enforcement (TE): Typisierung von

– Subjekten: Prozesse
– Objekten der Klassen: Dateien, Sockets,

Geräteschnittstellen, ...

• Rechte delegation durch Retypisierung (vgl. Unix-SUID)

Autorisierungsinformationen Security Context:
Respräsentiert SELinux-Autorisierungsinformationen für jedes Objekt
(Semantik: Prozess bash läuft mit Typ shell t)

Autorisierungsregeln ... werden systemweit festgelegt in
dessen Sicherheitspolitik (→ MAC)
Access Vector Rules

• Autorisierungsregeln basierend auf Subjek-/Objekttypen
• Zugriffe müssen explizit gewährt werden (default-deny)
• Semantik: Erlaube (”allow”) ...

– jedem Prozess mit Typ shell t
– ausführenden Zugriff (benötigt die Berechtigung execute)
– auf Dateien (also Objekte der Klassefile)
– mit Typ passwd exec t

Autorisierungsmechanismen: passwd Revisited

• Lösung: Retypisierung bei Ausführung
• Prozess wechselt in einen aufgabenspezifischen Typ passwd t
→ massiv verringertes Missbrauchspotenzial!

SELinux: weitere Politiksemantiken

• hier gezeigt: Überblick über TE
• außerdem relevant für SELinux-Politiken (und deren

Administration)

– Einschränkung von erlaubten Typtransitionen (Welches
Programm darf mit welchem Typ ausgeführt werden?)

– weitere Abstraktionsschicht: rollenbasierte Regeln (RBAC)

→ Schutz gegen nicht vertrauenswürdige Nutzer

3 extrem feingranulare, anwendungsspezifische Sicherheitspolitik
zur Vermeidung von privilege escalation Angriffen

3 obligatorische Durchsetzung ( → MAC, zusätzlich zu DAC)
O Softwareentwicklung: Legacy-Linux-Anwendungen ohne

Einschränkung
7 Politikentwicklung und -administration komplex
→ MAC-Mechanismen ala SELinux sind heutzutage in vielerlei

Software bereits zu finden

Isolationsmechanismen
• bekannt: Isolationsmechanismen für robuste Betriebssysteme

– strukturierte Programmierung
– Adressraumisolation

• nun: Isolationsmechanismen für sichere Betriebssysteme

– krypto. Hardwareunterstützung: Intel SGX Enclaves
– sprachbasiert:

∗ streng typisierte Sprachen und managed code:
Microsoft Singularity

∗ speichersichere Sprachen (Rust) +
Adressraumisolation (µKernel): RedoxOS

– isolierte Laufzeitumgebungen: Virtualisierung

Intel SGX
• SGX: Software Guard Extensions
• Ziel: Schutz von sicherheitskritischen Anwendungen durch

vollständige, hardwarebasierte Isolation
• → strenggenommen kein BS-Mechanismus: Anwendungen müssen

dem BS nicht mehr vertrauen
• Annahmen/Voraussetzungen

1. sämtliche Software nicht vertrauenswürdig (potenziell durch
Angreifer kontrolliert)

2. Kommunikation mit dem angegriffenen System nicht
vertrauenswürdig (weder vertraulich noch verbindlich)

3. kryptografische Algorithmen (Verschlüsselung und Signierung)
sind vertrauenswürdig, also nicht für den Angreifer zu brechen

4. Ziel: Vertraulichkeit, Integrität und Authentizität von
Anwendungen und durch sie verarbeiteten Informationen

Enclaves

• Idee: geschützter Speicherbereich für Teilmenge der Seiten (Code
und Daten) einer Task: Enclave Page Cache (EPC)

• Prozessor ver-und entschlüsselt EPC-Seiten

ECREATE App → Syscall → BS-Instruktion an CPU
EADD App → Syscall → BS-Instruktion an CPU

• Metainformationen für jede hinzugefügte Seite als Teil der
EPC-Datenstruktur

EINIT App. → Syscall → BS-Instruktion an CPU

• finalisiert gesamten Speicherinhalt für diese Enclave
• CPU erzeugt Hashwert = eindeutige Signatur des Enclave -

Speicherinhalts

• Zugriff: App → CPU-Instruk. in User Mode (EENTER, EEXIT)
• CPU erfordert, dass EPC-Seiten in vAR der zugreifenden Task

7/17

https://www.redox-os.org/


Advanced Operating Systems

SGX: Licht und Schatten
• Einführung 2015 in Skylake - Mikroarchitektur
• seither in allen Modellen verbaut, jedoch nicht immer aktiviert
• Konzept hardwarebasierter Isolation ...
3 liefert erstmals die Möglichkeit zur Durchsetzung von

Sicherheitspolitiken auf Anwendungsebene
O setzt Vertrauen in korrekte (und nicht böswillige) Hardwarevoraus
O Dokumentation und Entwicklerunterstützung (im Ausbau ...)
7 schützt durch Enclaves einzelne Anwendungen aber nicht System
7 steckt in praktischer Eigenschaften (Performanz, Speicher) noch

in den Anfängen

Sicherheitsarchitekturen
• Voraussetzung zum Verstehen jeder Sicherheitsarchitektur

– Verstehen des Referenzmonitorprinzips
– frühe Forschungen durch US-Verteidigungsministerium
– Schlüsselveröffentlichung: Anderson-Report (1972)
→ fundamentalen Eigenschaften zur Charakterisierung von

Sicherheitsarchitekturen

• Begriffe des Referenzmonitorprinzips kennen wir schon

– Abgrenzung passiver Ressourcen (Objekte, z.B. Dateien)
– von Subjekten (aktiven Elementen, Prozess) durch BS

Referenzmonitorprinzip
→ sämtliche Autorisierungsentscheidungen durch zentralen

Mechanismus = Referenzmonitor
• Bewertet jeden Zugriffsversuch eines Subjekts auf Objekt durch

Anwendung einer Sicherheitspolitik (security policy)
• Architekturbeschreibung, wie Zugriffe auf Ressourcen, die

Sicherheitspolitik erlaubt, eingeschränkt werden
• Autorisierungsentscheidungen: basieren auf sicherheitsrelevanten

Eigenschaften jedes Subjekts und jedes Objekts

Referenzmonitor ist eine Architekturkomponenten, die

RM 1 bei sämtlichen Subjekt/Objekt-Interaktionen involviert sind →
Unumgehbarkeit (total mediation)

RM 2 geschützt sind vor unautorisierter Manipulation →
Manipulationssicherheit (tamperproofness)

RM 3 hinreichend klein und wohlstrukturiert sind, für formale
Analysemethoden → Verifizierbarkeit (verifyability)

Referenzmonitor in Betriebssystemen Nahezu alle
Betriebssysteme implementieren irgendeine Form eines Referenzmonitors

• Subjekte, Objekte
• Regeln einer Sicherheitspolitik charakterisiert
• Unumgehbarkeit, Manipulationssicherheit
• Verifizierbarkeit ihrer Sicherheitsarchitektur

Beispiel: Standard-Linux

• Subjekte (Prozesse) → haben reale Nutzer-Identifikatoren (UIDs)
• Objekte (Dateien) → haben ACLs (,,rwxrw—-”)
• Regeln der Sicherheitspolitik → hart codiert, starr
• Sicherheitsattribute, → Objekten zugeordnet, modifizierbar

Man beurteile die Politikimplementierung in dieser Architektur bzgl.
Unumgehbarkeit, Manipulationssicherheit und Verifizierbarkeit
Referenzmonitorimplementierung: Flask

SELinux-Architektur: Security Server

• Security Server: Laufzeitumgebung für Politik in Schutzdomäne
des Kerns

• Objektmanager: implementiert in allen BS-Diensten mittels
,,Linux Security Module Framework ”

• Objektmanager zur Verwaltung verschiedener Objektklassen
• spiegeln Diversität und Komplexität von Linux BS-Abtraktionen

wider: Dateisysteme, Netzwerk, IPC, ...
• jedes Subsystem von SELinux zuständig für

1. Erzeugung neuer Objekte
2. Zugriff auf existierende Objekte

• Beispiele: Prozess-Verwaltung, Dateisystem, Networking-System

Dateisystem als Objektmanager

• Durch Analyse von Linux - Dateisystem und zugehöriger API
wurden zu überwachenden Objektklassen identifiziert

• ergibt sich unmittelbar aus Linux-API: Dateien, Verzeichnisse,
Pipes

• feingranularere Objektklassen für durch Dateien repräsentierte
Objekte (Unix: ,,everything is a file”)

Permissions (Zugriffsrechte)

• für jede Objektklasse: Menge an Permissions definiert, um
Zugriffe auf Objekte dieser Klasse zu kontrollieren

• Permissions: abgeleitet aus Dienstleistungen, die
Linux-Dateisystem anbietet

→ Objektklassen gruppieren verschiedene Arten von
Zugriffsoperationen auf verschiende Arten von Objekten

• z.B. Permissions für alle ,,Datei”-Objektklassen (Auswahl ...)

Trusted Computing Base (TCB)

Begriff zur Bewertung von Referenzmonitorarchitekturen

= notwendige Hard-und Softwarefunktionen eines IT-Systems um
alle Sicherheitsregeln durchzusetzen

• besteht üblicherweise aus

1. Laufzeitumgebung der Hardware (nicht E/A-Geräte)
2. verschiedenen Komponenten des Betriebssystem-Kernels
3. Benutzerprogrammen mit sicherheitsrelevanten Rechten

• Betriebssystemfunktionen, die Teil der TCB sein müssen,
beinhalten Teile des Prozess-, Speicher-, Datei-,
E/A-Managements

Echtzeitfähigkeit
Jedes System, bei dem der Zeitpunkt, zu dem der Output erzeugt wird,
von Bedeutung ist. Dies liegt in der Regel daran, dass die Eingabe einer
Bewegung in der physischen Welt entspricht und die Ausgabe sich auf
dieselbe Bewegung beziehen muss. Die Verzögerung zwischen Eingabe-
und Ausgabezeit muss für eine akzeptable Aktualität ausreichend klein
sein.
Spektrum von Echtzeitsystemen

1. Regelungssysteme: z.B. eingebettete Systeme, Flugsteuerung
2. Endanwender-Rechnersysteme: z.B. Multimediasysteme
3. Lebewesen: Menschen, Tiere, z.B. Gesundheitsüberwachung

• Murphy‘s Law: If something can go wrong, it will got wrong
• Murphy‘s Constant: Damage to an object is proportional to its

value
• Johnson‘s Law: If a system stops working, it will do it at the

worst possible time
• Sodd‘s Law: Sooner or later, the worst possible combination of

circumstances will happen
• Realisierung von Echtzeiteigenschaften: komplex und fragil

Antwortzeit Zeitintervall, das ein System braucht, um (irgend)eine
Ausgabe als Reaktion auf (irgend)eine Eingabe zu erzeugen

Frist • bei EZS ist genau dieses ∆t kritisch, d.h. je nach Art des
Systems darf dieses auf keinen Fall zu groß werden

• Frist (deadline) d, die angibt bis zu welchem Zeitpunkt
spätestmöglich die Reaktion erfolgt sein muss, bzw. wie
groß das Intervall ∆t maximal sein darf

Echtzeitfähigkeit und Korrektheit • Wird genau dieses
maximale Zeitintervall in die Spezifikation eines Systems
einbezogen, bedeutet dies, dass ein Echtzeitsystem nur
dann korrekt arbeitet, wenn seine Reaktion bis zur
spezifizierten Frist erfolgt

• Frist trennt korrektes von inkorrektem Verhalten des
Systems

Harte und weiche Echtzeitsysteme • Praktische Anwendungen
erfordern oft Unterscheidung

• hartes EZS: keine Frist jemals überschreiten
• weiches EZS: maßvolles Frist Überschreiten tolerierbar

Charakteristika von Echtzeit-Prozessen
• reale Echtzeitanwendungen beinhalten periodische oder

aperiodische Prozesse (oder Mischung aus beiden)
• Periodische Prozesse

– zeitgesteuert (typisch: periodische Sensorauswertung)
– oft: kritische Aktivitäten → harte Fristen

• Aperiodische Prozesse

– ereignisgesteuert
– Abhängig von Anwendung: harte oder weiche Fristen

Periodische Prozesse (pP)

häufigster Fall bei Echtzeit-Anwendungen
Prozessaktivierung ereignisgesteuert oder zeitgesteuert

Prozesse, die Eingangsdaten verarbeiten: meist ereignisgesteuert
Prozesse, die Ausgangsdaten erzeugen: meist zeitgesteuert

Fristen • hart oder weich (anwendungsabhängig)
• innerhalb einer Anwendung sind sowohl Prozesse mit

harten oder weichen Fristen möglich
• Frist: spätestens am Ende der aktuellen Periode, möglich

auch frühere Frist
Modellierung unendliche Folge identischer Aktivierungen: Instanzen,

aktiviert mit konstanter Rate (Periode)
Aufgaben des Betriebssystems • Wenn alle Spezifikationen

eingehalten werden, muss Betriebssystem garantieren, dass
• zeitgesteuerte pP: mit ihrer spezifizierten Rate aktiviert

werden und ihre Frist einhalten können
• ereignisgesteuerte pP: ihre Frist einhalten können

Aperiodische Prozesse (aP)

typisch für unregelmäßig auftretende Ereignisse, z.B.:

• Überfahren der Spurgrenzen, Unterschreiten des
Sicherheitsabstands → Reaktion des Fahrassistenzsystems

• Nutzereingaben in Multimediasystemen ( → Spielkonsole)

Prozessaktivierung ereignisgesteuert
Fristen oft weich (aber anwendungsabhängig)
Aufgaben des Betriebssystems unter Einhaltung der

Prozessspezifikationen muss BS für Einhaltung der Fristen sorgen
Modellierung bestehen ebenfalls aus (maximal unendlicher) Folge

identischer Aktivierungen (Instanzen); aber:
Aktivierungszeitpunkte nicht regelmäßig (möglich: nur genau eine
Aktivierung)

8/17



Advanced Operating Systems

Parameter von Echtzeit-Prozessen

Ankunftszeitpunkt ai Prozess wird ablauffähig
Startzeitpunkt si Prozess beginnt mit Ausführung
Beendigungszeitpunkt fi Prozess beendet Ausführung
Frist (deadline) di Prozess sollte Ausführung spätestens beenden
Bearbeitungszeit (computation time) Ci Zeit die Prozessor zur

Bearbeitung der Instanz benötigt (ohne Unterbrechungen)
Unpünktlichkeit (lateness) Li = fi − di Zeit um die Prozess

früher/später als Frist beendet
Verspätung (exceeding time) Ei = max(0, Li) Zeitbetrag, den ein

Prozess noch nach seiner Frist aktiv ist
Spielraum (Laxity) Xi = di − ai − Ci maximale Verzögerungszeit bis

Frist beendet werden kann (fi = di)
criticality Konsequenzen einer Fristüberschreitung (hart/weich)
Wert Vi Ausdruck relativer Wichtigkeit eines Prozesses

Echtzeitfähige Betriebssysteme
1. Algorithmen, die Rechnersysteme echtzeitfähig machen

• grundlegende Algorithmen zum Echtzeitscheduling
• Besonderheiten der Interruptbehandlung
• Besonderheiten der Speicherverwaltung

2. Probleme, die behandelt werden müssen

• Prioritätsumkehr
• Überlast
• Kommunikation-und Synchronisationsprobleme

Echtzeitscheduling
Scheduling wichtigster Einflussfaktor auf Zeitverhalten des

Gesamtsystems
Echtzeit-Scheduling unter Berücksichtigung der Fristen

Fundamentale/wichtigste Strategien

1. Ratenmonotones Scheduling (RM)
2. Earliest Deadline First (EDF)

Annahmen der Scheduling-Strategien

1. Alle Instanzen eines periodischen Prozesses ti treten regelmäßig
und mit konstanter Rate auf. Das Zeitintervall Ti zwischen zwei
aufeinanderfolgenden Aktivierungen heißt Periode des Prozesses

2. Alle Instanzen eines periodischen Prozesses ti haben den gleichen
Worst-Case-Rechenzeitbedarf Ci

3. Alle Instanzen eines periodischen Prozesses ti haben die gleiche
relative Frist Di, welche gleich der Periodendauer Ti ist

4. Alle Prozessesind kausal unabhängig voneinander (d.h. keine
Vorrang- und Betriebsmittel-Restriktionen)

5. Kein Prozess kann sich selbst suspendieren, z.B. E/A-Op
6. Alle Prozesse werden mit ihrer Aktivierung sofort rechenbereit
7. Jeglicher Betriebssystem-Overhead wird vernachlässigt

5-7 sind weitere Annahmen des Scheduling Modells

Ratenmonotones Scheduling (RM)

• Voraussetzung: nur periodische Prozesse/Threads
• Strategie RM

– Prozess/Thread mit höchster Ankunftsrate bekommt
höchste statische Priorität

– Kriterium: Wie oft pro Zeiteinheit wird Prozess bereit?
– Scheduling-Zeitpunkt: nur einmal zu Beginn bzw. wenn

neuer periodischer Prozess auftritt

– präemptiv: keine Verdrängung gleicher Prioritäten

• Optimalität: Unter allen Verfahren mit festen Prioritäten
optimaler Algorithmus

• Prozessor-Auslastungsfaktor

– Bei Menge von n Prozessen U =
∑n

i=1
Ci
Ti

– mit
Ci
Ti

Anteil an Prozessorzeit für jeden Prozess ti

– und Zeit U zur Ausführung der gesamten Prozessmenge

• Prozessorlast: U ist folglich Maß für die durch Prozessmenge
verursachte Last am Prozessor → Auslastungsfaktor

• Planbarkeitsanalyse einer Prozessmenge

– allgemein kann RM Prozessor nicht 100% auslasten
– kleinste obere Grenze des Auslastungsfaktors Ulub
– lub: ,,least upper bound”

• Obere Auslastungsgrenze bei RM

– nach Buttazzo bei n Prozessen: Ulub = n(2
1
n − 1)

– für n→∞ konvergiert Ulub zu ln 2 ≈ 0, 6931...
– Wert nicht überschritten → beliebige Prozessmengen

Earliest Deadline First (EDF)

• Voraussetzung: kann periodische/aperiodische Prozesse planen
• Optimalität: EDF in Klasse der Schedulingverfahren mit

dynamischen Prioritäten: optimaler Algorithmus
• Strategie EDF

– Prozess mit frühester Frist höchste dynamische Priorität
– Scheduling-Zeitpunkt: Bereitwerden eines Prozesses
– präemptiv: keine Verdrängung gleicher Prioritäten

• Planbarkeitsanalyse

– mit Regeln 1− 7 max. Prozessorauslastung: Ulub = 1→
Auslastung bis 100%

– Menge von n Tasks planbar: U =
∑n

i=1
Ci
Ti
≤ 1

← U>1 übersteigt die verfügbare Prozessorzeit; folglich kann
niemals eine Prozessmenge mit dieser Gesamtauslastung
planbar sein

→ Beweis durch Widerspruch. Annahme: U ≤ 1 und die
Prozessmenge ist nicht planbar. Dies führt zu einem
Schedule mit Fristverletzung zu einem Zeitpunkt t2

Vergleich: EDF vs. RM

• RM

– Prozessorwechsel: 16
– im allgemeinen Fall nicht immer korrekte Schedules bei

100% Auslastung
– statisch Implementiert: jeweils eine Warteschlange pro

Priorität
– Einfügen und Entfernen von Tasks: O(1)

• EDF

– Prozessorwechsel: 12
– erzeugt auch bei Prozessorauslastung bis 100% (immer)

korrekte Schedules
– dynamisch Implementiert: balancierter Binärbaum zur

Sortierung nach Prioritäten
– Einfügen und Entfernen von Tasks: O(log n)

Prozesstypen in Multimedia-Anwendungen

1. Echte periodische Multimedia-Prozesse (weiche Fristen)

(a) pünktliche periodische Prozesse mit konstantem
Prozessorzeitbedarf C für jede Instanz (unkomprimierte
Audio- und Videodaten)

(b) pünktliche periodische Prozesse mit unterschiedlichem C
einzelner Instanzen (komprimierte Audio- und Videodaten)

(c) unpünktliche periodische Prozesse: verspätet/verfrühte

2. Prozesse nebenläufiger Nicht-Multimedia-Anwendungen

• interaktiv: keine Fristen , keine zu langen Antwortzeiten
Ansatz, maximal tolerierbare Verzögerung

• Hintergrund: zeitunkritisch, keine Fristen, dürfen nicht
verhungern

RC Algorithmus
• Ziel: spezifikationstreue Prozesse nicht bestrafen durch

Fristüberschreitung aufgrund abweichender Prozesse
• Idee

– grundsätzlich: Scheduling nach frühester Frist aufsteigend
→ für vollständig spezifikationstreue Prozessmenge wie EDF
– Frist einer Instanz wird dynamisch angepasst: basierend auf

derjenigen Periode, in der sie eigentlich sein sollte
– Bsp.: Ui = 20

40 = 1
2 (spez. Aktivitätsrate 0, 5/Periode)

• Variablen

– ai: Ankunftszeit der zuletzt bereitgewordenen Instanz
– tvirt

i : virtuelle verbrauchte Zeit in aktueller Periode

– cvirt
i : verbrauchte Netto-Rechenzeit

– di: dynamische Frist von ti für Priorität (EDF)

• Strategie

– für eine bereite (lauffähige) Instanz von ti: adaptiere

dynamisch di basierend auf tvirt
i

– für eine bereit gewordene Instanz von ti: aktualisiere tvirt
i

auf akt. Systemzeit (t)→ etwaiger ,,Zeitkredit” verfällt

• Zeitpunkte, zu denen der Scheduler aktiv wird

– aktuell laufender Prozess ti blockiert: RC(ti)
– Prozesse ti...j werden bereit: for x ∈ [i, j] : RC(tx)
– periodischer ,,clock tick” (Scheduling Interrupt) RC(ti)

Umgang mit abweichenden Prozessen unter RC
Auswirkung auf verschiedene Prozesstypen

pünktlich Einhaltung der Frist in jeder Periode garantiert
verspätet nur aktuelle Periode betrachtet, Nachholen ,,ausgelassener

Perioden” nicht möglich
gierig Prozessorentzug, sobald andere lauffähige Prozesse frühere

Fristen aufweisen
nicht-periodische Hintergrundprozesse pro ,,Periode” wird

spezifizierte Prozessorrate garantiert

Umgang mit gemischten Prozessmengen

• rechenbereite Prozesse auf 2 Warteschlangen aufgeteilt (einfache
Variante eines Mehr-Ebenen-Scheduling )

• Warteschlange 1

– alle periodischen Prozesse
– mit höchster Priorität mittels RM oder EDF bedient

• Warteschlange 2

– alle aperiodischen Prozesse
– nur bedient, wenn keine wartenden Prozesse in W1

9/17



Advanced Operating Systems

Hintergrund-Scheduling: Vor- und Nachteile

• Hauptvorteil einfache Implementierung
• Nachteile

– Antwortzeit aperiodischer Prozesse kann zu lang werden
→ Verhungern möglich
– nur für relativ zeitunkritische aperiodische Prozesse

Optimierung: Server-Prozess

• Prinzip: periodisch aktivierter Prozess benutzt zur Ausführung
aperiodischer Prozessoranforderungen

• Beschreibung Server-Prozess: durch Parameter äquivalent zu
wirklichem periodischen Prozess

• Arbeitsweise Server-Prozess folgend
• geplant mit gleichem S-Algorithmus wie periodische Prozesse
• zum Aktivierungszeitpunkt vorliegende aperiodische

Anforderungen bedient bis zur Kapazität des Servers
• keine aperiodischen Anforderungen: Server suspendiert sich bis

Beginn der nächsten Periode
• Kapazität in jeder Server-Periode neu ”aufgeladen”

Optimierung: Slack-Stealing

• Prinzip: passiver Prozess ,,slack stealer” (kein periodischer Server)
• so viel Zeit wie möglich für aperiodische Anforderungen sammeln
• realisiert durch ,,slackstealing” bei periodischen Prozessen
• letztere auf Zeit-Achse so weit nach hinten geschoben, dass Frist

und Beendigungszeitpunkt zusammenfallen
• Sinnvoll, da Beenden vor Frist keine Vorteile bringt
→ Verbesserung der Antwortzeiten für aperiodische Anforderungen

Prioritätsumkehr
Mechanismen zur Synchronisation und Koordination sind häufige
Ursachen für kausale Abhängigkeiten zwischen Prozessen

• kritischer Abschnitt: Sperrmechanismen stellen wechselseitigen
Ausschluss durch nebenläufige Prozesse sicher

• Benutzung von exklusiven, nichtentziehbaren Betriebsmitteln
→ Wenn ein Prozess einen kritischen Abschnitt betreten hat, darf er

aus diesem nicht verdrängt werden
• Konflikt: kritische Abschnitte vs. Echtzeit-Prioritäten
• Prozess mit höherer Priorität ablauffähig → muss abwarten bis

niederpriorisierter Prozess kritischen Abschnitt verlässt
• (zeitweise) Prioritätsumkehr möglich

Ursache der Prioritätsumkehr

•
• Prioritätsumkehr bei Blockierung an nichtentziehbarem,

exklusivem Betriebsmittel
• → unvermeidlich

Folgen der Prioritätsumkehr

• Kritisch bei zusätzlichen Prozessen mittlerer Priorität

•
• Lösung: Priority Inheritance Protocol (PIP)

Überlast
• Definition: kritische Situation, bei der benötigte Menge an

Prozessorzeit die Kapazität des vorhandenen Prozessors
übersteigt

→ nicht alle Prozesse können Fristen einhalten
• Hauptrisiko: kritische Prozesse können Fristen nicht einhalten →

Gefährdung funktionaler und anderer nichtfkt. Eigenschaften ( →
harte Fristen!)

• Stichwort: ,,graceful degradation” statt unkontrollierbarer
Situation → Wahrung von Determinismus

Wichtigkeit eines Prozesses

• Unterscheidung zwischen Zeitbeschränkungen (Fristen) und
tatsächlicher Wichtigkeit eines Prozesses für System

• Wichtigkeit eines Prozesses ist unabhängig von seiner
Periodendauer und irgendwelchen Fristen

• z.B. kann Prozess trotz späterer Frist wichtiger als anderer mit
früherer Frist sein

Umgang mit Überlast: alltägliche Analogien

1. Weglassen weniger wichtiger Aktionen (kein Frühstück...)
2. Verkürzen von Aktivitäten (Katzenwäsche...)
3. Kombinieren (kein Frühstück + Katzenwäsche + ungekämmt)

Wichtung von Prozessen

• Parameter V für jeden Prozess/Thread einer Anwendung
• spezifiziert relative Wichtigkeit eines Prozesses/Thread im

Verhältnis zu anderen der gleichen Anwendung
• bei Scheduling: V stellt zusätzliche Randbedingung (primär:

Priorität aufgrund von Frist, sekundär: Wichtigkeit)

Obligatorischer und optionaler Prozessanteil

• Aufteilung der Gesamtberechnung eines Prozesses in zwei Phasen
• Möglichkeit der Nutzung des anpassbaren Prozessorzeitbedarfs
• Bearbeitungszeitbedarf eines Prozesses zerlegt in

1. obligatorischer Teil: unbedingt und immer ausführen →
liefert bedingt akzeptables Ergebnis

2. optionaler Teil: nur bei ausreichender Lapazität ausführen
→ verbessert erzieltes Ergebnis

• Prinzip in unterschiedlicher Weise verfeinerbar

Echtzeit-Interruptbehandlung
• Fristüberschreitung durch ungeeignete Interruptbearbeitung
• Interrupt wird nur registriert (deterministischer Zeitaufwand)
• tatsächliche Bearbeitung der Interruptroutine muss durch

Scheduler eingeplant werden → Pop-up Thread

Echtzeit-Speicherverwaltung
• Hauptanliegen: Fristen einhalten
• unkontrollierbare Verzögerungen der Prozessbearbeitung

vermeiden
• Ressourcenzuordnung, deswegen:

1. keine Ressourcen-Zuordnung ,,on-demand” sondern
,,Pre-Allokation” (=Vorab)

2. keine dynamische Ressourcenzuordnung, sondern
Zuordnung maximal benötigter Menge bei Pre-Allokation

Hauptspeicherverwaltung

• bei Anwendung existierender Paging-Systeme
• durch unkontrolliertes Ein-/Auslagern ,,zeitkritischer” Seiten

(-inhalte): unkontrollierbare Zeitverzögerungen möglich
• Technik: ,,Festnageln” von Seiten im Speicher (Memory Locking)

Sekundärspeicherverwaltung

• Primärziel: Wahrung der Echtzeitgarantien

– naheliegend: EA-Scheduling nach Fristen → EDF
– für Zugriffsreihenfolge auf Datenblöcke: lediglich deren

Fristen maßgebend (weitere Regeln existieren nicht)

• Resultat bei HDDs

– ineffiziente Bewegungen der Lese-/Schreibköpfe
– nichtdeterministische Positionierzeiten
– geringer Durchsatz

• Fazit: Echtzeit-Festplattenscheduling → Kompromiss zwischen
Zeitbeschränkungen und Effizienz

• bekannte Lösungen: Modifikation/Kombination von EDF

→ realisierte Strategien:

1. SCAN-EDF (Kopfbewegung in eine Richtung bis
Mitte-/Randzylinder; EDF über alle angefragten Blöcke in dieser
Richtung)

2. Group Sweeping (SCAN nach Fristen gruppenweiser Bedienung)
3. Mischstrategien

• Vereinfachung: o.g. Algorithmen i.d.R. zylinderorientiert
→ berücksichtigen bei Optimierung nur Positionierzeiten

(Positionierzeit meist >> Latenzzeit)

Kommunikation und Synchronisation
• zeitlichen Nichtdeterminismus vermeiden:

Interprozess-Kommunikation

– Minimierung blockierender Kommunikationsoperationen
– indirekte Kommunikation → Geschwindigkeitsausgleich
– keine FIFO-Ordnungen (nach Fristen priorisieren)

• Synchronisation: keine FIFO-Ordnungen

Cyclic Asynchronous Buffer (CAB)

Kommunikation zwischen 1 Sender und n Empfängern

• nach erstem Schreibzugriff: garantiert niemals undefinierte
Wartezeiten durch Blockierung von Sender/Empfänger

• Lesen/Überschreiben in zyklischer Reihenfolge:
• Most-Recently-Written (MRW) Zeiger auf jüngstes, durch Sender

vollständig geschriebenes Element
• Least-Recently-Written (LRW) Zeiger auf ältestes durch Sender

geschriebenes Element
• sowohl MRW als auch LRW können ausschließlich durch Sender

manipuliert werden → keine inkonsistenten Zeiger durch
konkurrierende Schreibzugriffe

• sowohl MRW als auch LRW zeigen niemals auf ein Element, das
gerade geschrieben wird → keine inkonsistenten Inhalte durch
konkurrierende Schreib-/Lesezugriffe

• Regeln für Sender

– muss nach jedem Schreiben MRW auf geschriebenes
Element setzen

– muss bevor LRW geschrieben wird LRW inkrementieren

10/17



Advanced Operating Systems

• Regel für Empfänger: muss immer nach Lesen von MRW als
nächstes LRW anstelle des Listennachbarn lesen

Sonderfall 1: Empfänger schneller als Sender

• nach Zugriff auf MRW muss auf Lesesequenz bei LRW fortgesetzt
werden → transparenter Umgang mit nicht-vollem Puffer

• Abschwächung der Ordnungsgarantien:Empfänger weiß nur, dass
Aktualität der Daten zwischen LRW und MRW liegt

• Empfänger niemals durch leeren Puffer blockiert

Sonderfall 2: Sender schneller als Empfänger

• Schreiben in Puffer in Reihenfolge der Elemente → keine
blockierenden Puffergrenzen → niemals Blockierung des Senders

• keine Vollständigkeitsgarantien: Empfänger kann nicht sicher sein,
eine temporal stetige Sequenz zu lesen

→ Szenarien, in denen Empfänger sowieso nur an aktuellsten Daten
interessiert (z.B. Sensorwerte)

Konkurrierende Zugriffe

• ... sind durch Empfänger immer unschädlich (da lesend)
• ... müssen vom Sender nach Inkrementieren von LRW

nicht-blockierend erkannt werden (Semaphormodell ungeeignet)
• schnellerer Sender überspringtein gesperrtes Element durch

erneutes Inkrementieren von LRW, MRW muss nachziehen

Architekturen
• müssen Echtzeitmechanismen unterstützen; ermöglicht

entsprechende Strategien zur Entwicklungs-oder Laufzeit
• müssen funktional geringe Komplexität aufweisen → theoretische

und praktische Beherrschung von Nichtdeterminismus
• Architekturen für komplementäre NFE

– Sparsamkeit → hardwarespezifische Kernelimplementierung
– Adaptivität → µKernel, Exokernel

• zu vermeiden

– starke HW-Abstraktion → Virtualisierungsarchitekturen
– Kommunikation und Synchronisationskosten → verteilte BS
– Hardwareunabhängigkeit und Portabilität → vgl. Mach

Beispiel-Betriebssysteme
VRTX (Versatile Real-Time Executive)

• Entwickler: Hunter & Ready
• Eckdaten: Makrokernel
• war erstes kommerzielles Echtzeitbetriebssystem für eingebettete

Systeme
• Nachfolger (1993 bis heute): Nucleus RTOS (Siemens)
• Anwendung: Eingebettete Systeme in Automobilen, Mobiltelefone
• Einsatzgebiete im Hubble-Weltraumteleskop

VxWorks

• Entwickler: Wind River Systems (USA)
• Eckdaten: modularer Makrokernel
• Erfolgsfaktor: POSIX-konforme API
• ähnlich QNX: ,,skalierbarer” Kernel, zuschneidbar auf

Anwendungsdomäne (→ Adaptivitätsansatz)
• Anwendung: eingebettete Systeme, Luft-und Raumfahrt,

Unterhaltungselektronik
• Einsatzgebiete: NASA Mars Rover, SpaceX Dragon

DRYOS

• Entwickler: Canon Inc.
• Eckdaten: Mikrokernel(Größe: 16 kB)
• Echtzeit-Middleware (Gerätetreiber → Objektive)
• Anwendungen: AE-und AF-Steuerung/-Automatik, GUI,

Bildbearbeitung, RAW-Konverter, ...
• POSIX-kompatible Prozessverwaltung

DROPS (Dresden Real-Time Operating System)

• Entwickler: TU Dresden, Lehrstuhl Betriebssysteme
• Eckdaten: Multi-Server-Architektur auf Basis eines L4-Mikrokerns

Adaptivität (Flexibility)
• als unmittelbar geforderte NFE: eingebettete Systeme, Systeme in

garstiger Umwelt
• diese Anwendungsdomänen fordern typischerweise auch andere

wesentliche NFE
→ Adaptivität als komplementäre NFE zur Förderung von

Robustheit funktionale Adaptivitätdes BS reduziert Kernelkomplexität
Sicherheit TCB-Größe → Verifizierbarkeit, adaptive Reaktion auf

Bedrohungen
Echtzeitfähigkeit adaptives Scheduling/Überlast/Interruptbehandlung
Performanz Last-und Hardwareadaptivität
Erweiterbarkeit von Abstraktionen, Schnittstellen, Multiplexing
Wartbarkeit Anpassung des BS an Anwendungen, nicht umgekehrt
Sparsamkeit Lastadaptivität, adaptive Datenstrukturen

• Begriff

– Fähigkeit eines Systems, sich an breites Spektrum
verschiedener Anforderungen anzupassen

= so gebaut, dass breites Spektrum verschiedener nicht
funktionaler Eigenschaften unterstützt

– letztere: komplementär zur allgemeinen NFE Adaptivität

• Adaptivität jeweils anhand komplementärer Eigenschaften
dargestellt:

– Exokernel: {Adaptivität}∪{Performanz,
Echtzeitfähigkeit,Wartbarkeit, Sparsamkeit}

– Virtualisierung: {Adaptivität}∪{Wartbarkeit, Sicherheit,
Robustheit}

– Container: {Adaptivität}∪{Wartbarkeit, Portabilität,
Sparsamkeit}

• Beispielsysteme

– Exokernel OS: Aegis/ExOS, Nemesis, MirageOS
– Virtualisierung: Vmware, VirtualBox, Xen
– Containersoftware: Docker

Exokernelarchitektur
• Grundfunktion von Betriebssystemen

– physische Hardware darstellen als abstrahierte Hardware
mit komfortableren Schnittstellen

– Schnittstelle zu Anwendungen (API): Abstraktionen der
Hardware

• Problem: Implementierungsspielraumfür Anwendungen wird
begrenzt

1. Vorteile domänenspezifischer Optimierungender
Hardwarebenutzung können nicht ausgeschöpft werden →
Performanz, Sparsamkeit

2. die Implementierung existierender Abstraktionen kann bei
veränderten Anforderungen nicht an Anwendungen
angepasst werden → Wartbarkeit

3. Hardwarespezifikationen, insbesondere des Zeitverhaltens
(E/A, Netzwerk etc.), werden von Effekten des
BS-Management überlagert → Echtzeitfähigkeit

Exokernelmechanismen

• Trennung von Schutz und Abstraktion der Ressourcen
• Ressourcen-Schutz und -Multiplexing verbleibt beim Kernel
• Ressourcen-Abstraktion Aufgabe der Library-Betriebssysteme

→ autonome Management-Strategien durch in Anwendungen
importierte Funktionalität

1. systemweit(durch jeweiliges BS vorgegebene) starre
Hardware-Abstraktionen vermieden

2. anwendungsdomänenspezifische Abstraktionen sehr einfach
3. (Wieder-) Verwendung eigener/fremder

Managementfunktionalität wesentlich erleichtert →
komplementäre NFEn (Performanz, Sparsamkeit, ...)

• Funktion des Exokernels

– Prinzip: definiert Low-level-Schnittstelle (so hardwarenah
wie möglich)

→ Adressierung ermöglichen ohne Informationen über Seiten,
Segmente, Paging-Attribute, ...

– Library-Betriebssysteme: implementieren darauf jeweils
geeignete anwendungsnahe Abstraktionen

– Anwendungsprogrammierer: wählen geeignete
Library-Betriebssysteme bzw. schreiben ihre eigenen
Exokernelmechanismen

• prinzipielle Exokernelmechanismen am Beispiel Aegis/ExOS

implementiert Multiplexing der Hardware-Ressourcen
exportiert geschützte Hardware-Ressourcen

• minimal: drei Arten von Mechanismen

Secure Binding erlaubt geschützte Verwendung von Hardware-
Ressourcen durch Anwendungen, Behandlung von Ereignissen

Visible Resource Revocation beteiligt Anwendungen am Entzug von
Ressourcen mittels (kooperativen) Ressourcen-Entzugsprotokolls

Abort-Protokoll erlaubt ExokernelBeendigung von
Ressourcenzuordnungen bei unkooperativen Applikationen

Secure Binding
• Schutzmechanismus, trennt Autorisierung zur Benutzung einer

Ressource von tatsächlicher Benutzung
• implementiert für Exokernel erforderliches Zuordnungswissen von

(HW-)Ressource zu Mangement-Code
• → ”Binding” in Aegis implementiert als Unix-Hardlink auf

Metadatenstruktur zu einem Gerät im Kernelspeicher
• Zur Implementierung benötigt

– Hardware-Unterstützung zur effizienten Rechteprüfung
(HW-Caching)

– Software-Caching von Autorisierungsentscheidungen im
Kernel

– Downloading von Applikationscode in Kernel zur effizienten
Durchsetzung

• ,,Secure Binding” erlaubt Exokernel Schutz von Ressourcen ohne
deren Semantik verstehen zu müssen

Visible Resource Revocation
monolithische BS: entziehen Ressourcen ,,unsichtbar”, d.h. transparent
für Anwendungen

• Vorteil: im allgemeinen geringere Latenzzeiten, einfacheres und
komfortableres Programmiermodell

• Nachteil: Anwendungen erhalten keine Kenntnis über Entzug
→ erforderliches Wissen für Management-Strategien

Exokernel-BS: entziehen Ressourcen ,,sichtbar” → Dialog zwischen
Exokernel und Library-BS

• Vorteil: effizientes Management durch Library-BS möglich
• Nachteil: Performanz bei sehr häufigem Entzug, Verwaltungs-und

Fehlerbehandlungsstrategien zwischen verschiedenen Library-BS
müssen korrekt und untereinander kompatibel sein...

→ Abort-Protokoll notwendig, falls dies nicht gegeben ist

11/17



Advanced Operating Systems

Abort-Protokoll
• Ressourcenentzug bei unkooperativen Library-Betriebssystemen
• notwendig aufgrund von Visible Ressource Revocation
• Dialog:

– Exokernel: ,,Bitte Seitenrahmen x freigeben.”
– Library-BS: ,,...”
– Exokernel: ,,Seitenrahmen x innerhalb von 50 µs freigeben”
– Library-BS: ,,...”
– Exokernel: (führt Abort-Protokoll aus)
– Library-BS: X (,,Abort” hier Prozess terminieren)

• harte Echtzeit-Fristen in wenigsten Anwendungen berücksichtigt
→ Abort = nur Widerruf der Secure Bindings, nicht Terminierung
→ anschließend: Informieren des entsprechenden Library-BS
• ermöglicht sinnvolle Reaktion des Library-BS
• bei zustandsbehafteten Ressourcen: Exokernel kann Zustand auf

Hintergrundspeicher sichern → Management-Informationen zum
Aufräumen durch Library-BS

Aegis mit Library-OS ExOS
• sehr effiziente Exokerne, begrenzte Anzahl einfacher

Systemaufrufe ( 10) und Kernel-interne Primitiven
• sicheres Hardware-Multiplexing auf niedriger Abstraktionsebene

(,,low-level”) mit geringem Overhead
• trad. Abstraktionen (VMM, IPC) auf Anwendungsebene effizient

implementierbar → einfache Erweiter-/Spezialisierbarkeit
• hochspezialisierte Implementierungen von Abstraktionen

generierbar
• geschützte Kontrollflussübergabe: als IPC-Primitive im

Aegis-Kernel, 7-mal schneller als zuvor
• Ausnahmebehandlung bei Aegis: 5-mal schneller als bei damals

bester Implementierung
• durch Aegis: Flexibilität von ExOS, mit Mikrokernel nicht

erreichbar
• Aegis erlaubt Anwendungen Konstruktion effizienter

IPC-Primitiven (∆µKernel: nicht vertrauenswürdige
Anwendungen können keinerlei spezialisierte IPC-Primitiven
nutzen)

Xok mit Library-OS ExOS
• für x86-Hardware implementiert
• Kernel-Aufgaben: Multiplexing von Festplatte, Speicher,

Netzwerk,...
• Standard Lib-BS (wie Aegis): ExOS ,,Unix as a Library”
• hochperformant
• Abstraktionen und Operationen auf Exokernel-Basis
• Secure Bindings für Metadaten-Modifikation

Fazit Exokernelarchitektur
• Abstraktionen und Mechanismen des Betriebssystems können den

Erfordernissen der Anwendungen angepasst werden
→ Ergebnis: beträchtliche Performanzsteigerungen

Performanz, Sparsamkeit ermöglicht direkte HW-Benutzung und
Effizienzoptimierung

Wartbarkeit Hardwareabstraktionen flexibel an Anwendungsdomänen
anpassbar, ohne BS modifizieren/wechseln

Echtzeitfähigkeit Zeitverhalten des Gesamtsystems durch direkte
Steuerung der Hardware weitestgehend kontrollierbar

Idee

• User-Space: anwendungsspezifische Hardwareabstraktionen
• Kernel-Space: nur Multiplexing und Schutz der HW-Schnittstellen
• Praxis: kooperativer Ressourcenentzug zwischen Kernel, Lib. OS

Ergebnisse

• hochperformante Hardwarebenutzung durch spez. Anwendungen
• funktional kleiner Exokernel (→ Sparsamkeit, Korrektheit)
• flexible Nutzung problemgerechter HW-Abstraktionen
• keine Isolation von Anwendungen → Parallelisierbarkeit: teuer

und schwach→ keine Robustheit und Sicherheit der Anwendungen

Virtualisierung

→ auf gleicher Hardware mehrere unterschiedliche Betriebssysteme
ausführbar machen

Ziele von Virtualisierung

• Adaptivität (ähnlich wie Exokernen)
• Wartbarkeit
• Sicherheit

– Isolation von Anwendungs-und Kernelcode durch getrennte
Adressräume

– Einschränkung der Fehlerausbreitung → angreifbare
Schwachstellen

– Überwachung der Kommunikation zwischen Teilsystemen
– Sandboxing (vollständig von logischer Ablaufumgebung

isolierte Software)

• Robustheit: siehe Sicherheit

Architekturvarianten - drei unterschiedliche Prinzipien:

1. Typ-1-Hypervisor (früher: VMM - ,,Virtual Machine Monitor”)
2. Typ-2-Hypervisor
3. Paravirtualisierung

Typ-1-Hypervisor
• Idee des Typ-1-Hypervisors:

– Multiplexing & Schutz der Hardware (ermöglicht
Multiprozess-Betrieb)

– abstrahierte Maschine mit ,,angenehmerer” Schnittstelle als
die reine Hardware (z.B. Dateien, Sockets, Prozesse, ...)

• Typ-1-Hypervisor trennt beide Kategorien

– läuft wie ein Betriebssystem unmittelbar über der Hardware
– bewirkt Multiplexing der Hardware, liefert aber keine

erweiterte Maschine an Anwendungsschicht
→ ,,Multi-Betriebssystem-Betrieb”

• Bietet mehrmals die unmittelbare Hardware-Schnittstelle an,
wobei jede Instanz eine virtuelle Maschine jeweils mit den
unveränderten Hardware-Eigenschaften darstellt

• Ursprünge: Time-Sharing an Großrechnern
• heute: Forderungen nach Virtualisierung von Betriebssystemen

– universeller Einsatz des PC für Einzel- und
Serveranwendungen → veränderte Anforderungen an
Virtualisierung

– Wartbarkeit: vor allem ökonomische Gründe
1. Anwendungsentwicklung und -bereitstellung

(Lizenzkosten)
2. Administration: einfache Sicherung, Migration

virtueller Maschinen
3. Legacy-Software

– später: Sicherheit, Robustheit → Cloud-Computing

• ideal hierfür: Typ-1-Hypervisor

3 Gast-BS angenehm wartbar
3 Softwarekosten beherrschbar
3 Anwendungen isolierbar

Hardware-Voraussetzungen

• Ziel: Nutzung von Virtualisierung auf PC-Hardware

• systematische Untersuchung der Virtualisierbarkeit von
Prozessoren bereits 1974 durch Popek & Goldberg

– Gast-BS (aus Sicht der CPU im User Mode) muss sicher
sein können, dass privilegierte Instruktionen
(Maschinencode im Kernel) ausgeführt werden

– dies geht nur, wenn tatsächlich der HV diese Instruktionen
ausführt

– dies geht nur, wenn CPU bei jeder solchen Instruktion im
Nutzermodus Kontextwechsel zum HV ausführen, welcher
Instruktion emuliert

• virtualisierbare Prozessoren bis ca. 2006:

3 IBM-Architekturen (PowerPC, bis 2006 Apple-Standard)
7 Intel x86-Architekturen (386, Pentium, teilweise Core i)

Privilegierte Instruktionen ohne Hypervisor

1. User Mode: Anwendung bereitet Befehl und Parameter vor
2. User Mode: Privilegierte Instruktion → CPU veranlasst

Kontext-und Privilegierungswechsel, Ziel: BS-Kernel
3. Kernel Mode: BS-Dispatcher behandelt Befehl und Parameter,

ruft weitere privilegierte Instruktionen auf

Privilegierte Instruktionen mit Typ-1-Hypervisor

1. User Mode: Anwendung bereitet Befehl und Parameter vor
2. User Mode: Trap → Kontext-und Privilegierungswechsel, Ziel:

Typ-1-HV
3. Kernel Mode: HV-Dispatcher ruft Dispatcher im Gast-BS auf
4. User Mode: BS-Dispatcher behandelt Befehl und Parameter, ruft

weitere privilegierte Instruktionen auf → Kontext-und
Privilegierungswechsel, Ziel: Typ-1-HV

5. Kernel Mode: HV führt privilegierte Instruktionen anstelle des
Gast-BS aus

Sensible und privilegierte Instruktionen

• Maschinenbefehlen, die nur im Kernel Mode ausgeführt werden
dürfen → sensible Instruktionen

• Maschinenbefehlen im User Mode, die Wechsel des
Privilegierungsmodus auslösen → privilegierte Instruktionen

• Prozessor virtualisierbar falls sensible Instr. ⊆ privilegierte Instr.
• Befehl im UserM. nicht erlaubt → löst Privilegierungswechsel aus
• kritische Instruktionen = sensible Instr. \ privilegierte Instr.
• Beispiele für sensible Instruktionen bei Intel x86: mov auf

Steuerregistern

Folgen für Virtualisierung

• privilegierte Instruktionen bei virtualisierbaren Prozessoren
• bei Ausführung einer privilegierten Instruktion in virtueller

Maschine: immer Kontrollflussübergabe an im Kernel-Modus
laufende Systemsoftware - hier Typ-1-HV

• HV kann (anhand des virtuellen Privilegierungsmodus) feststellen

1. ob sensible Anweisung durch Gast-BS
2. oder durch Nutzerprogramm (Systemaufruf!) ausgelöst

• Folgen

1. privilegierte Instruktionen des Gast-Betriebssystems
werden ausgeführt → ,,trap-and-emulate”

2. Einsprung in Betriebssystem, hier also Einsprung in
Gast-Betriebssystem → Upcall durch HV

• privilegierte Instruktionen bei nicht virtualisierbaren Prozessoren
typischerweise ignoriert

Intel-Architektur ab 386

• keine Unterstützung für Virtualisierung ...
• kritische Instruktionen im User Mode werden von CPU ignoriert
• Pentium-Familie konnte Kernel-Code explizit feststellen, ob im

Kernel- oder Nutzermodus → Gast-BS trifft evtl. fehlerhafte
Entscheidungen

• Diese Architekturprobleme (bekannt seit 1974) wurden 20 Jahre
lang im Sinne von Rückwärtskompatibilität auf
Nachfolgeprozessoren übertragen ...

12/17



Advanced Operating Systems

Typ-2-Hypervisor
Virtualisierung ohne Hardwareunterstützung:

• keine Möglichkeit, trap-and-emulate zu nutzen
• keine Möglichkeit, um

1. korrekt (bei sensiblen Instruktionen im Gast-Kernel) den
Privilegierungsmodus zu wechseln

2. den korrekten Code im HV auszuführen

Übersetzungsstrategie in Software:

• vollständige Übersetzung des Maschinencodes, der in VM
ausgeführt wird, in Maschinencode, der im HV ausgeführt wird

• praktische Forderung: HV sollte selbst abstrahierte
HW-Schnittstelle zur Ausführung des (komplexen!)

Übersetzungscodes zur Verfügung haben (z.B. Nutzung von
Gerätetreibern)

• → Typ-2-HV als Kompromiss:

– korrekte Ausführung von virtualisierter Software auf
virtualisierter HW

– beherrschbare Komplexität der Implementierung

aus Nutzersicht

• läuft als gewöhnlicher Nutzer-Prozess auf Host-Betriebssystem
(z.B. Windows oder Linux)

• VMware bedienbarwie physischer Rechner (bspw. erwartet
Bootmedium in virtueller Repräsentation eines physischen
Laufwerks)

• persistente Daten des Gast-BS auf virtuellem Speichermedium (
tatsächlich: Image-Datei aus Sicht des Host-Betriebssystems)

Mechanismus: Code-Inspektion

• Bei Ausführung eines Binärprogramms in der virtuellen Maschine
(egal ob Bootloader, Gast-BS-Kernel, Anwendungsprogramm):
zunächst inspiziert Typ-2-HV den Code nach Basisblöcken

– Basisblock: Befehlsfolge, die mit privilegierten Befehlen
oder solchen Befehlen abgeschlossen ist, die den
Kontrollfluss ändern (sichtbar an Manipulation des
Programm-Zählers eip), z.B. jmp, call, ret.

• Basisblöcke werden nach sensiblen Instruktionen abgesucht
• diese werden jeweils durchAufruf einer HV-Prozedur ersetzt, die

jeweilige Instruktion behandelt
• gleiche Verfahrensweise mit letzter Instruktion eines Basis-Blocks

Mechanismus: Binary Translation (Binärcodeübersetzung)

• modifizierter Basisblock: wird innerhalbdes HVin
Cachegespeichert und ausgeführt

• Basisblock ohne sensible Instruktionen: läuft unter Typ-2-HV
exakt so schnell wie unmittelbar auf Hardware (weil er auch
tatsächlich unmittelbar auf der Hardware läuft, nur eben im
HV-Kontext)

• sensible Instruktionen: nach dargestellter Methode abgefangen
und emuliert → dabei hilft jetzt das Host-BS (z.B. durch eigene
Systemaufrufe, Gerätetreiberschnittstellen)

Mechanismus: Caching von Basisblöcken

• HV nutzt zwei parallel arbeitende Module (Host-BS-Threads!):

– Translator: Code-Inspektion, Binary Translation
– Dispatcher: Basisblock-Ausführung

• zusätzliche Datenstruktur: Basisblock-Cache
• Dispatcher: sucht Basisblock mit jeweils nächster auszuführender

Befehlsadresse im Cache; falls miss → suspendieren (zugunsten
Translator)

• Translator: schreibt Basisblöcke in Basisblock-Cache
• Annahme: irgendwann ist Großteil des Programms im Cache,

dieses läuft dann mit nahezu Original-Geschwindigkeit
(theoretisch)

Performanzmessungen

• zeigen gemischtes Bild: Typ2-HV keinesfalls so schlecht, wie einst
erwartet wurde

• qualitativer Vergleich mit virtualisierbarer Hardware
(Typ1-Hypervisor):

• ,,trap-and-emulate,,: erzeugt Vielzahl von Traps →
Kontextwechsel zwischen jeweiliger VM und HV

• insbesondere bei Vielzahl an VMs sehr teuer: CPU-Caches, TLBs,
Heuristiken zur spekulativen Ausführung werden verschmutzt

• wenn andererseits sensible Instruktionen durch Aufruf von
VMware-Prozeduren innerhalb des ausführenden Programms
ersetzt: keine Kontextwechsel-Overheads

Studie: (von Vmware) [Adams&Agesen06]

• last-und anwendungsabhängig kann Softwarelösung sogar
Hardwarelösung übertreffen

• Folge: viele moderne Typ1-HV benutzen aus Performanzgründen
ebenfalls Binary Translation

Paravirtualisierung
Funktionsprinzip

• ... unterscheidet sich prinzipiell von Typ-1/2-Hypervisor
• wesentlich: Quellcode des Gast-Betriebssystems modifiziert
• sensible Instruktionen: durch Hypervisor-Calls ersetzt
• Folge: Gast-Betriebssystem arbeitet jetzt vollständig wie

Nutzerprogramm, welches Systemaufrufe zum Betriebssystem
(hier dem Hypervisor) ausführt

• dazu:

– Hypervisor: muss geeignetes Interface definieren (HV-Calls)
→ Menge von Prozedur-Aufrufen zur Benutzung durch

Gast-Betriebssystem
– bilden eine HV-API als Schnittstelle für

Gast-Betriebssysteme (nicht für Nutzerprogramme!)

• mehr dazu: Xen

Verwandtschaft mit Mikrokernel-Architekturen

• Geht man vom Typ-1-HV noch einen Schritt weiter ...

– und entfernt alle sensiblen Instruktionen aus
Gast-Betriebssystem ...

– und ersetzt diese durch Hypervisor-Aufrufe, um
Systemdienste wie E/A zu benutzen, ...

– hat man praktisch den Hypervisor in Mikrokernel
transformiert.

• ... und genau das wird auch schon gemacht: L4Linux (TU
Dresden)

– Basis: stringente L4µ Kernel-Implementierung
(Typ-1-HV-artiger Funktionsumfang)

– Anwendungslaufzeitumgebung: paravirtualisierter
Linux-Kernel als Serverprozess

– Ziele: Isolation (Sicherheit, Robustheit), Echtzeitfähigkeit
durch direktere HW-Interaktion (vergleichbar
Exokernel-Ziel)

Zwischenfazit Virtualisierung

• Ziele: Adaptivität komplementär zu...

– Wartbarkeit : ökonomischer Betrieb von Cloud-und
Legacy-Anwendungen ohne dedizierte Hardware

– Sicherheit : sicherheitskritische Anwendungen können
vollständig von nichtvertrauenswürdigen Anwendungen
(und untereinander) isoliert werden

– Robustheit : Fehler in VMs (= Anwendungsdomänen)
können nicht andere VMs beeinträchtigen

• Idee: drei gängige Prinzipien:

– Typ-1-HV: unmittelbares HW-Multiplexing,
trap-and-emulate

– Typ-2-HV: HW-Multiplexing auf Basis eines Host-OS,
binarytranslation

– Paravirtualisierung: Typ-1-HV für angepasstes Gast-OS,
kein trap-and-emulate nötig → HV ähnelt µKern

• Ergebnisse:

3 VMs mit individuell anpassbarer Laufzeitumgebung
3 isolierteVMs
3 kontrollierbare VM-Interaktion (untereinander und mit

HW)
7 keine hardwarespezifischen Optimierungen aus VM heraus

möglich → Performanz, Echtzeitfähigkeit, Sparsamkeit!

Container
Ziele:

• Adaptivität , im Dienste von ...
• ... Wartbarkeit: einfachen Entwicklung, Installation,

Rekonfiguration durch Kapselung von

– Anwendungsprogrammen
– ∗ durch sie benutzte Bibliotheken
– ∗ Instanzen bestimmter BS-Ressourcen

• ... Portabilität: Betrieb von Anwendungen, die lediglich von
einem bestimmten BS-Kernel abhängig sind (nämlich ein solcher,
der Container unterstützt); insbesondere hinsichtlich:

– Abhängigkeitskonflikten (Anwendungen und Bibliotheken)
– fehlenden Abhängigkeiten (Anwendungen und Bibliotheken)
– Versions-und Namenskonflikten

• ... Sparsamkeit: problemgerechtes ,,Packen,, von Anwendungen in
Container → Reduktion an Overhead: selten (oder gar nicht)
genutzter Code, Speicherbedarf, Hardware, ...

Idee:

• private Sichten (Container) bilden = private
User-Space-Instanzen für verschiedene Anwendungsprogramme

• Kontrolle dieser Container i.S.v. Multiplexing, Unabhängigkeit
und API: BS-Kernel

• somit keine Form der BS-Virtualisierung, eher:
,,User-Space-Virtualisierung,,

Anwendungsfälle für Container

• Anwendungsentwicklung:

– konfliktfreies Entwickeln und Testen unterschiedlicher
Software, für unterschiedliche Zielkonfigurationen
BS-User-Space

• Anwendungsbetrieb und -administration:

– Entschärfung von ,,dependency hell,,
– einfache Migration, einfaches Backup von Anwendungen

ohne den (bei Virtualisierungsimages als Ballast
auftretenden) BS-Kernel

– einfache Verteilung generischer Container für bestimmte
Aufgaben

– = Kombinationen von Anwendungen

• Anwendungsisolation? → Docker

Zwischenfazit: Container

• Ziele: Adaptivität komplementär zu...

– Wartbarkeit : Vermeidung von Administrationskosten für
Laufzeitumgebung von Anwendungen

– Portabilität : Vereinfachung von Abhängigkeitsverwaltung

13/17



Advanced Operating Systems

– Sparsamkeit : Optimierung der Speicher-und
Verwaltungskosten für Laufzeitumgebung von
Anwendungen

• Idee:

– unabhängige User-Space-Instanz für jeden einzelnen
Container

– Aufgaben des Kernels: Unterstützung der
Containersoftware bei Multiplexing und Herstellung der
Unabhängigkeitdieser Instanzen

• Ergebnisse:

3 vereinfachte Anwendungsentwicklung
3 vereinfachter Anwendungsbetrieb
7 Infrastruktur nötig über (lokale) Containersoftware hinaus,

um Containern zweckgerecht bereitzustellen und zu warten
7 keine vollständige Isolationmöglich

Beispielsysteme (Auswahl)

• Virtualisierung: VMware, VirtualBox
• Paravirtualisierung: Xen
• Exokernel: Nemesis, MirageOS, RustyHermit
• Container: Docker, LupineLinux

Hypervisor

VMware

• ”... ist Unternehmenin PaloAlto, Kalifornien (USA)
• gegründet 1998 von 5 Informatikern
• stellt verschiedene Virtualisierungs-Softwareprodukte her:

1. VMware Workstation
– war erstes Produkt von VMware (1999)
– mehrere unabhängige Instanzen von x86- bzw.

x86-64-Betriebssystemen auf einer Hardware
betreibbar

2. VMware Fusion: ähnliches Produkt für Intel
Mac-Plattformen

3. VMware Player: (eingestellte) Freeware für
nichtkommerziellen Gebrauch

4. VMware Server (eingestellte Freeware, ehem. GSX Server)
5. VMware vSphere (ESXi)

– Produkte 1 ... 3: für Desktop-Systeme
– Produkte 4 ... 5: für Server-Systeme
– Produkte 1 ... 4: Typ-2-Hypervisor

• bei VMware-Installation: spezielle vm- Treiber in
Host-Betriebssystem eingefügt

• diese ermöglichen: direkten Hardware-Zugriff
• durch Laden der Treiber: entsteht ,,Virtualisierungsschicht”

(VMware-Sprechweise)

– Typ1- Hypervisor- Architektur
– Anwendung nur bei VMware ESXi

– Entsprechende Produkte in Vorbereitung

VirtualBox

• Virtualisierungs-Software für x86- bzw. x86-64-Betriebssysteme
für Industrie und ,,Hausgebrauch” (ursprünglich: Innotek , dann
Sun , jetzt Oracle )

• frei verfügbare professionelle Lösung, als Open Source Software
unter GNU General Public License(GPL) version 2. ...

• (gegenwärtig) lauffähig auf Windows, Linux, Macintosh und
Solaris Hosts

• unterstützt große Anzahl von Gast-Betriebssystemen: Windows
(NT 4.0, 2000, XP, Server 2003, Vista, Windows 7),
DOS/Windows 3.x, Linux (2.4 and 2.6), Solaris and OpenSolaris ,
OS/2 , and OpenBSD u.a.

• reiner Typ-2-Hypervisor

Paravirutalisierung: Xen
• entstanden als Forschungsprojekt der University of Cambridge

(UK), dann XenSource Inc., danach Citrix, jetzt: Linux
Foundation (,,self-governing”)

• frei verfügbar als Open Source Software unter GNU General
Public License (GPL)

• lauffähig auf Prozessoren der Typen x86, x86-64, PowerPC, ARM,
MIPS

• unterstützt große Anzahl von Gast-Betriebssystemen: FreeBSD,
GNU/Hurd/Mach, Linux, MINIX, NetBSD, Netware,
OpenSolaris, OZONE, Plan 9

• ,,Built for the cloud before it was called cloud.” (Russel Pavlicek,
Citrix)

• bekannt für Paravirtualisierung
• unterstützt heute auch andere Virtualisierungs-Prinzipien

Xen : Architektur

• Gast-BSe laufen in Xen Domänen (,,domi”, analog VMi)
• es existiert genau eine, obligatorische, vertrauenswürdige

Domäne: dom0
• Aufgaben (Details umseitig):

– Bereitstellen und Verwalten der virtualisierten Hardware
für andere Domänen (Hypervisor-API, Scheduling-Politiken
für Hardware-Multiplexing)

– Hardwareverwaltung/-kommunikation für paravirtualisierte
Gast-BSe (Gerätetreiber)

– Interaktionskontrolle (Sicherheitspolitiken)

• dom0 im Detail: ein separates, hochkritisch administriertes,
vertrauenswürdiges BS mit eben solchen Anwendungen (bzw.
Kernelmodulen) zur Verwaltung des gesamten virtualisierten
Systems

– es existieren hierfür spezialisierte Variantenvon Linux,
BSD, GNU Hurd

Xen : Sicherheit

• Sicherheitsmechanismusin Xen: Xen Security Modules (XSM)
• illustriert, wie (Para-) Typ-1-Virtualisierung von BS die NFE

Sicherheit unterstützt
• PDP: Teil des vertrauenswürdigen BS in dom0, PEPs: XSMs im

Hypervisor
• Beispiel: Zugriff auf Hardware

– Sicherheitspolitik-Integration, Administration, Auswertung:
dom0

• Beispiel: Inter-Domänen-Kommunikation

– Interaktionskontrolle (Aufgaben wie oben): dom0

– Beispiel: VisorFlow
– selber XSM kontrolliert Kommunikation für zwei Domänen

Exokernel
Nemesis

• Betriebssystemaus EU-Verbundprojekt ,,Pegasus,, zur
Realisierung eines verteilten multimediafähigen Systems (1.
Version: 1994/95)

• Entwurfsprinzipien:

1. Anwendungen: sollen Freiheit haben, Betriebsmittel in für
sie geeignetster Weise zu nutzen (= Exokernel-Prinzip)

2. Realisierung als sog. vertikal strukturiertes Betriebssystem:

– weitaus meiste Betriebssystem-Funktionalität
innerhalb der Anwendungen ausgeführt (=
Exokernel-Prinzip)

– Echtzeitanforderungen durch Multimedia →
Vermeidung von Client-Server-Kommunikationsmodell
wegen schlecht beherrschbarer zeitlicher
Verzögerungen (neu)

MirageOS + Xen

• Spezialfall: Exokernel als paravirtualisiertes BS auf Xen
• Ziele : Wartbarkeit (Herkunft: Virtualisierungsarchitekturen ...)

– ökonomischer HW-Einsatz
– Unterstützung einfacher Anwendungsentwicklung
– nicht explizit: Unterstützung von Legacy-Anwendungen!

• Idee: ,,Unikernel” → eine Anwendung, eine API, ein Kernel
• umfangreiche Dokumentation, Tutorials, ... → ausprobieren
• Unikernel - Idee

– Architekturprinzip:
– in MirageOS:

• Ergebnis: Kombination von Vorteilen zweier Welten

– Virtualisierungs vorteile: Sicherheit, Robustheit ( → Xen -
Prinzip genau einer vertrauenswürdigen, isolierten Domäne
dom0)

– Exokernelvorteile: Wartbarkeit, Sparsamkeit
– nicht: Exokernelvorteil der hardwarenahen

Anwendungsentwicklung... ( → Performanz und
Echzeitfähigkeit )

Container: Docker
• Idee: Container für einfache Wartbarkeit von

Linux-Anwendungsprogrammen ...

– ... entwickeln
– ... testen
– ... konfigurieren
– ... portieren → Portabilität

• Besonderheit: Container können - unabhängig von ihrem
Einsatzzweck - wie Software-Repositories benutzt, verwaltet,
aktualisiert, verteilt ... werden

• Management von Containers: Docker Client → leichtgewichtiger
Ansatz zur Nutzung der Wartbarkeitsvorteile von Virtualisierung

• Forsetzung unter der OCI (Open Container Initiative)

– ,,Docker does a nice job [...] for a focused purpose, namely
the lightweight packaging and deployment of applications.”
(Dirk Merkel, Linux Journal)

• Implementierung der Containertechnik basierend auf
Linux-Kernelfunktionen:

– Linux Containers (LXC): BS-Unterstützung für
Containermanagement

– cgroups: Accounting/Beschränkung der
Ressourcenzuordnung

– union mounting: Funktion zur logischen Reorganisation
hierarchischer Dateisysteme

Performanz und Parallelität
Motivation

• Performanz: Wer hätte gern einen schnell(er)en Rechner...?
• Wer braucht schnelle Rechner:

– Hochleistungsrechnen, HPC (,,high
performancecomputing”)

∗ wissenschaftliches Rechnen(z.B. Modellsimulation
natürlicher Prozesse,
Radioteleskop-Datenverarbeitung)

∗ Datenvisualisierung(z.B. Analysen großer Netzwerke)
∗ Datenorganisation-und speicherung(z.B.

Kundendatenverarbeitung zur Personalisierung von
Werbeaktivitäten, Bürgerdatenverarbeitung zur
Personalisierung von Geheimdienstaktivitäten)

– nicht disjunkt dazu: kommerzielle Anwendungen

∗ ,,Big Data”: Dienstleistungen für Kunden, die o. g.
Probleme auf gigantischen Eingabedatenmengen zu
lösen haben (Software wie Apache Hadoop )

14/17

https://www.flyn.org/projects/VisorFlow/
https://mirage.io/wiki/learning


Advanced Operating Systems

∗ Wettervorhersage

– anspruchsvolle Multimedia- Anwendungen

∗ Animationsfilme
∗ VR-Rendering

Performanzbegriff
• Performance: The degree to which a system or component

accomplishes its designated functions within given constraints,
such as speed, accuracy, or memory usage. (IEEE)

• Performanz im engeren Sinne dieses Kapitels: Minimierung der
für korrekte Funktion (= Lösung eines Berechnungsproblems) zur
Verfügung stehenden Zeit.

• oder technischer: Maximierung der Anzahl pro Zeiteinheit
abgeschlossener Berechnungen.

Roadmap
• Grundlegende Erkenntnis: Performanz geht nicht (mehr) ohne

Parallelität → Hochleistungsrechnen = hochparalleles Rechnen
• daher in diesem Kapitel: Anforderungen hochparallelen Rechnens

an ...

– Hardware: Prozessorarchitekturen
– Systemsoftware: Betriebssystemmechanismen
– Anwendungssoftware: Parallelisierbarkeitvon Problemen

• BS-Architekturen anhand von Beispielsystemen:

– Multikernel: Barrelfish
– verteilte Betriebssysteme

Hardware-Voraussetzungen
• Entwicklungstendenzen der Rechnerhardware:

– Multicore-Prozessoren: seit ca. 2006 (in größerem Umfang)
– Warum neues Paradigma für Prozessoren? bei

CPU-Taktfrequenz >> 4 GHz: z.Zt. physikalische Grenze,
u.a. nicht mehr sinnvoll handhabbare Abwärme

– Damit weiterhin:
1. Anzahl der Kerne wächst nicht linear
2. Taktfrequenz wächst asymptotisch, nimmt nur noch

marginal zu

Performanz durch Parallelisierung ...
Folgerungen

1. weitere Performanz-Steigerung von Anwendungen: primär durch
Parallelität (aggressiverer) Multi-Threaded-Anwendungen

2. erforderlich: Betriebssystem-Unterstützung → Scheduling,
Sychronisation

3. weiterhin erforderlich: Formulierungsmöglichkeiten (Sprachen),
Compiler, verteilte Algorithmen ... → hier nicht im Fokus

... auf Prozessorebene
Vorteile von Multicore-Prozessoren

1. möglich wird: Parallelarbeit auf Chip-Ebene → Vermeidung
der Plagen paralleler verteilter Systeme

2. bei geeigneter Architektur: Erkenntnisse und Software aus Gebiet
verteilter Systeme als Grundlage verwendbar

3. durch gemeinsame Caches (architekturabhängig): schnellere
Kommunikation (speicherbasiert), billigere Migration von
Aktivitäten kann möglich sein

4. höhere Energieeffizienz: mehr Rechenleistung pro Chipfläche,
geringere elektrische Leistungsaufnahme → weniger
Gesamtabwärme, z.T. einzelne Kerne abschaltbar (vgl.
Sparsamkeit , mobile Geräte)

5. Baugröße: geringeres physisches Volumen

Nachteile von Multicore-Prozessoren

1. durch gemeinsam genutzte Caches und Busstrukturen: Engpässe
(Bottlenecks) möglich

2. zur Vermeidung thermischer Zerstörungen: Lastausgleich
zwingend erforderlich! (Ziel: ausgeglichene Lastverteilung auf
einzelnen Kernen)

3. zum optimalen Einsatz zwingend erforderlich:

(a) Entwicklung Hardwarearchitektur
(b) zusätzlich: Entwicklung geeigneter Systemsoftware
(c) zusätzlich: Entwicklung geeigneter Anwendungssoftware

Multicore-Prozessoren
• Sprechweise in der Literatur gelegentlich unübersichtlich...
• daher: Terminologie und Abkürzungen:

– MC ...multicore(processor)
– CMP ...chip-level multiprocessing, hochintegrierte Bauweise

für ,,MC”
– SMC ...symmetric multicore → SMP ... symmetric

multi-processing
– AMC ...asymmetric (auch: heterogeneous ) multicore →

AMP ... asymmetric multi-processing
– UP ...uni-processing , Synonym zu singlecore(SC) oder

uniprocessor

Architekturen von Multicore-Prozessoren

• A. Netzwerkbasiertes Design

– Prozessorkerne des Chips u. ihre lokalen Speicher (oder
Caches): durch Netzwerkstruktur verbunden

– damit: größte Ähnlichkeit zu traditionellen verteilten
Systemen

– Verwendung: bei Vielzahl von Prozessorkernen
(Skalierbarkeit!)

– Beispiel: Intel Teraflop-Forschungsprozessor Polaris (80
Kerne als 8x10-Gitter)

• B. Hierarchisches Design

– mehrere Prozessor-Kerne teilen sich mehrere baumartig
angeordnete Caches

– meistens:
∗ jeder Prozessorkern hat eigenen L1-Cache
∗ L2-Cache, Zugriff auf (externen) Hauptspeicher u.

Großteil der Busse aber geteilt

– Verwendung: typischerweise Serverkonfigurationen
– Beispiele:

∗ IBM Power
∗ Intel Core 2, Core i
∗ Sun UltraSPARCT1 (Niagara)

• C. Pipeline-Design

– Daten durch mehrere Prozessor-Kerne schrittweise
verarbeitet

– durch letzten Prozessor: Ablage im Speichersystem
– Verwendung:

∗ Graphikchips
∗ (hochspezialisierte) Netzwerkprozessoren

– Beispiele: Prozessoren X10 u. X11 von Xelerator zur
Verarbeitung von Netzwerkpaketen in Hochleistungsroutern
(X11: bis zu 800 Pipeline-Prozessorkerne)

Symmetrische u. asymmetrische Multicore-Prozessoren

• symmetrische Multicore-Prozessoren (SMC)

– alle Kerne identisch, d.h. gleiche Architektur und gleiche
Fähigkeiten

– Beispiele:

∗ Intel Core 2 Duo
∗ Intel Core 2 Quad
∗ ParallaxPropeller

• asymmetrische MC-Prozessoren (AMC)

• Multicore-Architektur, jedoch mit Kernen unterschiedlicher
Architektur und/oder unterschiedlichen Fähigkeiten

• Beispiel: Kilocore:

– 1 Allzweck-Prozessor (PowerPC)
– ∗ 256 od. 1024 Datenverarbeitungsprozessoren

Superskalare Prozessoren
• Bekannt aus Rechnerarchitektur: Pipelining

– parallele Abarbeitung von Teilen eines Maschinenbefehls in
Pipeline-Stufen

– ermöglicht durch verschiedene Funktionseinheiten eines
Prozessors für verschiedene Stufen:

∗ Control Unit (CU)
∗ ArithmeticLogicUnit (ALU)
∗ Float Point Unit (FPU)
∗ Memory Management Unit (MMU)
∗ Cache

– sowie mehrere Pipeline-Register

• superskalare Prozessoren: solche, bei denen zur Bearbeitung einer
Pipeling-Stufe erforderlichen Funktionseinheiten n-fach vorliegen

• Ziel:

– Skalarprozessor (mit Pipelining): 1 Befehl pro Takt
(vollständig) bearbeitet

– Superskalarprozessor: bis zu n Befehle pro Taktbearbeitet

• Verbereitung heute: universell (bis hin zu allen
Desktop-Prozessorfamilien)

Parallelisierung in Betriebssystemen
• Basis für alle Parallelarbeit aus BS-Sicht: Multithreading
• wir erinnern uns ...:

– Kernel-Level-Threads (KLTs): BS implementiert Threads
→ Scheduler kann mehrere Threads nebenläufig planen →
Parallelität möglich

– User-Level-Threads (ULTs): Anwendung implementiert
Threads → keine Parallelität möglich!

• grundlegend für echt paralleles Multithreading:

– parallelisierungsfähige Hardware
– kausal unabhängige Threads
– passendes (und korrekt eingesetztes!) Programmiermodell,

insbesondere Synchronisation!
→ Programmierer + Compiler

Vorläufiges Fazit:

• BS-Abstraktionen müssen Parallelität unterstützen (Abstraktion
nebenläufiger Aktivitäten: KLTs)

• BS muss Synchronisationsmechanismen implementieren

Synchronisations- und Sperrmechanismen
• Synchronisationsmechanismen zur Nutzung

– ... durch Anwendungen → Teil der API
– ... durch den Kernel (z.B. Implementierung

Prozessmanagement, E/A, ...)

• Aufgabe: Verhinderung konkurrierender Zugriffe auf logische oder
physische Ressourcen

– Vermeidung von raceconditions
– Herstellung einer korrekten Ordnung entsprechend

Kommunikationssemantik (z.B. ,,Schreiben vor Lesen”)

• (alt-) bekanntes Bsp.: Reader-Writer-Problem

Erinnerung: Reader-Writer-Problem

• Begriffe: (bekannt)

– wechselseitiger Ausschluss ( mutual exclusion)
– kritischer Abschnitt (critical section)

15/17



Advanced Operating Systems

• Synchronisationsprobleme:

– Wie verhindern wir ein write in vollen Puffer?
– Wie verhindern wir ein read aus leerem Puffer?
– Wie verhindern wir, dass auf ein Element während des read

durch ein gleichzeitiges write zugegriffen wird? (Oder
umgekehrt?)

Sperrmechanismen ( Locks )

• Wechselseitiger Ausschluss ...

– ... ist in nebenläufigen Systemen zwingend erforderlich
– ... ist in echt parallelen Systemen allgegenwärtig
– ... skaliert äußerst unfreundlich mit Code-Komplexität →

(monolithischer) Kernel-Code!

• Mechanismen in Betriebssystemen: Locks
• Arten von Locks am Beispiel Linux:

– Big Kernel Lock (BKL)

∗ historisch (1996-2011): lockkernel(); ... unlockkernel();
∗ ineffizient durch massiv gestiegene Komplexität des

Kernels
– atomic-Operationen
– Spinlocks
– Semaphore (Spezialform: Reader/Writer Locks)

atomic*

• Bausteine der komplexeren Sperrmechanismen:

– Granularität: einzelne Integer- (oder sogar Bit-) Operation
– Performanz: mittels Assembler implementiert, nutzt

Atomaritäts garantiender CPU ( TSL - Anweisungen:
,,test-set-lock” )

• Benutzung:

– atomic * Geschmacksrichtungen: read, set, add, sub, inc,
dec u. a.

– keine explizite Lock-Datenstruktur → Deadlocks durch
Mehrfachsperrung syntaktisch unmöglich

– definierte Länge des kritischen Abschnitts (genau diese eine
Operation) → unnötiges Sperren sehr preiswert

Zusammenfassung
Funktionale und nichtfunktionale Eigenschaften

• Funktionale Eigenschaften: beschreiben, was ein
(Software)-Produkt tun soll

• Nichtfunktionale Eigenschaften: beschreiben, wie funktionale
Eigenschaften realisiert werden, also welche sonstigen
Eigenschaftendas Produkt haben soll ... unterteilbar in:

1. Laufzeiteigenschaften (zur Laufzeit sichtbar)
2. Evolutionseigenschaften (beim Betrieb sichtbar:

Erweiterung, Wartung, Test usw.)

Roadmap (... von Betriebssystemen)

• Sparsamkeit und Effizienz
• Robustheit und Verfügbarkeit
• Sicherheit
• Echtzeitfähigkeit
• Adaptivität
• Performanzund Parallelität

Sparsamkeit und Effizienz
• Sparsamkeit: Die Eigenschaft eines Systems, seine Funktion mit

minimalem Ressourcenverbrauch auszuüben.
• Effizienz: Der Grad, zu welchem ein System oder eine seiner

Komponenten seine Funktion mit minimalem
Ressourcenverbrauch ausübt. → Ausnutzungsgrad begrenzter
Ressourcen

• Die jeweils betrachtete(n) Ressource(n) muss /(müssen) dabei
spezifiziert sein!

• sinnvolle Möglichkeiten bei Betriebssystemen:

1. Sparsamer Umgang mit Energie , z.B. energieeffizientes
Scheduling

2. Sparsamer Umgang mit Speicherplatz (Speichereffizienz)
3. Sparsamer Umgang mit Prozessorzeit
4. ...

Sparsamkeit mit Energie

• Sparsamkeit mit Energie als heute extrem wichtigen Ressource,
mit nochmals gesteigerter Bedeutung bei mobilen bzw.
vollständig autonomen Geräten Maßnahmen:

1. Hardware-Ebene: momentan nicht oder nicht mit maximaler
Leistung benötigte Ressourcen in energiesparenden Modus
bringen: abschalten, Standby, Betrieb mit verringertem
Energieverbrauch ( abwägen gegen verminderte Leistung).
(Geeignete Hardware wurde/wird ggf. erst entwickelt)

2. Software-Ebene: neue Komponenten entwickeln, die in der Lage
sein müssen:

• Bedingungenzu erkennen, unter denen ein energiesparender
Modus möglich ist;

• Steuerungs-Algorithmen für Hardwarebetrieb so zu
gestalten, dass Hardware-Ressourcen möglichst lange in
einem energiesparenden Modus betrieben werden.

• Energie-Verwaltungsstrategien: energieeffizientes Scheduling
zur Vermeidung von Unfairness und Prioritätsumkehr

• Beispiele: energieeffizientes Magnetfestplatten-Prefetching,
energiebewusstes RR-Scheduling

Sparsamkeit mit Speicherplatz

• Betrachtet: Sparsamkeit mit Speicherplatz mit besonderer
Wichtigkeit für physisch beschränkte, eingebettete und autonome
Geräte

• Maßnahmen Hauptspeicherauslastung:

1. Algorithmus und Strategie z.B.:

– Speicherplatz sparende Algorithmen zur Realisierung
gleicher Strategien

2. Speicherverwaltung von Betriebssystemen:

– physische vs. virtuelle Speicherverwaltung
– speichereffiziente Ressourcenverwaltung
– Speicherbedarfdes Kernels
– direkte Speicherverwaltungskosten

• Maßnahmen Hintergrundspeicherauslastung:

1. Speicherbedarf des Betriebssystem-Images
2. dynamische SharedLibraries
3. VMM-Auslagerungsbereich
4. Modularität und Adaptivität des Betriebssystem-Images

• Nicht betrachtet: Sparsamkeit mit Prozessorzeit → 99%
Überschneidung mit NFE Performanz

Robustheit und Verfügbarkeit
• Robustheit: Zuverlässigkeit unter Anwesenheit externer Ausfälle
• fault, aktiviert → error, breitet sich aus → failure

Robustheit

• Erhöhung der Robustheit durch Isolation:

– Maßnahmen zur Verhinderung der Fehlerausbreitung:

1. Adressraumisolation: Mikrokernarchitekturen,
2. kryptografische HW-Unterstützung: Intel SGX und
3. Virtualisierungsarchitekturen

• Erhöhung der Robustheit durch Behandlung von Ausfällen:
Micro-Reboots

Vorbedingung für Robustheit: Korrektheit

• Korrektheit: Eigenschaft eines Systems sich gemäß seiner
Spezifikation zu verhalten (unter der Annahme, dass bei dieser
keine Fehler gemacht wurden).

• Maßnahmen (nur angesprochen):

1. diverse Software-Tests:

• können nur Fehler aufspüren, aber keine Fehlerfreiheit
garantieren!

2. Verifizierung:

• Durch umfangreichen mathematischen Apparat wird
Korrektheit der Software bewiesen.

• Aufgrund der Komplexität ist Größe verifizierbarer
Systeme (bisher?) begrenzt.

• Betriebssystem-Beispiel: verifizierter Mikrokern seL

Verfügbarkeit

• Verfügbarkeit: Der Anteil an Laufzeit eines Systems, in dem
dieses seine spezifizierte Leistung erbringt.

• angesprochen: Hochverfügbare Systeme
• Maßnahmen zur Erhöhung der Verfügbarkeit:

1. Robustheitsmaßnahmen
2. Redundanz
3. Redundanz
4. Redundanz
5. Ausfallmanagement

Sicherheit
• Sicherheit (IT-Security): Schutz eines Systems gegen Schäden

durch zielgerichtete Angriffe, insbesondere in Bezug auf die
Informationen, die es speichert, verarbeitet und kommuniziert.

• Sicherheitsziele:

1. Vertraulichkeit (Confidentiality)
2. Integrität (Integrity)
3. Verfügbarkeit (Availability)
4. Authentizität (Authenticity)
5. Verbindlichkeit (Non-repudiability)

Security Engineering

• Sicherheitsziele → Sicherheitspolitik → Sicherheitsarchitektur →
Sicherheitsmechanismen

• Sicherheitspolitik: Regeln zum Erreichen eines Sicherheitsziels.

– hierzu formale Sicherheitsmodelle:
– IBAC, TE, MLS
– DAC, MAC

• Sicherheitsmechanismen: Implementierung der Durchsetzung einer
Sicherheitspolitik.

– Zugriffssteuerungslisten(ACLs)
– SELinux

• Sicherheitsarchitektur: Platzierung, Struktur und Interaktion von
Sicherheitsmechanismen.

– wesentlich: Referenzmonitorprinzipien
– RM1: Unumgehbarkeit → vollständiges Finden aller

Schnittstellen
– RM2: Manipulationssicherheit → Sicherheit

einerSicherheitspolitik selbst
– RM3: Verifizierbarkeit → wohlstrukturierte und per

Designkleine TCBs

16/17



Advanced Operating Systems

Echtzeitfähigkeit
• Echtzeitfähigkeit: Fähigkeit eines Systems auf eine Eingabe

innerhalb eines spezifizierten Zeitintervalls eine korrekte Reaktion
hervorzubringen.

• Maximum dieses relativen Zeitintervalls: Frist d

1. echtzeitfähige Scheduling-Algorithmen für Prozessoren

• zentral: garantierte Einhaltung von Fristen
• wichtige Probleme: Prioritätsumkehr, Überlast, kausale

Abhängigkeit

2. echtzeitfähige Interrupt-Behandlung

• zweiteilig:asynchron registrieren, geplant bearbeiten

3. echtzeitfähige Speicherverwaltung

• Primärspeicherverwaltung, VMM (Pinning)
• Sekundärspeicherverwaltung, Festplattenscheduling

Adaptivität
• Adaptivität: Eigenschaft eines Systems, so gebaut zu sein, dass es

ein gegebenes (breites) Spektrum nichtfunktionaler Eigenschaften
unterstützt.

• Beobachtung: Adaptivität i.d.R. als komplementär und
synergetisch zu anderen NFE:

– Sparsamkeit
– Robustheit
– Sicherheit
– Echzeitfähigkeit
– Performanz
– Wartbarkeit und Portierbarkeit

Adaptive Systemarchitekturen

• Zielstellungen:

– Exokernel: { Adaptivität } ∪ { Performanz,
Echtzeitfähigkeit, Wartbarkeit, Sparsamkeit }

– Virtualisierung: { Adaptivität } ∪ { Wartbarkeit,
Sicherheit, Robustheit }

– Container: { Adaptivität } ∪ { Wartbarkeit, Portabilität,
Sparsamkeit }

Performanz und Parallelität
• Performanz (wie hier besprochen): Eigenschaft eines Systems, die

für korrekte Funktion (= Berechnung) benötigte Zeit zu
minimieren.

• hier betrachtet: Kurze Antwort-und Reaktionszeiten

1. vor allen Dingen: Parallelisierung auf Betriebssystemebene
zur weiteren Steigerung der Performanz/Ausnutzung von
Multicore-Prozessoren(da Steigerung der
Prozessortaktfrequenz kaum noch möglich)

2. weiterhin: Parallelisierung auf Anwendungsebene zur
Verringerung der Antwortzeiten von Anwendungen und
Grenzen der Parallelisierbarkeit(für Anwendungen auf
einem Multicore-Betriebssystem).

Mechanismen, Architekturen, Grenzen der Parallelisierung

• Hardware:

– Multicore-Prozessoren
– Superskalarität

• Betriebssystem:

– Multithreading(KLTs) und Scheduling
– Synchronisation und Kommunikation
– Lastangleichung

• Anwendung(sprogrammierer):

– Parallelisierbarkeiteines Problems
– optimaler Prozessoreneinsatz, Effizienz

Synergetische und konträre Eigenschaften
• Normalerweise:

– Eine nichtfunktionale Eigenschaft bei IT-Systemen meist
nicht ausreichend

– Beispiel: Was nützt ein Echtzeit-Betriebssystem - z.B.
innerhalb einer Flugzeugsteuerung - wenn es nicht auch
verlässlich arbeitet?

• In diesem Zusammenhang interessant:

– Welche nichtfunktionalen Eigenschaften mit Maßnahmen
erreichbar, die in gleiche Richtung zielen, bei welchen
wirken Maßnahmen eher gegenläufig?

– Erstere sollen synergetische, die zweiten konträre (also in
Widerspruch zueinander stehende) nichtfunktionale
Eigenschaften genannt werden.

– Zusammenhang nicht immer eindeutig und offensichtlich,
wie z.B. bei: ,,Sicherheit kostet Zeit.” (d.h. Performanz und
Sicherheit sind nichtsynergetische Eigenschaften)

Notwendige NFE-Paarungen
• Motivation: Anwendungen (damit auch Betriebssysteme) für

bestimmte Einsatzgebiete brauchen oft mehrere nichtfunktionale
Eigenschaften gleichzeitig - unabhängig davon, ob sich diese
synergetisch oder nichtsynergetisch zueinander verhalten.

• Beispiele:

– Echtzeit und Verlässlichkeit: ,,SRÜ”-Systeme an potentiell
gefährlichen Einsatzgebieten (Atomkraftwerk,
Flugzeugsteuerung, Hinderniserkennung an Fahrzeugen, ...)

– Echtzeit und Sparsamkeit: Teil der eingebetteten Systeme
– Robustheit und Sparsamkeit: unter entsprechenden

Umweltbedingungen eingesetzte autonome Systeme, z.B.
smart-dust-Systeme

Überblick: NFE und Architekturkonzepte

3 ... Zieleigenschaft
• ( 3) ... synergetische Eigenschaft
7 ... konträre Eigenschaft
• Leere Zellen: keine pauschale Aussage möglich.

Fazit: Breites und offenes Forschungsfeld → werden Sie aktiv!

17/17


	Funktionale und nichtfunktionale Eigenschaften
	Hardwarebasis
	Betriebssystemarchitektur
	Ressourcenverwaltung
	Betriebssystemabstraktionen
	Betriebssysteme als Softwareprodukte

	Sparsamkeit und Effizienz
	Motivation
	Energieeffizienz
	Energieeffiziente Dateizugriffe
	Prefetching-Mechanismus
	Energieeffizientes Prozessormanagement
	Energieeffizientes Scheduling
	Systemglobale Energieeinsparungsmaßnahmen
	Hardwaretechnologien

	Speichereffizienz
	Hauptspeicherauslastung
	Hintergrundspeicherauslastung

	Architekturentscheidungen
	Makrokernel (monolithischer Kernel)
	Mikrokernel
	BS: TinyOS
	BS: RIOT


	Robustheit und Verfügbarkeit
	Robustheitsbegriff
	Fehler, Ausfälle und ihre Vermeidung

	Fehlerhafter Zustand
	Isolationsmechanismen
	Strukturierte Programmierung
	Adressraumisolation

	Mikrokernelarchitektur
	Modularer Makrokernel vs. Mikrokernel
	Mikrokernel: Mach
	L4
	Mikrokernel - Designprinzipien

	Micro-Reboots
	Beispiel-Betriebssystem: MINIX

	Verfügbarkeit
	QNX Neutrino: Hochverfügbares Echtzeit-BS


	Sicherheit
	Sicherheitsziele
	Schadenspotenzial
	Bedrohungen
	Professionelle Malware: Root Kit
	Schwachstellen
	Zwischenfazit

	Sicherheitspolitiken
	Sicherheitspolitiken und -modelle
	Zugriffssteuerungspolitiken
	Traditionell: DAC, IBAC
	Modellierung: Zugriffsmatrix
	Modern: MAC, MLS

	Autorisierungsmechanismen
	Traditionell: ACLs, SUID

	Modern: SELinux
	Isolationsmechanismen
	Intel SGX

	Sicherheitsarchitekturen
	Referenzmonitorprinzip
	Trusted Computing Base (TCB)


	Echtzeitfähigkeit
	Charakteristika von Echtzeit-Prozessen
	Periodische Prozesse (pP)
	Aperiodische Prozesse (aP)
	Parameter von Echtzeit-Prozessen

	Echtzeitfähige Betriebssysteme
	Echtzeitscheduling
	RC Algorithmus
	Umgang mit gemischten Prozessmengen
	Prioritätsumkehr
	Überlast
	Echtzeit-Interruptbehandlung

	Echtzeit-Speicherverwaltung
	Kommunikation und Synchronisation
	Architekturen
	Beispiel-Betriebssysteme

	Adaptivität (Flexibility)
	Exokernelarchitektur
	Exokernelmechanismen
	Secure Binding
	Visible Resource Revocation
	Abort-Protokoll
	Aegis mit Library-OS ExOS
	Xok mit Library-OS ExOS
	Fazit Exokernelarchitektur

	Virtualisierung
	Typ-1-Hypervisor
	Typ-2-Hypervisor
	Paravirtualisierung

	Container
	Hypervisor
	Paravirutalisierung: Xen
	Exokernel
	Container: Docker


	Performanz und Parallelität
	Motivation
	Performanzbegriff
	Roadmap
	Hardware-Voraussetzungen
	Performanz durch Parallelisierung ...
	... auf Prozessorebene
	Multicore-Prozessoren
	Superskalare Prozessoren

	Parallelisierung in Betriebssystemen
	Synchronisations- und Sperrmechanismen


	Zusammenfassung
	Funktionale und nichtfunktionale Eigenschaften
	Sparsamkeit und Effizienz
	Robustheit und Verfügbarkeit
	Sicherheit
	Echtzeitfähigkeit
	Adaptivität
	Performanz und Parallelität
	Synergetische und konträre Eigenschaften
	Notwendige NFE-Paarungen


