Advanced Operating Systems

Zusammenfassung

e Funktional: was ein (Software)-Produkt tun soll
e Nichtfunktional: wie funktionale Eigenschaften realisiert werden
e andere Bezeichnungen NFE: Qualitidten, Quality of Service

Laufzeiteigenschaften zur Laufzeit eines Systems beobachtbar

e Sparsamkeit und Effizienz

e Robustheit, Verfiigbarkeit

e Sicherheit (Security)

o Echtzeitfihigkeit, Adaptivitdt, Performanz

Evolutionseigenschaften (Weiter-) Entwicklung und Betrieb

o Wartbarkeit, Portierbarkeit
e Offenheit, Erweiterbarkeit

Hardwarebasis
e Einst: Einprozessor-Systeme
e Heute: Mehrprozessor-/hochparallele Systeme
e neue Synchronisationsmechanismen erforderlich
— unterschiedliche Hardware und deren Multiplexing

Betriebssystemarchitektur
Einst: Monolithische und Makrokernel-Architekturen
Heute: Mikrokernel(-basierte) Architekturen
Exokernelbasierte Architekturen (Library-Betriebssysteme)

.
.
L]
e Virtualisierungsarchitekturen
.

—

Multikernel-Architekturen
unterschiedliche Architekturen

Ressourcenverwaltung

e Einst: Batch-Betriebssysteme, Stapelverarbeitung (FIFO)
e Heute: Echtzeitgarantien fiir Multimedia und Sicherheit
e cchtzeitfihige Scheduler, Hauptspeicherverwaltung,
Ereignismanagement, Umgang mit Uberlast/Prioritétsumkehr
— unterschiedliche Ressourcenverwaltung

Betriebssystemabstraktionen

Reservierung von Ressourcen (— eingebettete Systeme)
Realisierung von QoS-Anforderungen (— Multimediasysteme)
Erhshung der Ausfallsicherheit (— verfiigbarkeitskritisch)
Schutz vor Angriffen und Missbrauch (— sicherheitskritisch)
flexiblen und modularen Anpassen des BS (— hochadaptiv)
— hochst diverse Abstraktionen von Hardware

Betriebssysteme als Softwareprodukte

e Betriebssystem: endliche Menge von Quellcode
e besitzen differenzierte Aufgaben — funktionale Eigenschaften
e Anforderungen an Nutzung und Pflege — Evolutionseigenschaften
e konnen fiir Betriebssysteme héchst speziell sein
— spezielle Anforderungen an das Softwareprodukt BS

Grundlegende funktionale Eigenschaften von BS: Hardware-

Abstraktion Ablaufumgebung auf Basis der Hardware bereitstellen

Multiplexing Ablaufumgebung zeitlich/logisch getrennt einzelnen
Anwendungen zuteilen

Schutz gemeinsame Ablaufumgebung gegen Fehler und Manipulation

Sparsamkeit und Effizienz

e Sparsamkeit: Funktion mit minimalem Ressourcenverbrauch

e Effizienz: Grad der Sparsamkeit

e Die jeweils betrachtete Ressource muss dabei spezifiziert sein

e sinnvolle Moglichkeiten bei BS: Sparsamer Umgang mit Energie,
Speicherplatz oder Prozessorzeit

1. Hardware-Ebene: Betriebe mit verringertem Energieverbrauch
2. Software-Ebene: neue Komponenten entwickeln, um

1/16

e Bedingungen fiir energiesparen erkennen

e Steuerungs-Algorithmen fiir Hardwarebetrieb
o Energie-Verwaltungsstrategien

e Bsp: Festplatten-Prefetching, RR-Scheduling

Sparsamkeit mit Speicherplatz

e MafBinahmen Hauptspeicherauslastung

1. Speicherplatz sparende Algorithmen gleicher Strategien
2. Speicherverwaltung von Betriebssystemen

— physische vs. virtuelle Speicherverwaltung

— speichereffiziente Ressourcenverwaltung

— Speicherbedarfdes Kernels

— direkte Speicherverwaltungskosten

e MafBnahmen Hintergrundspeicherauslastung

1. Speicherbedarf des Betriebssystem-Images

2. dynamische SharedLibraries

3. VMM-Auslagerungsbereich

4. Modularitdt und Adaptivitdt des Betriebssystem-Images

— 99% Uberschneidung mit NFE Performanz

Robustheit und Verfiigbarkeit

e Robustheit: Zuverlédssigkeit unter Anwesenheit externer Ausfille

aktiviert breitetsichaus

o fault error failure
e Korrektheit: Systemverhalten geméf seiner Spezifikation
e Verfiigbarkeit: Anteil an Laufzeit, in dem Leistung erbracht

Robustheit

e Erhshung durch Isolation: Verhinderung der Fehlerausbreitung

1. Adressraumisolation: Mikrokernarchitekturen,
2. kryptografische HW-Unterstiitzung (Intel SGX)
3. Virtualisierungsarchitekturen

e Behandlung von Ausfillen: Micro-Reboots
Vorbedingung fiir Robustheit: Korrektheit

1. Tests: nur Fehler aufspiiren, keine Fehlerfreiheit garantiert
2. Verifizierung: komplex und umfangreich durch Modelle begrenzt

Verfiigbarkeit

e angesprochen: Hochverfiigbare Systeme
e MafBnahmen: Redundanz, Ausfallmanagement

Sicherheit
e Sicherheit: Schutz gegen Schidden durch zielgerichtete Angriffe,
besonders Informationen (speichern, verarbeiten, kommunizieren)
e Sicherheitsziele
1. Vertraulichkeit (Confidentiality)
2. Integritit (Integrity)
3. Verfiigbarkeit (Availability)
4. Authentizitdt (Authenticity)
5. Verbindlichkeit (Non-repudiability)

e S.Ziele — Politik — Architektur — Mechanismen
Security Engineering

Politik Regeln zum Erreichen eines Sicherheitsziels
Mechanismen Implementierung der Durchsetzung der Politik
Architektur Platzierung, Struktur und Interaktion von Mechanismen

wesentlich: Referenzmonitorprinzipien
RM1 Unumgehbarkeit — vollstindiges Finden aller Schnittstellen

RM2 Manipulationssicherheit — Sicherheit einer Sicherheitspolitik
RM3 Verifizierbarkeit — wohlstrukturierte und per Design kleine TCBs

Echtzeitfihigkeit

o Echtzeitfihigkeit: auf eine Eingabe innerhalb spezifizierten
Zeitintervalls korrekte Reaktion hervorbringen

echtzeitfihige Scheduling-Algorithmen fiir Prozessoren
zentral: garantierte Einhaltung von Fristen

Probleme: Prioritdtsumkehr, Uberlast, kausale Abhingigkeit
echtzeitfihige Interrupt-Behandlung

zweiteilig: asynchron registrieren, geplant bearbeiten
echtzeitfihige Speicherverwaltung
Primérspeicherverwaltung, VMM (Pinning)
Sekundéirspeicherverwaltung, Festplattenscheduling

PNDORW N

Adaptivitit

e Adaptivitiit: gegebenes (breites) Spektrum NFEs zu unterstiitzen
e Adaptivitit komplementir und synergetisch zu anderen NFE

Exokernel {Adap.}U{Performanz, Echtzeit, Wartbar, Sparsam}
Virtualisierung {Adaptiv}U{Wartbar, Sicherheit, Robust}
Container {Adaptiv}U{Wartbark, Portabel, Sparsam}

Performanz und Parallelitét

e Performanz: fiir korrekte Funktion benstigte Zeit minimieren
e hier betrachtet: Kurze Antwort-und Reaktionszeiten
o Mechanismen, Architekturen, Grenzen der Parallelisierung

Hardware Multicore-Prozessoren, Superskalaritét

Betriebssystem Multithreading, Scheduling, Synchronisation und
Kommunikation, Lastangleichung

Anwendung Parallelisierbarkeit, Effizienz, Prozessoreneinsatz

Synergetische und kontrire Eigenschaften
e cine NFE bei IT-Systemen meist nicht ausreichend

e Zusammenhang nicht immer eindeutig und offensichtlich
e bestimmte Einsatzgebiete brauchen oft mehrere NFE gleichzeitig

Uberblick: NFE und Architekturkonzepte

Makrok. Mikro. Exok. Virt. Multik.

Energieeff. v X X

Speichereff. X) v X
Robustheit X v X v

Verfiigbarkeit X)) v

Korrektheit X 4 X X 4
Sicherheit X v X v

Echtzeitfihig W) v v X X

Adaptivitit X 4 4 4)

Wartbarkeit v v v

Performanz) X v X v

V'Ziel, (V) synergetisch, XKontrir

Advanced Operating Systems

Sparsamkeit und Effizienz

Motivation

Sparsamkeit (Arbeitsdefinition): Die Eigenschaft eines Systems, seine
Funktion mit minimalem Ressourcenverbrauch auszuiiben — Effizienz
bei Nutzung der Ressourcen

Effizienz: Der Grad, zu welchem ein System oder eine seiner
Komponenten seine Funktion mit minimalem Ressourcenverbrauch
ausiibt. (IEEE)

Beispiele:

mobile Gerédte: Sparsamkeit mit Energie

Sparsamkeit mit weiteren Ressourcen, z.B. Speicherplatz
Betriebssystem (Kernel + User Space): geringer Speicherbedarf
optimale Speicherverwaltung durch Betriebssystem zur Laufzeit
Baugréfienoptimierung(Platinen-und Peripheriegeritegrofie)
Kostenoptimierung(kleine Caches, keine MMU, ...)

massiv reduzierte HW-Schnittstellen (E/A-Gerite, Peripherie)

Mobile und eingebettete Systeme (kleine Auswahl)

e mobile Rechner-Endgeriite

e Weltraumfahrt und -erkundung

e Automobile

e verteilte Sensornetze (WSN)

e Chipkarten

e Multimedia-und Unterhaltungselektronik
Energieeffizienz

zeitweiliges Abschalten momentan nicht benétigter Ressourcen
Betriebssystemmechanismen

o

Dateisystem-E/A: energieeffizientes Festplatten-Prefetching
CPU-Scheduling: energieeffizientes Scheduling
Speicherverwaltung: Lokalitdtsoptimierung

Netzwerk: energiebewusstes Routing

Verteiltes Rechnen: temperaturabhingige Lastverteilung

Energieeffiziente Dateizugriffe

HDD /Netzwerkgerite/... sparen nur bei relativ langer Inaktivitit Energie

Aufgabe: kurze, intensive Zugriffsmuster — lange Inaktivitit
HDD-Geréten: Zustéinde mit absteigendem Energieverbrauch:

1. Aktiv: einziger Arbeitszustand

2. Idle: Platte rotiert, Elektronik teilweise abgeschaltet
3. Standby: Rotation abgeschaltet

4. Sleep: gesamte restliche Elektronik abgeschaltet

dhnliche, noch stirker differenzierte Zustinde bei DRAM
durch geringe Verliangerungen des idle - Intervalls kann signifikant
der Energieverbrauch reduziert werden

Prefetching-Mechanismus

—
°

2/16

Prefetching (,,Speichervorgriff”, vorausschauend) & Caching

— Standard-Praxis bei moderner Datei-E/A

— Voraussetzung: Vorwissen iiber benstigte Folge von
zukiinftigen Datenblockreferenzen

— Ziel: Performanzverbesserung durch Durchsatzerhthung
und Latenzzeit-Verringerung

— Idee: Vorziehen méglichst vieler E/A-Anforderungen an
Festplatte + zeitlich gleichméfBige Verteilung verbleibender

— Umsetzung: Caching dieser vorausschauend gelesenen
Blécke in ungenutzten PageCache

Inaktivitit iiberwiegend sehr kurz — Energieeffizienz ...7
Zugriffs- /Festplattenoperationen

— access(x) ... greife auf Inhalt von Festplattenblock x im
PageCache zu
— fetch(x) ... hole Block x nach einem access(x) von Festplatte

— prefetch(x) ... hole Block x ohne access(x) von Festplatte

e Fetch-on-Demand-Strategie bisher (kein vorausschauendes Lesen)
e Traditionelles Prefetching

— traditionelle Prefetching-Strategie: bestimmt

* wann Block von der Platte holen (HW aktiv)
* welcher Block zu holen ist
* welcher Block zu ersetzen ist
1. Optimales Prefetching: Jedes prefetch sollte den néchsten
Block im Referenzstrom in den Cache bringen, der noch
nicht dort ist
2. Optimales Ersetzen: Bei jedem ersetzenden prefetch sollte
der Block tiberschrieben werden, der am spétesten in der
Zukunft wieder benétigt wird
3. ,,Richte keinen Schaden an”: Uberschreibe niemals Block A
um Block B zu holen, wenn A vor B bendétigt wird
4. Erste Moglichkeit: Fiihre nie ein ersetzendes prefetch aus,
wenn dieses schon vorher hitte ausgefiithrt werden kénnen

e Energieeffizientes Prefetching

— versucht Lange der Disk-Idle-Intervalle zu maximieren

1. Optimales Prefetching: Jedes prefetch sollte den néchsten
Block im Referenzstrom in den Cache bringen, der noch
nicht dort ist

2. Optimales Ersetzen: Bei jedem ersetzenden prefetch sollte
der Block iiberschrieben werden, der am spétesten in der
Zukunft wieder benétigt wird

3. ,,Richte keinen Schaden an”: Uberschreibe niemals Block A
um Block B zu holen, wenn A vor B bendétigt wird

4. Maximiere Zugriffsfolgen: Fiihre immer dann nach einem
fetch/prefetch ein weiteres prefetch aus, wenn Blocke fiir
eine Ersetzung geeignet sind

5. Beachte Idle-Zeiten: Unterbrich nur dann eine
Inaktivitédtsperiode durch ein prefetch, falls dieses sofort
ausgefiihrt werden muss, um Cache-Miss zu vermeiden

Allgemeine Schlussfolgerungen

Hardware-Spezifikation nutzen: Modi, in denen wenig Energie
verbraucht wird

Entwicklung von Strategien, die langen Aufenthalt in
energiesparenden Modi erméglichen und dabei
Leistungsparameter in vertretbarem Umfang reduzieren
Implementieren dieser Strategien in Betriebssystemmechanismen
zur Ressourcenverwaltung

Energieeffizientes Prozessormanagement

e CMOS z.Zt. meistgenutzte Halbleitertechnologie fiir Prozessor
e Komponenten fiir Energieverbrauch P = Pgsyitch + Preak + ---

— Pswitcn: fiir Schaltvorgéinge notwendige Leistung
— Pleak: Verlustleistung durch verschiedene Leckstrome
— ...: weitere Einflussgréen (technologiespezifisch)

Schaltleistung: Pswitching

bl

Energiebedarf kapaz. Lade-/Entladevorginge wihrend Schaltens
fiir momentane CMOS dominanter Anteil am Energieverbrauch
Einsparpotenzial: Verringerung von Versorgungsspannung
(quadratische Abhingigkeit!) und Taktfrequenz

lingere Schaltvorginge, gréflere Latenz zwischen Schaltvorgingen
Energieeinsparung nur mit Qualitédtseinbufien

— Anpassung des Lastprofils (Zeit-Last? Fristen kritisch?)
— Beeintridchtigung der Nutzererfahrung (Reaktivitét?)

Verlustleistung: Picqk

.
.
=

Energiebedarf baulich bedingter Leckstrome
Hardware-Miniaturisierung — zunehmender Anteil Pjcqr an P
Leckstrome kritisch fiir energiesparenden Hardwareentwurf

Regelspielraum: Nutzererfahrung

Nutzererwartung: wichtigstes Kriterium zur Bewertung von auf
einem Rechner aktiven Anwendungen durch Nutzer —
Nutzererwartung bestimmt Nutzererfahrung

Typ einer Anwendung entscheidet iiber jeweilige Nutzererwartung

1. Hintergrund (z.B. Compiler): Gesamt-Bearbeitungsdauer,
Durchsatz

2. Echtzeit (z.B. Video-Player): ,,fliissiges” Abspielen von
Video oder Musik

3. Interaktiv (z.B. Webbrowser): Reaktivitit, d.h. keine

(wahrnehmbare) Verzdgerung zwischen Nutzer-Aktion und
Rechner-Reaktion
Insbesondere kritisch: Echtzeit-/interaktive Anwendungen
Reaktivitidt: Reaktion von Anwendungen; abhingig z.B. von
1. Hardware an sich
2. Energieversorgung der Hardware (z.B. Spannungspegel)
3. Software-Gegebenheiten (z.B. Scheduling, Management)

Zwischenfazit: Nutzererfahrung

— bietet Regelspielraum fiir Hardwareparameter

— Betriebssystemmechanismen zum energieeffizienten
Prozessormanagement miissen mit Nutzererfahrung(jeweils
erforderlicher Reaktivitéit) ausbalanciert werden

Energieeffizientes Scheduling

Scheduling-Probleme beim Energiesparen: Fairness &
Prioritdtsumkehr
Beispiel: Round Robin (RR) mit Prioritdten

— E;’“’d’g“t ... Energiebudget von t;

— El™it | Energielimit von t;

— Pimit ... maximale Leistungsaufnahme [Energie/Zeit]
— T ... resultierende Zeitscheibenlinge

Problem 1: Unfaire Energieverteilung

Problem 2: energieintensive Threads behindern nachfolgende
Threads gleicher Prioritat

Problem 3: energieintensive Threads niedrigerer Prioritat
behindern spéitere Threads hoherer Prioritét

RR Strategie 1: faire Energieverteilung (einheitliche
Energielimits)

— 1<i<4: B = Py T

faire bzw. gewichtete Aufteilung begrenzter Energie optimiert
Energieeffizienz
Problem: lange, wenig energieintensive Threads verzégern
Antwort-und Wartezeiten kurzer, energieintensiver Threads

— Losung im Einzelfall: Wichtung per EL™
— globale Reaktivitdt — Nutzererfahrung?

RR Strategie 2: maximale Reaktivitéit (— klassisches RR)
Problem: sparsame Threads werden bestraft durch Verfallen des
ungenutzten Energiebudgets

Idee: Ansparen von Energiebudgets — mehrfache Ausfithrung
eines Threads innerhalb einer Scheduling-Periode

RR Strategie 3: Reaktivitit, dann faire Energieverteilung

Implementierungsfragen

Kosten ggii. klassischem RR? (durch Prioritéten...?)
Scheduling-Zeitpunkte?

— welche Accounting-Operationen (Buchfiihrung)?
— wann Accounting-Operationen?
— wann Verdriangung?

Datenstrukturen?

— ... im Scheduler — Warteschlange(n)?

Advanced Operating Systems

— ... im Prozessdeskriptor?

e Pro
— Optimierung der Energieverteilung nach Schedulingzielen
— Beriicksichtigung prozessspezifischer Verbrauchsmuster

e Kontra

— sekundire Kosten: Energiebedarf des Schedulers,
Kontextwechsel, Implementierungskosten
— Voraussetzung: Monitoring des Energieverbrauchs

e Alternative: energieintensive Prozesse verlangsamen —
Regelung der CPU-Leistungsparameter

Systemglobale Energieeinsparungsmafinahmen
e Traditionelle: zu jedem Zeitpunkt Spitzen-Performanz angestrebt

— viele Anwendungen benétigen keine Spitzen-Performanz

— viel Hardware-Zeit in Leerlaufsituationen bzw. keine
Spitzen-Performanz erforderlich

e Konsequenz (besonders fiir mobile Systeme)

— Hardware mit Niedrigenergiezustinden
— Betriebssystem kann Energie-Management realisieren

Hardwaretechnologien
DPM: Dynamic Power Management

o versetzt leerlaufende Hardware selektiv in Zusténde mit
niedrigem Energieverbrauch

e Zustandsiibergidnge durch Power-Manager gesteuert, bestimmte
DPM-Strategie (Firmware) zugrunde, um gutes Verhéltnis
zwischen Performanz/Reaktivitdt und Energieeinsparung zu

erzielen X X .
e bestimmt, wann und wie lange eine Hardware in
Energiesparmodus

Greedy Hardware-Komponente sofort nach Erreichen des Leerlaufs in
Energiesparmodus, ,,Aufwecken” durch neue Anforderung
Time-out Energiesparmodus erst nachdem ein definiertes Intervall im

Leerlauf, ,,Aufwecken” wie bei Greedy-Strategien
Vorhersage Energiesparmodus sofort nach Erreichen des Leerlaufs,
wenn Heuristik vorhersagt,dass Kosten gerechtfertigt
Stochastisch Energiesparmodus auf Grundlage stochastischen Modells

DVS: Dynamic Voltage Scaling

e cffizientes Verfahren zur dynamischen Regulierung von
Taktfrequenz gemeinsam mit Versorgungsspannung

e Nutzung quadratischer Abhingigkeit der dynamischen Leistung
von Versorgungsspannung

e Steuerung/Strategien: Softwareunterstiitzung notwendig

e Ziel: Unterstiitzung von DPM-Strategien durch Mafinahmen auf
Ebene von Compiler, Betriebssystem und Applikationen

e Betriebssystem (pridiktives Energiemanagement)

— kann Benutzung verschiedener Ressourcen beobachten
— kann dariiber Vorhersagen titigen
— kann notwendigen Performanzbereich bestimmen

e Anwendungen konnen Informationen iiber jeweils fiir sie
notwendige Performanz liefern
— Kombination mit energieefizientem Scheduling

Speichereffizienz

... heif}t: Auslastung des verfiigbaren Speichers

oft implizit: Hauptspeicherauslastung (memoryfootprint)
fiir kleine/mobile Systeme: Hintergrundspeicherauslastung
Mafle zur Konkretisierung:

— zeitlich: Maximum vs. Summe genutzten Speichers?
— physischer Speicherverwaltung? — Belegungsanteil pAR
— virtuelle Speicherverwaltung? — Belegungsanteil vAR

3/16

e Konsequenzen fiir Ressourcenverwaltung durch BS

— Taskverwaltung (Accounting, Multiplexing, Fairness, ...)

— Programmiermodell, API (dynamische
Speicherreservierung)

— Sinnfrage und Strategien virtueller Speicherverwaltung

(VMM)
e Konsequenzen fiir Betriebssystem selbst

— minimaler Speicherbedarf durch Kernel
— minimale Speicherverwaltungskosten (obiger Aufgaben)

Hauptspeicherauslastung

Problem: externe Fragmentierung

e Losungen

— First Fit, Best Fit, WorstFit, Buddy
— Relokation

o Kompromissloser Weg: kein Multitasking
Problem: interne Fragmentierung

e Losung

— Seitenrahmengrofie verringern
— Tradeoff: dichter belegte vAR — gréflere Datenstrukturen
fiir Seitentabellen

e direkter Einfluss des Betriebssystems auf Hauptspeicherbelegung

— Speicherbedarf des Kernels

— statische (min) Grole des Kernels (Anweisungen+Daten)
— dynamische Speicherreservierung durch Kernel

— bei Makrokernel: Speicherbedarf von Gerédtecontrollern

weitere Einflussfaktoren: Speicherverwaltungskosten

e VMM: Seitentabellengréfle — Mehrstufigkeit

e Metainformationen iiber laufende Programme: Gréfie von
Taskkontrollblécken (Prozess-/Threaddeskriptoren ...)

e dynamische Speicherreservierung durch Tasks

Hintergrundspeicherauslastung

Einflussfaktoren des Betriebssystems

statische Grofle des Kernel-Images, beim Bootstrapping gelesen

statische GréBe von Programm-Images (Standards wie ELF)

statisches vs. dynamisches Einbinden von Bibliotheken

VMM: GroBe des Auslagerungsbereichs (inkl. Teilen der

Seitentabelle) fiir Anwendungen

e Modularisierung (zur Kompilierzeit) des Kernels: gezielte
Anpassung an Einsatzdoméne moglich

e Adaptivitidt (zur Kompilier-und Laufzeit) des Kernels: gezielte

Anpassung an sich d&ndernde Umgebungsbedingungen méglich

Architekturentscheidungen

e typische Einsatzgebiete sparsamer BS: eingebettete Systeme
e cingebettetes System

— Computersystem, das in ein gréfleres technisches System,
welches nicht zur Datenverarbeitung dient, physisch
eingebunden ist

— Wesentlicher Bestandteil dieses grofleren Systems

— Liefert Ausgaben in Form von Informationen/Daten

e spezielle, anwendungsspezifische Ausprigung der Aufgaben

— reduzierter Umfang von HW-Abstraktion, hardwarenihere
Ablaufumgebung
— begrenzte Notwendigkeit von HW-Multiplexing & Schutz

e eng verwandte NFE: Adaptivitdt von sparsamen BS

o sparsame Betriebssysteme:

— energieeffizient: geringe Architekturanforderungen an
energieintensive Hardware
— speichereffizient: Auskommen mit kleinen Datenstrukturen
e Konsequenz: geringe logische Komplexitit des
Betriebssystemkerns
e sekundir: Adaptivitidt des Betriebssystemkerns

Makrokernel (monolithischer Kernel)
e User Space:

— Anwendungstasks
— CPU im unprivilegierten Modus (Unix ,,Ringe” 1...3)
— Isolation von Tasks durch Programmiermodell/VMM

e Kernel Space:

— Kernel und Gerétecontroller (Treiber)
— CPU im privilegierten Modus (Unix ,,Ring” 0)
— keine Isolation

o Vergleich

v vglw. geringe Kosten von Kernelcode (Energie, Speicher)
v VMM nicht zwingend erforderlich

v Multitasking nicht zwingend erforderlich

X Kernel (inkl. Treibern) jederzeit im Speicher

X Robustheit, Sicherheit, Adaptivitit

Mikrokernel

e User Space:

— Anwendungstasks, Kernel- und Treibertasks
— CPU im unprivilegierten Modus
— Isolation von Tasks durch VMM

e Kernel Space:

— funktional minimaler Kernel (uKernel)
— CPU im privilegierten Modus
— keine Isolation (Kernel wird in alle vAR eingeblendet)

e Vergleich

Robustheit, Sicherheit, Adaptivitit
Kernelspeicherbedarf gering, Serverprozesse nur wenn
benétigt (— Adaptivitét)

hohe IPC-Kosten von Serverprozessen
Kontextwechselkosten von Serverprozessen

VMM, Multitasking i.d.R. erforderlich

BS: TinyOS

Beispiel fiir sparsame BS im Bereich eingebetteter Systeme
verbreitete Anwendung: verteilte Sensornetze (WSN)
,,TinyOS” ist ein quelloffenes, BSD-lizenziertes Betriebssystem
fiir drahtlose Geréte mit geringem Stromverbrauch
Architektur

— monolithisch (Makrokernel) mit Besonderheiten:

— keine klare Trennung zwischen der Implementierung von
Anwendungen und BS (aber von funktionalen Aufgaben)

— zur Laufzeit: 1 Anwendung + Kernel

XXX N\

o Mechanismen:

— kein Multithreading, keine echte Parallelitit

— keine Synchronisation zwischen Tasks

— keine Kontextwechsel bei Taskwechsel

— Multitasking realisiert durch Programmiermodell
— nicht-prdemptives FIFO-Scheduling

— kein Paging — keine Seitentabellen, keine MMU

e in Zahlen:

— Kernelgrole: 400 Byte
— Kernelimagegrofle: 1-4 kByte
— Anwendungsgréfie: typisch ca. 15 kB, DB: 64 kB

Advanced Operating Systems

e Programmiermodell:

— BS+Anwendung als Ganzes iibersetzt: statische
Optimierungen durch Compiler (Laufzeit, Speicherbedarf)

— Nebenldufigkeit durch ereignisbasierte Kommunikation zw.

Anwendung und Kernel

+* command: API-Aufruf, z.B. EA-Operation
* event: Reaktion auf diesen durch Anwendung

— sowohl commands als auch events : asynchron

BS: RIOT
e sparsames BS,optimiert fiir anspruchsvollere Anwendungen
e Open-Source-Mikrokernel-basiertes Betriebssystem fiir IoT
e Architektur

— halbwegs: Mikrokernel
— energiesparende Kernelfunktionalitit
* minimale Algorithmenkomplexitét
* vereinfachtes Threadkonzept — keine
Kontextsicherung erforderlich
* keine dynamische Speicherallokation
* energiesparende Hardwarezustdnde vom Scheduler
ausgeldst (inaktive CPU)
— Mikrokerneldesign unterstiitzt komplementidre NFE:
Adaptivitit, Erweiterbarkeit
— Kosten: IPC (hier gering)

e Mechanismen:

— Multithreading-Programmiermodell
— modulare Implementierung von Dateisystemen, Scheduler,
Netzwerkstack
e in Zahlen:

— Kernelgrofie: 1,5 kByte
— Kernelimagegréfle: 5 kByte

Robustheit und Verfiigbarkeit

Motivation

allgemein: verlédsslichkeitskritische Anwendungsszenarien
Forschung in garstiger Umwelt (Weltraum)
hochsicherheitskritische Systeme (Finanz, Cloud Dienste)
hochverfiigbare System (6ffentliche Infrastruktur, Strom)
HPC (high performance computing)

Allgemeine Begriffe

e Verlisslichkeit: Féahigkeit, eine Leistung zu erbringen, der man
berechtigterweise vertrauen kann
e Untereigenschaften

Verfiigbarkeit (availability)

Robustheit (robustness, reliability

(Funktions-) Sicherheit (safety)

Vertraulichkeit (confidentiality)

Integritét (integrity)

Wartbarkeit (maintainability) (vgl.: evolutionire
Eigenschaften)

SO Wi

— nicht fiir alle Anwendungen sind alle Untereigenschaften
erforderlich

Robustheitsbegriff

e Untereigenschaften von Verlésslichkeit: Robustheit (reliability)

e Ausfall: beobachtbare Verminderung der Leistung eines Systems,
gegeniiber seiner als korrekt spezifizierten Leistung

e Robustheit: Verlisslichkeit unter Anwesenheit externer Ausfille
(= Ursache auflerhalb des betrachteten Systems)

4/16

Fehler, Ausfille und ihre Vermeidung
e Fehler — fehlerhafter Zustand — Ausfall

Ausfall (failure) liegt vor, wenn tatséchliche Leistung(en), die ein
System erbringt, von als korrekt spezifizierter Leistung abweichen

e Korrektheit testen/beweisen(— formale Verifikation)

fehlerhafter Zustand (error) notwendige Ursache eines Ausfalls (nicht
jeder error muss zu failure fithren)

o Maskierung, Redundanz
e Isolation von Subsystemen
— Isolationsmechanismen
Fehler (fault) Ursache fiir fehlerhaften Systemzustand (error), z.B.
Programmierfehler

e Ausfallverhalten spezifizieren
e Ausfille zur Laufzeit erkennen und Folgen beheben,
abschwichen...
— Micro-Reboots

Fehlerhafter Zustand

interner und externer Zustand (internal & external state)

e externer Zustand: der Teil des Gesamtzustands, der an externer

Schnittstelle sichtbar wird .
e interner Zustand: restlicher Teilzustand
e erbrachte Leistung: zeitliche Folge externer Zusténde

Fehlerausbreitung und (externer) Ausfall

o Wirkungskette: Treiber-Programmierfehler (fault) — fehlerhafter
interner Zustand des Treibers (error)

— Ausbreitung dieses Fehlers (failure des Treibers)
= fehlerhafter externer Zustand des Treibers
= fehlerhafter interner Zustand des Kernels (error)

= Kernelausfall (failure)

e Auswirkung: fehlerhafter Zustand weiterer Kernel-Subsysteme
— Robustheit: Isolationsmechanismen

Isolationsmechanismen
e Isolationsmechanismen fiir robuste Betriebssysteme
— durch strukturierte Programmierung
— durch Adressraumisolation
e noch mehr fiir sichere Betriebssysteme
— durch kryptografische Hardwareunterstiitzung: Enclaves

— durch streng typisierte Sprachen und managed code
— durch isolierte Laufzeitumgebungen: Virtualisierung

Strukturierte Programmierung
Monolithisches BS... in historischer Reinform:

e Anwendungen, Kernel, gesamte BS-Funktionalitit

e programmiert als Sammlung von Prozeduren

e jede darf jede davon aufrufen, keine Modularisierung
e keine definierten internen Schnittstellen

Monolithisches Prinzip

e Ziel: Isolation zwischen Anwendungen und Betriebssystem
e Mechanismus: Prozessor-Privilegierungsebenen (user/kernelspace)
e Konsequenz: fast keine Strukturierung des Kernels

Strukturierte Makrokernarchitektur

e schwach strukturierter (monolithischer) Makrokernel
= Schichtendifferenzierung (layered operating system)
e Modularisierung

Modularer Makrokernel

e Kernelfunktionen in Module unterteilt — Erweiter-/Portierbarkeit
e Kklar definierte Modulschnittstellen
e Module zur Kernellaufzeit dynamisch einbindbar (Adaptivitét)

Fehlerausbreitung beim Makrokernel

v Wartbarkeit

Portierbarkeit

Erweiterbarkeit

(begrenzt) Adaptivitéit

Schutz gegen statische Programmierfehler nur durch Compiler
kein Schutz gegen dynamische Fehler

x e o\

Adressraumisolation
Private virtuelle Adressrdume und Fehlerausbreitung

e private virtuelle Adressrdume zweier Tasks (i # j)
e korrekte private vAR: kollisionsfreie Seitenabbildung
e Magie in Hardware: MMU (BS steuert und verwaltet...)

Robustheit: Vorteil von privaten vAR?

v nichtvertrauenswiirdiger Code kann keine beliebigen physischen

Adressen schreiben
v Kommunikation zwischen nvw. Code muss durch

IPC-Mechanismen explizit hergestellt werden — Uberwachung
und Validierung zur Laufzeit moglich
v Kontrollfluss begrenzen: Funktionsaufrufe kénnen i.A. keine
AR-Grenzen iiberschreiten
— BS-Zugriffssteuerung kann nicht durch Taskfehler
ausgehebelt werden
— unabsichtliche Terminierungsfehler(unendliche Rekursion)
erschwert ...
e keine Isolation zwischen Fehlern innerhalb des Kernels

Mikrokernelarchitektur
Fortschritt ggii. Makrokernel

e Strukturierungskonzept

— strenger durchgesetzt durch konsequente Isolation
voneinander unabhéngiger Kernel-Subsysteme

— zur Laufzeit durchgesetzt — Reaktion auf fehlerhafte
Zustdnde moglich!

e zusitzlich zu vertikaler Strukturierung des Kernels: horizontale
Strukturierung eingefiihrt
— funktionale Einheiten: vertikal (Schichten)
— isolierte Einheiten: horizontal (private vAR)

Kernel (alle BS-Funktionalitéit) — pKernel (minimale BS-Funk.)
Rest: ,,gewohnliche” Anwendungsprozesse mit AR-isolation
Kommunikation: botschaftenbasierte IPC (client-server OS)
Nomenklatur: Mikrokernel und Serverprozesse

...‘U‘

Modularer Makrokernel vs. Mikrokernel
e minimale Kernelfunktionalitét:
e keine Dienste, nur allgemeine Schnittstellenfiir diese
e keine Strategien, nur grundlegende Mechanismen zur
Ressourcenverwaltung
e neues Problem: minimales Mikrokerneldesign

Robustheit von Mikrokernen

e = Gewinn durch Adressraumisolation innerhalb des Kernels
v kein nichtvertrauenswiirdiger Code im Kernelspace, der dort

beliebige physische Adressen manipulieren kann
v Kommunikation zwischen nvw. Code (nicht zur zwischen
Anwendungstasks)muss durch IPC explizit hergestellt werden —
Uberwachung und Validierung zur Laufzeit
Kontrollfluss begrenzen: Zugriffssteuerung auch zwischen
Serverprozessen, zur Laufzeit unabhingiges Teilmanagement von
Code (Kernelcode) moglich (z.B.: Nichtterminierung erkennen)
Neu:
nvw. BS-Code muss nicht mehr im Kernelspace laufen
verbleibender Kernel: klein, funktional weniger komplex, leichter
zu entwickeln, zu testen, evtl. formal zu verifizieren
daneben: Adaptivitdt durch konsequentere Modularisierung des
Kernels gesteigert

A

N SNSe

Advanced Operating Systems

Mikrokernel: Mach

1975: Aleph (BS des ,,Rochester Intelligent Gateway”)
1979/81: Accent (verteiltes BS), CMU

Mach 3.0 (1989): einer der ersten praktisch nutzbaren pKerne
Ziel: API-Emulation (# Virtualisierung) von UNIX und

-Derivaten auf unterschiedlichen Prozessorarchitekturen
e mehrere unterschiedliche Emulatoren gleichzeitig lauffihig

— Emulation auflerhalb des Kernels o
— Komponente im Adressraum des Applikationsprogramms

— 1...n Server, unabhéngig von Applikationsprogramm

pKernel-Funktionen

1. Prozessverwaltung
2. Speicherverwaltung
3. IPC-und E/A-Dienste, einschlielich Gerétetreiber

unterstiitzte Abstraktionen (— API, Systemaufrufe):

1. Prozesse, Threads, Speicherobjekte
2. Ports (generisches, ortstransparentes Adressierungskonzept)

3. Botschaften, ... (sekundére, von den obigen genutzte
Abstraktionen)
Architektur

e Systemaufrufkosten:

— IPC-Benchmark (1995): i486 Prozessor, 50 MHz

— Messung mit verschiedenen Botschaftenldngen(x - Werte)

— ohne Nutzdaten (0 Byte Botschaftenlédnge): 115 us
(Tendenz unfreundlich ...)

e Bewertung aus heutiger Sicht:

— funktional komplex

— 153 Systemaufrufe

— mehrere Schnittstellen, parallele Implementierungen fiir
eine Funktion

— Adaptivitdt (Auswahl durch Programmierer)

— zukunftsweisender Ansatz .
— langsame und ineffiziente Implementierung

Lessons Learned

Umsetzung: Designkriterien weitgehend unbekannt

Folgen fiir Performanz und Programmierkomfort: [Heis19)]
,,complex”, | inflexible”, ,,slow”

wissen etwas iiber Kosten: IPC-Performanz, Kernelabstraktionen
wissen nichts iiber guten pKern-Funktionsumfang und gute
Schnittstellen

oo >0 0

L4
Analyse des Mach-Kernels:

1. falsche Abstraktionen
2. unperformante Kernelimplementierung

3. prozessorunabhingige Implementierung

L3 und L4

e Mikrokerne der 2. Generation
e vollstdndige Uberarbeitung des Mikrokernkonzepts
Second Generation

First generation Third generation

Eg Mach Eg L4 seLL.4
Memory Objects
Low-level FS, Memory-
Swapping mangmt
lbrary
T “Kernel memory |
Scheduling Scheduling Scheduling
absir. ; abstr. "TPC. VMU absir. |
180 syscalls ~ 7 syscalls ~ 3 SIZ/scalls
100 kLOC ~ 10 kLOC 9 kKLOC
100 s IPC ~ 1 pus IPC 0,2 — 1us IPC

5/16

Mikrokernel - Designprinzipien

e Was gehort in einen Mikrokern?

e Konzeptsicht — Funktionalitdt

e Implementierungssicht — Performanz
— 1. Generation: durch Performanzentscheidungen aufgeweicht
— Effekt in Praxis gegenteilig: schlechte (IPC-) Performanz

Designprinzipien fiir Mikrokernel-Konzept

1. System interaktive und nicht vollstdndig vertrauenswiirdige
Applikationen unterstiitzen (— HW-Schutz,-Multiplexing),
2. Hardware mit virtueller Speicherverwaltung und Paging

Designprinzipien

Autonomie Subsystem muss so implementiert werden, dass es von
keinem anderen Subsystem gestort oder korrumpiert werden kann

Integritéit Subsystem S; muss sich auf Garantien von Ss verlassen
kénnen. D.h. beide Subsysteme miissen miteinander
kommunizieren kénnen, ohne dass ein drittes Subsystem diese
Kommunikation storen, filschen oder abhoéren kann.

L4: Speicherabstraktion

o Adressraum: Abbildung, die jede virtuelle Seite auf einen
physischen Seitenrahmen abbildet oder als ,,nicht zugreifbar”
markiert

e Implementierung iiber Seitentabellen, unterstiitzt durch
MMU-Hardware

e Aufgabe des Mikrokernels (Schicht aller Subsysteme): muss
Hardware-Konzept des Adressraums verbergen und durch eigenes
Adressraum-Konzept iiberlagern

e Mikrokernel-Konzept des Adressraums:

— muss Implementierung von beliebigen virtuellen
Speicherverwaltungs-und -schutzkonzepten oberhalb des
Mikrokernels (d.h. in den Subsystemen) erlauben

— sollte einfach und dem Hardware-Konzept dhnlich sein

e Idee: abstrakte Speicherverwaltung

— rekursive Konstruktion und Verwaltung der Adressriume
auf Benutzer-(Server-)Ebene
— Mikrokernel stellt dafiir genau drei Operationen bereit:

grant(x) Server iibertrigt Seite z seines AR in AR von Empfinger
map(x) Server bildet Seite z seines AR in AR von Empfénger ab
flush(x) Server entfernt Seite x seines AR aus allen fremden AR

Hierarchische Adressriume

o Rekursive Konstruktion der Adressraumhierarchie .
e Server und Anwendungenkénnen damit ihren Klienten Seiten des

eigenen Adressraumes zur Verfiigung stellen
o Realspeicher: Ur-Adressraum vom pKernel verwaltet
e Speicherverwaltung, Paging... auflerhalb des p-Kernels realisiert

L4: Threadabstraktion

e Thread
— innerhalb eines Adressraumes ablaufende Aktivitéit
— Adressraumzuordnung essenziell fiir Threadkonzept
— Bindung an Adressraum: dynamisch oder fest
— Anderung einer dynamischen Zuordnung: darf nur unter
vertrauenswiirdiger Kontrolle erfolgen

o Designentscheidung

— Autonomieprinzip

— Konsequenz: Adressraumisolation

— entscheidender Grund zur Realisierung des
Thread-Konzepts innerhalb des Mikrokernels

IPC

e Interprozess-Kommunikation

— Kommunikation iiber Adressraumgrenzen
— vertrauenswiirdig kontrollierte Aufhebung der Isolation
— essenziell fiir (sinnvolles) Multitasking und -threading

o Designentscheidung

— Integritéatsprinzip
— vertrauenswiirdige Adressraumisolation im pKernel
— grundlegendes IPC-Konzepts innerhalb des Mikrokernels

Identifikatoren

o Thread-und Ressourcenbezeichner

— miissen vertrauenswiirdig vergeben und verwaltet werden

— essenziell fiir (sinnvolles) Multitasking und -threading

— essenziell fiir vertrauenswiirdige
Kernel-/Server-Schnittstellen

o Designentscheidung

— Integritétsprinzip
— ID-Konzept innerhalb des Mikrokernels

Lessons Learned

1. Ein minimaler Mikrokernel

e stellt Minimalmenge geeigneter Abstraktionen verfiigbar
e flexibel, um Implementierung beliebiger BS zu erméglichen
e Nutzung verschiedener Hardware-Plattformen

2. Geeignete, funktional minimale Mechanismen im pKern:

e Adressraum mit map-, flush-, grant-Operation
e Threadsinklusive IPC
e cindeutige Identifikatoren

3. Wahl der geeigneten Abstraktionen: kritisch fiir Verifizierbarkeit,
Adaptivitidt und optimierte Performanz des Mikrokerns

4. Bisherigen p-Kernel-Abstraktionskonzepte: ungeeignete, zu viele,
zu spezialisierte u. inflexible Abstraktionen

5. Konsequenzen fiir Mikrokernel-Implementierung

e miissen fiir jeden Prozessortyp neu implementiert werden
e deshalb prinzipiell nicht portierbar — L3-/L4-Prototypen:
99% Assemblercode

6. innerhalb eines Mikrokernels sind von Prozessorhardware
abhédngig

(a) grundlegende Implementierungsentscheidungen
(b) meiste Algorithmen u. Datenstrukturen

7. Fazit: Mikrokernel mit akzeptabler Performanz
hardwarespezifische Implementierung minimal erforderlicher vom
Prozessortyp unabhingiger Abstraktionen

8. L4 heute: Spezifikation Mikrokernels (nicht Implementierung)

Zwischenfazit

Begrenzung von Fehlerausbreitung (— Folgen von errors)
konsequent modularisierte Architektur aus Subsystemen
Isolationsmechanismen zwischen Subsystemen

statische Isolation auf Quellcodeebene — strukturierte
Programmierung

dynamische Isolation zur Laufzeit — private virtuelle
Adressriume

Architektur, welche diese Mechanismen komponiert: Mikrokernel
Adressraumisolation fiir sémtlichen nichtvertrauenswiirdigen Code
keine privilegierten Instruktionen in nvw. Code (Serverprozesse)
geringe GroBe (potenziell: Verifizierbarkeit) des Kernels

neben Robustheit: Modularitdtund Adaptivitdtdes Kernels
Behandlung von Ausfillen (— abstiirzende Gerétetreiber ...)

xX NSNS

Advanced Operating Systems

Micro-Reboots

e Kernelfehler potentiell fatal fiir gesamtes System
Anwendungsfehler nicht
kleiner Kernel = geringeres Risiko von Systemausfillen
BS-Code in Serverprozessen: verbleibendes Risiko unabhéngiger
Teilausfille von BS-Funktionalitit
e Erginzung zu Isolationsmechanismen notwendig

e Mechanismen zur Behandlung von Subsystem-Ausfillen

= Mechanismen zur Behandlung Anwendungs-, Server- und

Geritetreiberfehlen

— Micro-Reboots

e

Ansatz

kleinen (als fehlerfrei angenommenen) pKernel

BS-Funktionalitidt in bedingt vertrauenswiirdigen Serverprozessen
Treiber/Anwendungen in nicht vertrauenswiirdigen Prozessen
wollen Systemausfille verhindern durch Vermeidung von errors im
Kernel — héchste Prioritét

Treiber-und Serverausfille minimieren durch Verbergen ihrer
Auswirkungen — nachgeordnete Prioritéit (Best-Effort-Prinzip)

o Idee: Ausfille — Neustart durch spezialisierten Serverprozess

Beispiel-Betriebssystem: MINIX

e Ziel: robustes Betriebssystems
— Schutz gegen Sichtbarwerden von Fehlern(= Ausfille) fiir Nutzer
e Fokus auf Anwendungsdoménen: Einzelplatzrechner und
eingebettete Systeme
e Anliegen: Robustheit > Verstidndlichkeit > geringer HW-Bedarf

Architektur

Anwendungen I
Betriebssystem-Serverprozesse

user space

Geratetreiberprozesse

pKernel kernel space

e Anwendungen (wei}): Systemaufrufe im POSIX-Standard

e Serverprozesse (grau): IPC (botschaftenbasiert), mit Kernel:
spezielle MINIX-API (kernel calls), fiir Anwendungsprozesse
gesperrt

e Betriebssystem-Serverprozesse: Dateisystem (FS),
Prozessmanagement (PM), Netzwerkmanagement (Net)

e Reincarnation Server (RS) — Micro-Reboots jeglicher
Serverprozesse

e Kernelprozesse: systemtask, clocktask

Reincarnation Server

e Implementierungstechnik fiir Micro-Reboots
e Prozesse zum Systemstart (— Kernel Image)

system, clock Kernelprogramm
init Bootstrapping (Initialisierung rs), Fork der Login-Shell
rs Fork aller BS-Serverprozesse inkl. Gerétetreiber

Verfiigbarkeit

komplementére NFE zu Robustheit: Verfiigbarkeit (availability)
Verbesserung von Robustheit — Verbesserung von Verfiigbarkeit
Robustheitsmafinahmen hinreichend , nicht notwendig

weitere komplementire NFE: Robustheit — Sicherheit (security)
Definition: Grad, zu welchem ein System oder eine Komponente

funktionsfihig und zuginglich (erreichbar) ist, wann immer seine
Nutzung erforderlich ist (IEEE)

6/16

e Anteil an Laufzeit eines Systems, in dem dieses seine spezifizierte
Leistung erbringt

o CTotalUptime _ MTTF
Availability = 7o iTifetime = MTTFFMTTR

MTTR: Mean Time to Recovery, MTTF: Mean Time to Failure
Hochverfiigbarkeitsbereich (gefeierte ,,five nines” availability)
MafBnahmen: Robustheit, Redundanz, Ausfallmanagement

einige Verfiigbarkeitsklassen:
Verfiigbarkeit | Ausfallzeit pro Jahr | Ausfallzeit pro Woche

90% > 1 Monat ca. 17 Stunden
99% ca. 4 Tage ca. 2 Stunden
99,9% ca. 9 Stunden ca. 10 Minuten
99,99% ca. 1 Stunde ca. 1 Minute
99,999% ca. 5 Minuten ca. 6 Sekunden
99,9999% ca. 2 Sekunden << 1 Sekunde

QNX Neutrino: Hochverfiigbares Echtzeit-BS

Mikrokern-Betriebssystem

primires Einsatzfeld: eingebettete Systeme, z.B. Automobilbau
Mikrokernarchitektur mit Adressraumisolation fiir Geratetreiber
(begrenzt) dynamische Micro-Rebootsméglich

— Maximierung der Uptime des Gesamtsystems

High- Avalability-Manager Laufzeit-Monitor der
Systemdienste/ Anwendungsprozesse iiberwacht und neustartet —
pReboot-Server

High-Availability-Client-Libraries Funktionen zur transparenten
automatischen Reboot fiir ausgefallene Server-Verbindungen

Sicherheit

Terminologie

Security IT-Sicherheit, Informationssicherheit

e Ziel: Schutz des Rechnersystems
e Systemsicherheit, hier besprochen

Safety Funktionale Sicherheit, Betriebssicherheit

e Ziel: Schutz vor einem Rechnersystem
e an dieser Stelle nicht besprochen

Sicherheitsziele
e Rechnersystem sicher gegen Schiden durch zielgerichtete Angriffe,
insbesondere bzgl Informationen, die im System gespeichert,
verarbeitet und iibertragen werden
e fiir Sicherheitsziele gilt: Daten # Informationen
e sukzessive Konkretisierungen bzgl anwendungsspezifischer
Anforderungen

abstrakte auf konkret definierte Sicherheitsziele

Vertraulichkeit nur fiir einen autorisierten Nutzerkreis zugénglich
Integritidt vor nicht autorisierter Verdnderung geschiitzt
Verfiigbarkeit autorisierten Nutzern in angemessener Frist zugéinglich
Authentizitét Urheber eindeutig erkennen

Verbindlichkeit sowohl integer als auch authentisch

Schadenspotenzial
1. Vandalismus, Terrorismus (reine Zerstérungswut)
2. Systemmissbrauch

e illegitime Ressourcennutzung, hocheffektive Folgeangriffe
e Manipulation von Inhalten (— Desinformation)

3. (Wirtschafts-) Spionage und Diebstahl

e Verlust der Kontrolle iiber kritisches Wissen (—
Risikotechnologien)
e immense wirtschaftliche Schidden, z.B. Diebstahl von
industriellem Know-How
4. Betrug, persénliche Bereicherung (wirtschaftliche Schéiden)
5. Sabotage, Erpressung

e Auflerkraftsetzen lebenswichtiger Infrastruktur
e Erpressung durch reversible Sabotage

Bedrohungen
1. Eindringlinge (intruders), Hacker
e Angriff nutzt technische Schwachstelle aus (exploit)
2. Schadsoftware (malicious software, malware)

e (teil-) automatisierte Angriffe

e Trojanische Pferde: scheinbar niitzliche Software

e Viren, Wiirmer: Funktionalitit zur eigenen Vervielfiltigung
und/oder Modifikation

e Logische Bomben: trojanischen Pferde, deren Aktivierung
an System- oder Datumsereignisse gebunden

e Root Kits

3. Bots und Botnets

o (weit-) verteilt ausgefiihrte Schadsoftware
e cigentliches Ziel i.d.R. nicht das jeweils infizierte System

Professionelle Malware: Root Kit
e Programm-Paket, das unbemerkt Betriebssystem modifiziert, um
Administratorrechte zu erlangen
Voraussetzung: eine einzige Schwachstelle...
o ermoglichen Zugriff auf alle Funktionen und Dienste eines
Betriebssystems
e Angreifer erlangt vollstandige Kontrolle des Systems und kann

— Dateien (Programme) hinzufiigen bzw. dndern

— Prozesse iiberwachen

— iiber die Netzverbindungen senden und empfangen
— Hintertiiren fiir zukiinftiger Angriffe platzieren

e Ziele eines Rootkits

— seine Existenz verbergen
— zu verbergen, welche Verdnderungen vorgenommen wurden
— vollstdndige und irreversible Kontrolle iiber BS zu erlangen

e ecrfolgreicher Root-Kit-Angriff ...
— Jjederzeit, unentdeckbar, nicht reversibel
— systemspezifischem Wissen iiber Schwachstellen

— vollautomatisiert, also reaktiv unverhinderbar
— uneingeschriankte Kontrolle iiber Zielsystem erlangen

Schwachstellen

1. Passwort (erraten, zu einfach, Brute-Force, Abfangen)
2. Programmierfehler (Speicherfehler in

Anwenderprogrammen/Gerdtemanagern/Betriebssystem
3. Mangelhafte Robustheit

e keine Korrektur fehlerhafter Eingaben
e buffer overrun/underrun (,,Heartbleed”)
4. Nichttechnische Schwachstellen

e physisch, organisatorisch, infrastrukturell
e menschlich (— Erpressung, socialengineering)

Zwischenfazit
e Schwachstellen sind unvermeidbar
e Bedrohungen sind unkontrollierbar
e ... und nehmen tendeziell zu!
e fiihrt zu operationellen Risiken beim Betrieb eines IT-Systems
— Aufgabe der BS-Sicherheit: Auswirkungen operationeller Risiken
reduzieren
Sicherheitspolitiken
e Herausforderung: korrekte Durchsetzung von Sicherheitspolitiken
e Vorgehensweise: Security Engineering
Sicherheitsziele Welche Sicherheitsanforderungen muss BS erfiillen?
Sicherheitspolitik Durch welche Strategien soll es diese erfiillen?
Sicherheitsmechanismen Wie implementiert BS Sicherheitspolitik?

Sicherheitsarchitektur Wo implementiert BS S.-mechanismen?

Advanced Operating Systems

Sicherheitspolitiken und -modelle

Kritisch fiir korrekten Entwurf, Spezifikation, Implementierung

e Sicherheitspolitik (Policy): Menge von Regeln, zum Erreichen
eines Sicherheitsziels
e Sicherheitsmodell: formale Darstellung zur

— Verifikation ihrer Korrektheit
— Spezifikation ihrer Implementierung

Zugriffssteuerungspolitiken

Zugriffssteuerung (access control) Steuerung, welcher Nutzer oder
Prozess mittels welcher Operationen auf welche BS-Ressourcen
zugreifen darf

Zugriffssteuerungspolitik konkrete Regeln, welche die
Zugriffssteuerung in einem BS beschreiben

IBAC (Identity-based AC) Politik spezifiziert, welcher Nutzer an
welchen Ressourcen bestimmte Rechte hat

e Bsp.: ,,Nutzer Anna darf Brief.docx lesen”

TE (Type-Enforcement) Politik spezifiziert Rechte durch zuséitzliche
Abstraktion (Typen): welcher Nutzertyp an welchem
Ressourcentyp bestimmte Rechte hat

e Bsp.: ,,Nutzer vom Typ Administrator darf...”

MLS (Multi-Level Security) Politik spezifiziert Rechte, indem aus
Nutzern und Ressourcen hierarchische Klassen (Ebenen,
,,Levels”) gleicher Kritikalitét im Hinblick auf Sicherheitsziele
gebildet werden

e Bsp.: ,,Nutzer der Klasse nicht vertrauenswiirdig...”

DAC (Discretionary AC): Aktionen der Nutzer setzen die
Sicherheitspolitik durch. Typisch: Begriff des Eigentiimers von

BS-Ressourcen

e Bsp.: ,,Der Eigentiimer einer Datei &ndert...”

MAC (Mandatory AC, obligatorische Zugriffssteuerung) Keine
Beteiligung der Nutzer an der Durchsetzung einer (zentral

administrierten) Sicherheitspolitik

e Bsp.: ,,Anhand des Dateisystempfads bestimmt BS...”

Traditionell: DAC, IBAC
Auszug aus der Unix-Sicherheitspolitik:

es gibt Subjekte (Nutzer/Prozesse) und Objekte (Dateien,...)
jedes Objekt hat einen Eigentiimer

Eigentiimer legen Zugriffsrechte an Objekten fest (— DAC)

es gibt drei Zugriffsrechte: read, write, execute

je Objekt gibt es drei Klassen von Subjekten, mit individuellen
Zugriffsrechten: Eigentiimer, Gruppe, Rest

In der Praxis

e identitdtsbasierte (IBAC), wahlfreie Zugriffssteuerung (DAC)
hohe individuelle Freiheit der Nutzer bei Durchsetzung der Politik
e hohe Verantwortung

Modellierung: Zugriffsmatrix

e Access Control Matrix (acm): Momentaufnahme der globalen
Rechteverteilung zu einem definierten Zeitpunkt t

e Korrektheitskriterium: Wie kann sich dies nach t méglicherweise
andern...?

e Rechteausbreitung (privilege escalation): verursacht z.B. durch
Nutzeraktion (— DAC)

e Sicherheitseigenschaft: HRU Safety — Systemsicherheit

7/16

Modern: MAC, MLS
Sicherheitspolitik der Windows UAC (user account control)

e es gibt Subjekte (Prozesse) und Objekte (Dateisystemknoten)
e jedem Subjekt ist eine Integritdtsklasse zugewiesen:

Low nicht vertrauenswiirdig

Medium regulidre Nutzerprozesse, die Nutzerdaten manipulieren

High Administratorprozesse, die Systemdaten manipulieren

System (Hintergrund-) Prozesse, die ausschliellich
Betriebssystemdienste auf Anwenderebene implementieren

jedem Objekt ist analog eine dieser Integrititsklassen zugewiesen

e siamtliche DAC-Zugriffsrechte miissen mit einer Hierarchie der
Integritdtsklassen konsistent sein (— MAC)

e Nutzer kénnen Konsistenzanforderung selektiv auler Kraft setzen

(— DAC)

MAC-Modellierung: Klassenhierarchie
Beispiel Relation: <=

{(High, Medium), (High, Low), (Medium, Low), (High, High), (Low, Low)}

e reprisentiert Kritikalitat hinsichtlich der Integritit

e modelliert legale Informationsfliisse zwischen Subjekten und
Objekten — Schutz vor illegalem Uberschreiben

e leitet Zugriffsrechte aus Informationsfliissen ab: lesen/schreiben

Modellkorrektheit: Konsistenz

o Korrektheitskriterium: Garantiert die Politik, dass acm mit <
jederzeit konsistent ist? (BLP Security)

e clevation-Mechanismus: verandert nach Nutzeranfrage (— DAC)
sowohl acm als auch <— konsistenzerhaltend?

e anders: verdndern unmittelbar nur acm — konsistenzerhaltend?

Autorisierungsmechanismen
e Sicherheitsmechanismen: Datenstrukturen und Algorithmen,
welche Sicherheitseigenschaften eines BS implementieren
— Sicherheitsmechanismen benétigt man zur Herstellung jeglicher
Sicherheitseigenschaften
e Auswahl im Folgenden: Autorisierungsmechanismen und
-informationen
— Nutzerauthentisierung (Passwort-Hashing, ...)
— Autorisierungsinformationen (Metainformationen...)
— Autorisierungsmechanismen (Rechtepriifung, ...)
— kryptografische Mechanismen (Hashfunktionen, ...)

Traditionell: ACLs, SUID

Autorisierungsinformationen:

e miissen Subjekte (Nutzer) bzw. Objekte (Dateien, Sockets ...) mit
Rechten assoziieren — Implementierung der Zugriffsmatrix (acm),
diese ist:

— grofl (— Dateianzahl auf Fileserver)
— diinn besetzt
— in GréBe und Inhalt dynamisch verdnderlich

e Losung: verteilte Implementierung der acm als Spaltenvektoren,
deren Inhalt in den Objekt-Metadaten repriasentiert wird:
Zugriffssteuerungslisten (ACLs)

ACLs: Linux-Implementierung

e objektspezifischer Spaltenvektor = Zugriffssteuerungsliste
e Dateisystem-Metainformationen: implementiert in I-Nodes

Modell einer Unix acm ...

| lesen | schreiben | ausfiihren
Eigentiimer (u) ja ja ja
Gruppe (g) ja nein ja
Rest (o ja nein ja

e 3-clementige Liste, 3-elementige Rechtemenge
— 9 Bits
e Implementierung kodiert in 16-Bit-Wort: 111101101

Autorisierungsmechanismen: ACL-Auswertung
Subjekte = Nutzermenge besteht aus Anzahl registrierter Nutzer

e jeder hat eindeutige UID (userID), z.B. integer- Zahl
e Dateien & Prozesse mit UID des Eigentiimers versehen
— bei Dateien: Teil des I-Nodes

— bei Prozessen: Teil des PCB
— standardméfBiger Eigentiimer: der Ressource erzeugt hat

Nutzergruppen (groups)

e jeder Nutzer durch Eintrag in Systemdatei (/etc/group)
einer/mehreren Gruppen zugeordnet (— ACL: g Rechte)

Superuser oder root... hat grundsétzlich uneingeschriankte Rechte.

e UID =0
e darf alle Dateien im System lesen, schreiben, ausfithren
e unabhiingig von ACL

ACL-Implementierung Nutzerrechte — Prozessrechte
Durchsetzung: basiert auf Prozessrechten

e Annahme: Prozesse laufen mit UID des Nutzers, der sie gestartet
hat und reprisentieren Nutzerberechtigungen

e technisch: Nutzer beauftragt anderen Prozess, sich zu dublizieren
(fork()) und gewiinschte Programm auszufiihren (exec*())

e Vererbungsprinzip

Autorisierungsmechanismen: Set-UID
Rechtevererbung

konsequente

e Nutzer kénnen im Rahmen der DAC-Politik ACLs manipulieren
e Nutzer kénnen (i.A.) jedoch keine Prozess-UIDs manipulieren
e — und genau so sollte es gem. Unix-Sicherheitspolitik auch sein!

Hintergrund

e Unix-Philosophie ,, everything is a file ”: BS-Ressourcen wie
Sockets, E/A-Gerétehandler als Datei reprisentiert — identische
Schutzmechanismen zum reguldren Dateisystem

e somit: Autorisierungsmechanismen zur Begrenzung des Zugriffs
auf solche Geridte nutzbar

— root bzw. zweckgebundener Nutzer muss Eigentiimer sein
— ACL als rw- --- --- gesetzt sein
— Nutzerprozesse kénnten z.B. nicht drucken ...

o Losung: Mechanismus zur Rechtedelegation

— durch weiteres Recht in ACL: SUID-Bit (setUID)

— Programmausfiithrung modifiziert Kindprozess, so dass UID
des Programmeigentiimers seine Rechte bestimmt

— Technik: von UID abweichende Prozess-Metainformation
(— PCB) effektive UID (eUID) wird tatséchlich zur
Autorisierung genutzt

Strategie fiir sicherheitskritische Linux-Programme

e Eigentiimer root, SUID-Bit gesetzt
e per eUID delegiert root seine Rechte an genau solche
Kindprozesse, die SUID-Programme ausfiihren
— Nutzerprozesse konnen Systemprogramme ohne permanente
root-Rechte ausfithren

Weiteres Beispiel: passwd

erméglicht Nutzern Andern des (eigenen) Anmeldepassworts
Schreibzugriff auf /etc/shadow (Password-Hashes) erforderlich
Losung: ‘-rws rws r-x 1 root root 1 2005-01-20 10:00 passwd$
passwd-Programm wird mit root-Rechten ausgefiihrt und passwd
schreibt nur eigenen Passwort-Hash

Advanced Operating Systems

Modern: SELinux
e 2000er: sicherheitsfokussiertes Betriebssystemprojekt fiir NSA
e Implementierung des pKernel-Architekturkonzepts Flask
e heute: Open Source, Teil des mainline Linux Kernels
e Klassische UNIXoide: Sicherheitspolitik fest im Kernel
e Idee SELinux: Sicherheitspolitikals eigene BS-Abstraktion

— zentrale Datenstruktur fiir Regeln, die erlaubte Zugriffe auf
ein SELinux-System definiert

— erlaubt Modifikation und Anpassung an verschiedene
Sicherheitsanforderungen — NFE Adaptivitét ...

BS-Komponenten

e Auswertung: Security-Server, implementiert als
Linux-Kernelmodul — entscheidet iiber alle Zugriffe auf alle
Objekte

e Durchsetzung der Sicherheitspolitik: LSM Hooks

e Administration: geschrieben in Textform, muss zur Laufzeit in
Security Server installiert werden

Reprisentation der Sicherheitspolitik

e physisch: in spezieller Datei, die alle Regeln enthilt, die der

Kernel durchsetzen muss L
e Datei wird aus Menge von Quelldateien in einer

Spezifikationssprache fiir SELinux-Sicherheitspolitiken kompiliert
e ermoglicht anforderungsspezifische SELinux-Politiken: kénnen

sich von SELinux-System zum anderen wesentlich unterscheiden
e Politik wird widhrend des Boot-Vorgangs in Kernel geladen

Semantische Konzepte (Auswahl)

e Type Enforcement (TE): Typisierung von

— Subjekten: Prozesse
— Objekten der Klassen: Dateien, Sockets,
Geréateschnittstellen, ...

e Rechte delegation durch Retypisierung (vgl. Unix-SUID)

Autorisierungsinformationen Security Context:
Resprisentiert SELinux-Autorisierungsinformationen fiir jedes Objekt
(Semantik: Prozess bash ldauft mit Typ shell_t)

Autorisierungsregeln .. werden systemweit festgelegt in
dessen Sicherheitspolitik (— MAC)
Access Vector Rules

e Autorisierungsregeln basierend auf Subjek-/Objekttypen
e Zugriffe miissen explizit gewdhrt werden (default-deny)
e Semantik: Erlaube (”allow”) ...
— jedem Prozess mit Typ shell_t
— ausfiihrenden Zugriff (benétigt die Berechtigung execute)
— auf Dateien (also Objekte der Klassefile)
— mit Typ passwd-exec_t

Autorisierungsmechanismen: passwd Revisited

e Losung: Retypisierung bei Ausfiihrung
e Prozess wechselt in einen aufgabenspezifischen Typ passwd_t
— massiv verringertes Missbrauchspotenzial!

SELinux: weitere Politiksemantiken

e hier gezeigt: Uberblick iiber TE
e auBerdem relevant fiir SELinux-Politiken (und deren
Administration)

— Einschrinkung von erlaubten Typtransitionen (Welches
Programm darf mit welchem Typ ausgefiihrt werden?)
— weitere Abstraktionsschicht: rollenbasierte Regeln (RBAC)

8/16

— Schutz gegen nicht vertrauenswiirdige Nutzer

extrem feingranulare, anwendungsspezifische Sicherheitspolitik
zur Vermeidung von privilege escalation Angriffen
obligatorische Durchsetzung (— MAC, zusétzlich zu DAC)
Softwareentwicklung: Legacy-Linux-Anwendungen ohne
Einschrankung

Politikentwicklung und -administration komplex
MAC-Mechanismen ala SELinux sind heutzutage in vielerlei
Software bereits zu finden

O CE RN

Isolationsmechanismen
e bekannt: Isolationsmechanismen fiir robuste Betriebssysteme

— strukturierte Programmierung
— Adressraumisolation

e nun: Isolationsmechanismen fiir sichere Betriebssysteme

— krypto. Hardwareunterstiitzung: Intel SGX Enclaves
— sprachbasiert:
* streng typisierte Sprachen und managed code:
Microsoft Singularity
* speichersichere Sprachen (Rust) +
Adressraumisolation (uKernel): RedoxOS

— isolierte Laufzeitumgebungen: Virtualisierung

Intel SGX
o SGX: Software Guard Extensions
e Ziel: Schutz von sicherheitskritischen Anwendungen durch
vollstdndige, hardwarebasierte Isolation
e — strenggenommen kein BS-Mechanismus: Anwendungen miissen
dem BS nicht mehr vertrauen
e Annahmen/Voraussetzungen

1. sdmtliche Software nicht vertrauenswiirdig (potenziell durch
Angreifer kontrolliert)

2. Kommunikation mit dem angegriffenen System nicht
vertrauenswiirdig (weder vertraulich noch verbindlich)

3. kryptografische Algorithmen (Verschliisselung und Signierung)
sind vertrauenswiirdig, also nicht fiir den Angreifer zu brechen

4. Ziel: Vertraulichkeit, Integritit und Authentizitdt von
Anwendungen und durch sie verarbeiteten Informationen

Enclaves

e Idee: geschiitzter Speicherbereich fiir Teilmenge der Seiten (Code
und Daten) einer Task: Enclave Page Cache (EPC)
e Prozessor ver-und entschliisselt EPC-Seiten

ECREATE App — Syscall — BS-Instruktion an CPU
EADD App — Syscall — BS-Instruktion an CPU

e Metainformationen fiir jede hinzugefiigte Seite als Teil der
EPC-Datenstruktur

EINIT App. — Syscall — BS-Instruktion an CPU

e finalisiert gesamten Speicherinhalt fiir diese Enclave
e CPU erzeugt Hashwert = eindeutige Signatur des Enclave -

Speicherinhalts
nicht

EINIT

EADD

initialisiert/in

EREMOVE Benutzung

(Abb. nach [CoDef6))

e Zugriff: App — CPU-Instruk. in User Mode (EENTER, EEXIT)
o CPU erfordert, dass EPC-Seiten in vAR der zugreifenden Task

SGX: Licht und Schatten

Einfithrung 2015 in Skylake - Mikroarchitektur

seither in allen Modellen verbaut, jedoch nicht immer aktiviert
Konzept hardwarebasierter Isolation ...

liefert erstmals die Moglichkeit zur Durchsetzung von
Sicherheitspolitiken auf Anwendungsebene

setzt Vertrauen in korrekte (und nicht béswillige) Hardwarevoraus
Dokumentation und Entwicklerunterstiitzung (im Ausbau ...)
schiitzt durch Enclaves einzelne Anwendungen aber nicht System
steckt in praktischer Eigenschaften (Performanz, Speicher) noch
in den Anfingen

XxOO NNeeoeo

Sicherheitsarchitekturen
e Voraussetzung zum Verstehen jeder Sicherheitsarchitektur

— Verstehen des Referenzmonitorprinzips

— frithe Forschungen durch US-Verteidigungsministerium

— Schliisselversffentlichung: Anderson-Report (1972)

— fundamentalen Eigenschaften zur Charakterisierung von
Sicherheitsarchitekturen

e Begriffe des Referenzmonitorprinzips kennen wir schon

— Abgrenzung passiver Ressourcen (Objekte, z.B. Dateien)
— von Subjekten (aktiven Elementen, Prozess) durch BS

Referenzmonitorprinzip

— sémtliche Autorisierungsentscheidungen durch zentralen

Mechanismus = Referenzmonitor
e Bewertet jeden Zugriffsversuch eines Subjekts auf Objekt durch

Anwendung einer Sicherheitspolitik (security policy)

e Architekturbeschreibung, wie Zugriffe auf Ressourcen, die
Sicherheitspolitik erlaubt, eingeschrinkt werden

o Autorisierungsentscheidungen: basieren auf sicherheitsrelevanten
Eigenschaften jedes Subjekts und jedes Objekts

Referenzmonitor ist eine Architekturkomponenten, die

RM 1 bei sémtlichen Subjekt/Objekt-Interaktionen involviert sind —
Unumgehbarkeit (total mediation)

RM 2 geschiitzt sind vor unautorisierter Manipulation —
Manipulationssicherheit (tamperproofness)

RM 8 hinreichend klein und wohlstrukturiert sind, fiir formale
Analysemethoden — Verifizierbarkeit (verifyability)

Referenzmonitor in Betriebssystemen Nahezu alle
Betriebssysteme implementieren irgendeine Form eines Referenzmonitors
e Subjekte, Objekte
e Regeln einer Sicherheitspolitik charakterisiert
o Unumgehbarkeit, Manipulationssicherheit
e Verifizierbarkeit ihrer Sicherheitsarchitektur

Beispiel: Standard-Linux
e Subjekte (Prozesse) — haben reale Nutzer-Identifikatoren (UIDs)
Objekte (Dateien) — haben ACLs (,,rwxrw—-")

°
o Regeln der Sicherheitspolitik — hart codiert, starr
e Sicherheitsattribute, — Objekten zugeordnet, modifizierbar

Man beurteile die Politikimplementierung in dieser Architektur bzgl.
Unumgehbarkeit, Manipulationssicherheit und Verifizierbarkeit
Referenzmonitorimplementierung: Flask

Subjekt

l Zugriffsversuch

Objekt-
Manager

Security
Anfrage L
Scherheitspoiic

Entscheidung

Politk-
Durchsetzung

| agf. Zugriff
v

Objekt

(A nach Spen07] 130, B4 1)

https://www.redox-os.org/

Advanced Operating Systems

SELinux-Architektur: Security Server

e Security Server: Laufzeitumgebung fiir Politik in Schutzdoméne
des Kerns

e Objektmanager: implementiert in allen BS-Diensten mittels
,,Linux Security Module Framework ”

e Objektmanager zur Verwaltung verschiedener Objektklassen

e spiegeln Diversitidt und Komplexitdt von Linux BS-Abtraktionen
wider: Dateisysteme, Netzwerk, IPC, ...

e jedes Subsystem von SELinux zustidndig fiir

1. Erzeugung neuer Objekte
2. Zugriff auf existierende Objekte

e Beispiele: Prozess-Verwaltung, Dateisystem, Networking-System
Dateisystem als Objektmanager

e Durch Analyse von Linux - Dateisystem und zugehériger API
wurden zu iiberwachenden Objektklassen identifiziert

e ergibt sich unmittelbar aus Linux-API: Dateien, Verzeichnisse,
Pipes

e feingranularere Objektklassen fiir durch Dateien reprisentierte
Objekte (Unix: ,,everything is a file”)

Permissions (Zugriffsrechte)

e fiir jede Objektklasse: Menge an Permissions definiert, um
Zugriffe auf Objekte dieser Klasse zu kontrollieren
e Permissions: abgeleitet aus Dienstleistungen, die
Linux-Dateisystem anbietet
— Objektklassen gruppieren verschiedene Arten von
Zugriffsoperationen auf verschiende Arten von Objekten
e z.B. Permissions fiir alle ,,Datei”-Objektklassen (Auswahl ...)

Trusted Computing Base (TCB)

Begriff zur Bewertung von Referenzmonitorarchitekturen

= notwendige Hard-und Softwarefunktionen eines IT-Systems um
alle Sicherheitsregeln durchzusetzen
e besteht iiblicherweise aus

1. Laufzeitumgebung der Hardware (nicht E/A-Geriite)
2. verschiedenen Komponenten des Betriebssystem-Kernels
3. Benutzerprogrammen mit sicherheitsrelevanten Rechten

e Betriebssystemfunktionen, die Teil der TCB sein miissen,
beinhalten Teile des Prozess-, Speicher-, Datei-,
E/A-Managements

Echtzeitfahigkeit

Jedes System, bei dem der Zeitpunkt, zu dem der Output erzeugt wird,
von Bedeutung ist. Dies liegt in der Regel daran, dass die Eingabe einer
Bewegung in der physischen Welt entspricht und die Ausgabe sich auf
dieselbe Bewegung beziehen muss. Die Verzdgerung zwischen Eingabe-
und Ausgabezeit muss fiir eine akzeptable Aktualitéit ausreichend klein
sein.

Spektrum von Echtzeitsystemen

1. Regelungssysteme: z.B. eingebettete Systeme, Flugsteuerung
2. Endanwender-Rechnersysteme: z.B. Multimediasysteme
3. Lebewesen: Menschen, Tiere, z.B. Gesundheitsiiberwachung

e Murphy‘s Law: If something can go wrong, it will got wrong

e Murphy‘s Constant: Damage to an object is proportional to its
value

e Johnson‘s Law: If a system stops working, it will do it at the
worst possible time

e Sodd‘s Law: Sooner or later, the worst possible combination of
circumstances will happen

e Realisierung von Echtzeiteigenschaften: komplex und fragil

9/16

Antwortzeit Zeitintervall, das ein System braucht, um (irgend)eine
Ausgabe als Reaktion auf (irgend)eine Eingabe zu erzeugen
e bei EZS ist genau dieses At kritisch, d.h. je nach Art des
Systems darf dieses auf keinen Fall zu grof8 werden
e Frist (deadline) d, die angibt bis zu welchem Zeitpunkt
spéatestmoglich die Reaktion erfolgt sein muss, bzw. wie
grof3 das Intervall At maximal sein darf
Echtzeitfidhigkeit und Korrektheit o Wird genau dieses
maximale Zeitintervall in die Spezifikation eines Systems
einbezogen, bedeutet dies, dass ein Echtzeitsystem nur
dann korrekt arbeitet, wenn seine Reaktion bis zur
spezifizierten Frist erfolgt
e Frist trennt korrektes von inkorrektem Verhalten des
Systems
Harte und weiche Echtzeitsysteme
erfordern oft Unterscheidung
e hartes EZS: keine Frist jemals tiberschreiten
o weiches EZS: mafivolles Frist Uberschreiten tolerierbar

Frist

e Praktische Anwendungen

Charakteristika von Echtzeit-Prozessen
o reale Echtzeitanwendungen beinhalten periodische oder
aperiodische Prozesse (oder Mischung aus beiden)
e Periodische Prozesse

— zeitgesteuert (typisch: periodische Sensorauswertung)
— oft: kritische Aktivitdten — harte Fristen

e Aperiodische Prozesse

— ereignisgesteuert
— Abhiéngig von Anwendung: harte oder weiche Fristen

Periodische Prozesse (pP)

hiufigster Fall bei Echtzeit-Anwendungen
Prozessaktivierung ereignisgesteuert oder zeitgesteuert
Prozesse, die Eingangsdaten verarbeiten: meist ereignisgesteuert
Prozesse, die Ausgangsdaten erzeugen: meist zeitgesteuert
Fristen e hart oder weich (anwendungsabhéngig)
e innerhalb einer Anwendung sind sowohl Prozesse mit
harten oder weichen Fristen mdglich
e Frist: spitestens am Ende der aktuellen Periode, méglich
auch friithere Frist
Modellierung unendliche Folge identischer Aktivierungen: Instanzen,
aktiviert mit konstanter Rate (Periode)
Aufgaben des Betriebssystems e Wenn alle Spezifikationen
eingehalten werden, muss Betriebssystem garantieren, dass
e zeitgesteuerte pP: mit ihrer spezifizierten Rate aktiviert
werden und ihre Frist einhalten kénnen
e ereignisgesteuerte pP: ihre Frist einhalten kénnen

Aperiodische Prozesse (aP)

typisch fiir unregelméfig auftretende Ereignisse, z.B.:

o Uberfahren der Spurgrenzen, Unterschreiten des
Sicherheitsabstands — Reaktion des Fahrassistenzsystems
e Nutzereingaben in Multimediasystemen (— Spielkonsole)

Prozessaktivierung ereignisgesteuert

Fristen oft weich (aber anwendungsabhéngig)

Aufgaben des Betriebssystems unter Einhaltung der
Prozessspezifikationen muss BS fiir Einhaltung der Fristen sorgen

Modellierung bestehen ebenfalls aus (maximal unendlicher) Folge
identischer Aktivierungen (Instanzen); aber:
Aktivierungszeitpunkte nicht regelmifiig (moglich: nur genau eine
Aktivierung)

Parameter von Echtzeit-Prozessen

[c L LE] % c
7 7

t i t
E fi d a S;]

Ankunftszeitpunkt a; Prozess wird ablauffihig

Startzeitpunkt s; Prozess beginnt mit Ausfithrung

Beendigungszeitpunkt f; Prozess beendet Ausfithrung

Frist (deadline) d; Prozess sollte Ausfithrung spétestens beenden

Bearbeitungszeit (computation time) C; Zeit die Prozessor zur
Bearbeitung der Instanz benotigt (ohne Unterbrechungen)

Unpiinktlichkeit (lateness) L; = f; — d; Zeit um die Prozess
frither/spéter als Frist beendet

Verspiétung (exceeding time) E; = max(0, L;) Zeitbetrag, den ein
Prozess noch nach seiner Frist aktiv ist

Spielraum (Laxity) X; = d; — a; — C; maximale Verzdgerungszeit bis
Frist beendet werden kann (f; = d;)

criticality Konsequenzen einer Fristiiberschreitung (hart/weich)

Wert V; Ausdruck relativer Wichtigkeit eines Prozesses

Echtzeitfihige Betriebssysteme

1. Algorithmen, die Rechnersysteme echtzeitfihig machen

e grundlegende Algorithmen zum Echtzeitscheduling
e Besonderheiten der Interruptbehandlung
e Besonderheiten der Speicherverwaltung

2. Probleme, die behandelt werden miissen

e Prioritdtsumkehr

e Uberlast
e Kommunikation-und Synchronisationsprobleme

Echtzeitscheduling

Scheduling wichtigster Einflussfaktor auf Zeitverhalten des
Gesamtsystems
Echtzeit-Scheduling unter Beriicksichtigung der Fristen

Fundamentale/wichtigste Strategien

1. Ratenmonotones Scheduling (RM)
2. Earliest Deadline First (EDF)

Annahmen der Scheduling-Strategien

1. Alle Instanzen eines periodischen Prozesses t; treten regelméiflig
und mit konstanter Rate auf. Das Zeitintervall T; zwischen zwei
aufeinanderfolgenden Aktivierungen heifit Periode des Prozesses

2. Alle Instanzen eines periodischen Prozesses t; haben den gleichen
‘Worst-Case-Rechenzeitbedarf C;

3. Alle Instanzen eines periodischen Prozesses t; haben die gleiche
relative Frist D;, welche gleich der Periodendauer T ist

4. Alle Prozessesind kausal unabhingig voneinander (d.h. keine
Vorrang- und Betriebsmittel-Restriktionen)

5. Kein Prozess kann sich selbst suspendieren, z.B. E/A-Op

6. Alle Prozesse werden mit ihrer Aktivierung sofort rechenbereit

7. Jeglicher Betriebssystem-Overhead wird vernachldssigt

5-7 sind weitere Annahmen des Scheduling Modells

Ratenmonotones Scheduling (RM)

e Voraussetzung: nur periodische Prozesse/Threads
e Strategie RM

— Prozess/Thread mit hochster Ankunftsrate bekommt
hochste statische Prioritat

— Kriterium: Wie oft pro Zeiteinheit wird Prozess bereit?

— Scheduling-Zeitpunkt: nur einmal zu Beginn bzw. wenn
neuer periodischer Prozess auftritt

— praemptiv: keine Verdrangung gleicher Prioritdten

e Optimalitidt: Unter allen Verfahren mit festen Prioritdten
optimaler Algorithmus
o Prozessor-Auslastungsfaktor
n C;

— Bei Menge von n Prozessen U = 3 7" | =+t
=1T;

Advanced Operating Systems

— mit % Anteil an Prozessorzeit fiir jeden Prozess t;
— und Zeit U zur Ausfithrung der gesamten Prozessmenge

e Prozessorlast: U ist folglich Maf fiir die durch Prozessmenge
verursachte Last am Prozessor — Auslastungsfaktor
e Planbarkeitsanalyse einer Prozessmenge

— allgemein kann RM Prozessor nicht 100% auslasten
— kleinste obere Grenze des Auslastungsfaktors Uy
— lub: ,,least upper bound”

e Obere Auslastungsgrenze bei RM

1
— nach Buttazzo bei n Prozessen: Uy, = n(2n — 1)

— fiir n — oo konvergiert Ujyp zu In 2 = 0,6931...

— Wert nicht iiberschritten — beliebige Prozessmengen

Earliest Deadline First (EDF)

e Voraussetzung: kann periodische/aperiodische Prozesse planen

e Optimalitdt: EDF in Klasse der Schedulingverfahren mit
dynamischen Prioritédten: optimaler Algorithmus

e Strategie EDF

— Prozess mit frithester Frist hochste dynamische Prioritdt
— Scheduling-Zeitpunkt: Bereitwerden eines Prozesses
— préemptiv: keine Verdringung gleicher Prioritdten

e Planbarkeitsanalyse

— mit Regeln 1 — 7 max. Prozessorauslastung: Uj,p =1 —
Auslastung bis 100%

— Menge von n Tasks planbar: U = > | % <1

i

< U>1 iibersteigt die verfiigbare Prozessorzeit; folglich kann
niemals eine Prozessmenge mit dieser Gesamtauslastung
planbar sein

— Beweis durch Widerspruch. Annahme: U < 1 und die

Prozessmenge ist nicht planbar. Dies fiihrt zu einem
Schedule mit Fristverletzung zu einem Zeitpunkt to

Vergleich: EDF vs. RM

1-1 C D
1 n 1 v v vi Vil
72
EDF | A /Il B Il B 1V C 4 C \ D
/ A I A 4B Il B IV By C _V C % D
RM T T
11
0 5 10 15 20 t
(Abb. nach fInf-Handbuch97], Bild 3, S. 740)
e RM
— Prozessorwechsel: 16 . .
— im allgemeinen Fall nicht immer korrekte Schedules bei
100% Auslastung
— statisch Implementiert: jeweils eine Warteschlange pro
Prioritat
— Einfiigen und Entfernen von Tasks: O(1)
e EDF

— Prozessorwechsel: 12

— erzeugt auch bei Prozessorauslastung bis 100% (immer)
korrekte Schedules . .

— dynamisch Implementiert: balancierter Bindrbaum zur
Sortierung nach Prioritéiten

— Einfiigen und Entfernen von Tasks: O(log n)

Prozesstypen in Multimedia-Anwendungen

1. Echte periodische Multimedia-Prozesse (weiche Fristen)

(a) piinktliche periodische Prozesse mit konstantem
Prozessorzeitbedarf C fiir jede Instanz (unkomprimierte
Audio- und Videodaten)

10/16

(b) piinktliche periodische Prozesse mit unterschiedlichem C
einzelner Instanzen (komprimierte Audio- und Videodaten)
(c) unpiinktliche periodische Prozesse: verspétet/verfriihte

2. Prozesse nebenlidufiger Nicht-Multimedia-Anwendungen

e interaktiv: keine Fristen , keine zu langen Antwortzeiten
Ansatz, maximal tolerierbare Verzogerung

e Hintergrund: zeitunkritisch, keine Fristen, diirfen nicht
verhungern

RC Algorithmus

e Ziel: spezifikationstreue Prozesse nicht bestrafen durch
Fristiiberschreitung aufgrund abweichender Prozesse
o Idee

— grundsétzlich: Scheduling nach frithester Frist aufsteigend

— fiir vollstdndig spezifikationstreue Prozessmenge wie EDF

— Frist einer Instanz wird dynamisch angepasst: basierend auf
derjenigen Periode, in der sie eigentlich sein sollte

— Bsp: U; = % = 1 (spez. Aktivitiitsrate 0, 5/Periode)

e Variablen

- a;: Ankunftszeit der zuletzt bereitgewordenen Instanz
— tY'"": virtuelle verbrauchte Zeit in aktueller Periode
— ¢?""t: verbrauchte Netto-Rechenzeit

— d;: dynamische Frist von ¢; fiir Prioritit (EDF)
e Strategie

— fiir eine bereite (lauffihige) Instanz von t;: adaptiere
dynamisch d; basierend auf tf’”’t

— fiir eine bereit gewordene Instanz von t;: aktualisiere t?*"*
auf akt. Systemzeit (t) — etwaiger ,,Zeitkredit” verfillt

e Zeitpunkte, zu denen der Scheduler aktiv wird

— aktuell laufender Prozess t; blockiert: RC(t;)
— Prozesse t;...; werden bereit: for z € [i,j] : RC(¢t;)
— periodischer ,,clock tick” (Scheduling Interrupt) RC(¢;)

Umgang mit abweichenden Prozessen unter RC
Auswirkung auf verschiedene Prozesstypen

piinktlich Einhaltung der Frist in jeder Periode garantiert

verspétet nur aktuelle Periode betrachtet, Nachholen ,,ausgelassener
Perioden” nicht moglich

gierig Prozessorentzug, sobald andere lauffihige Prozesse friihere
Fristen aufweisen

nicht-periodische Hintergrundprozesse pro ,,Periode” wird
spezifizierte Prozessorrate garantiert

Umgang mit gemischten Prozessmengen

RM oder EDF
periodische Prozesse I

Teilwarteschlange mit hichster Prioritét

niedigste Prioritét

e rechenbereite Prozesse auf 2 Warteschlangen aufgeteilt (einfache
Variante eines Mehr-Ebenen-Scheduling)
e Warteschlange 1

— alle periodischen Prozesse
— mit hochster Prioritdt mittels RM oder EDF bedient

o Warteschlange 2

— alle aperiodischen Prozesse
— nur bedient, wenn keine wartenden Prozesse in W1

Hintergrund-Scheduling: Vor- und Nachteile

e Hauptvorteil einfache Implementierung
e Nachteile

— Antwortzeit aperiodischer Prozesse kann zu lang werden
— Verhungern moglich
— nur fiir relativ zeitunkritische aperiodische Prozesse

Optimierung: Server-Prozess

e Prinzip: periodisch aktivierter Prozess benutzt zur Ausfiihrung
aperiodischer Prozessoranforderungen

o Beschreibung Server-Prozess: durch Parameter dquivalent zu

wirklichem periodischen Prozess

Arbeitsweise Server-Prozess folgend

e geplant mit gleichem S-Algorithmus wie periodische Prozesse

e zum Aktivierungszeitpunkt vorliegende aperiodische
Anforderungen bedient bis zur Kapazitit des Servers

e keine aperiodischen Anforderungen: Server suspendiert sich bis
Beginn der nichsten Periode

e Kapazitit in jeder Server-Periode neu

?aufgeladen”

Optimierung: Slack-Stealing

Prinzip: passiver Prozess ,,slack stealer” (kein periodischer Server)
so viel Zeit wie moglich fiir aperiodische Anforderungen sammeln
realisiert durch ,,slackstealing” bei periodischen Prozessen
letztere auf Zeit-Achse so weit nach hinten geschoben, dass Frist
und Beendigungszeitpunkt zusammenfallen

e Sinnvoll, da Beenden vor Frist keine Vorteile bringt
— Verbesserung der Antwortzeiten fiir aperiodische Anforderungen

Prioritdtsumkehr

Mechanismen zur Synchronisation und Koordination sind héufige
Ursachen fiir kausale Abhéngigkeiten zwischen Prozessen

e kritischer Abschnitt: Sperrmechanismen stellen wechselseitigen
Ausschluss durch nebenlidufige Prozesse sicher

e Benutzung von exklusiven, nichtentziehbaren Betriebsmitteln

— Wenn ein Prozess einen kritischen Abschnitt betreten hat, darf er

aus diesem nicht verdrdngt werden

o Konflikt: kritische Abschnitte vs. Echtzeit-Prioritdten

o Prozess mit hoherer Prioritéit ablauffihig — muss abwarten bis
niederpriorisierter Prozess kritischen Abschnitt verlidsst

e (zeitweise) Prioritdtsumkehr moglich

Ursache der Prioritdtsumkehr

[nomaler Prozessablauf

B gemeinsamer kritischer 7y blockiert fiir t, — t;

Abschnitt
o a
Prioritéts-
umkehr
l:_ I [
23
Prioritat(r;) > Prioritat(z) t B s e unaczoon era 73,5, 183

e Prioritdtsumkehr bei Blockierung an nichtentziehbarem,
exklusivem Betriebsmittel
e — unvermeidlich

Folgen der Prioritdtsumkehr

e Kritisch bei zusétzlichen Prozessen mittlerer Prioritét

[0 normer Prozessablau Prioritat(r,) > Prioritét(z) > Prioritat(z)

W gomoinsamer kischer Abschit
o blockiert fir ts ~ t;

e[

-—>

[| & unkontroliorbar, vermidbatt
o = | =

° bt &t f st t

e Losung: Priority Inheritance Protocol (PIP)

T

Advanced Operating Systems

Uberlast
e Definition: kritische Situation, bei der benétigte Menge an
Prozessorzeit die Kapazitit des vorhandenen Prozessors
iibersteigt

— nicht alle Prozesse kénnen Fristen einhalten
e Hauptrisiko: kritische Prozesse kénnen Fristen nicht einhalten —

Gefidhrdung funktionaler und anderer nichtfkt. Eigenschaften (—
harte Fristen!)

e Stichwort: ,,graceful degradation” statt unkontrollierbarer
Situation — Wahrung von Determinismus

Wichtigkeit eines Prozesses

e Unterscheidung zwischen Zeitbeschrinkungen (Fristen) und
tatsidchlicher Wichtigkeit eines Prozesses fiir System

e Wichtigkeit eines Prozesses ist unabhéngig von seiner
Periodendauer und irgendwelchen Fristen

e z.B. kann Prozess trotz spéterer Frist wichtiger als anderer mit
fritherer Frist sein

Umgang mit Uberlast: alltigliche Analogien

1. Weglassen weniger wichtiger Aktionen (kein Friihstiick...)
2. Verkiirzen von Aktivitdten (Katzenwésche...)
3. Kombinieren (kein Friihstiick + Katzenwische + ungekdmmt)

Wichtung von Prozessen

e Parameter V fiir jeden Prozess/Thread einer Anwendung

e spezifiziert relative Wichtigkeit eines Prozesses/Thread im
Verhiltnis zu anderen der gleichen Anwendung

e bei Scheduling: V stellt zusitzliche Randbedingung (primér:
Prioritidt aufgrund von Frist, sekundér: Wichtigkeit)

Obligatorischer und optionaler Prozessanteil

o Aufteilung der Gesamtberechnung eines Prozesses in zwei Phasen
o Moglichkeit der Nutzung des anpassbaren Prozessorzeitbedarfs
e Bearbeitungszeitbedarf eines Prozesses zerlegt in

1. obligatorischer Teil: unbedingt und immer ausfithren —
liefert bedingt akzeptables Ergebnis

2. optionaler Teil: nur bei ausreichender Lapazitit ausfithren
— verbessert erzieltes Ergebnis

e Prinzip in unterschiedlicher Weise verfeinerbar

Echtzeit-Interruptbehandlung

e Fristiiberschreitung durch ungeeignete Interruptbearbeitung

e Interrupt wird nur registriert (deterministischer Zeitaufwand)

e tatsidchliche Bearbeitung der Interruptroutine muss durch
Scheduler eingeplant werden — Pop-up Thread

Echtzeit-Speicherverwaltung
e Hauptanliegen: Fristen einhalten
e unkontrollierbare Verzogerungen der Prozessbearbeitung
vermeiden
o Ressourcenzuordnung, deswegen:
1. keine Ressourcen-Zuordnung ,,on-demand” sondern
,,Pre-Allokation” (=Vorab)
2. keine dynamische Ressourcenzuordnung, sondern
Zuordnung maximal bendtigter Menge bei Pre-Allokation

Hauptspeicherverwaltung

e bei Anwendung existierender Paging-Systeme

e durch unkontrolliertes Ein-/Auslagern ,,zeitkritischer” Seiten
(-inhalte): unkontrollierbare Zeitverzégerungen moglich

e Technik: ,,Festnageln” von Seiten im Speicher (Memory Locking)

11/16

Sekundéirspeicherverwaltung

e Primirziel: Wahrung der Echtzeitgarantien

— naheliegend: EA-Scheduling nach Fristen — EDF
— fiir Zugriffsreihenfolge auf Datenblécke: lediglich deren
Fristen maflgebend (weitere Regeln existieren nicht)

e Resultat bei HDDs

— ineffiziente Bewegungen der Lese-/Schreibkopfe
— nichtdeterministische Positionierzeiten
— geringer Durchsatz
e Fazit: Echtzeit-Festplattenscheduling — Kompromiss zwischen
Zeitbeschrankungen und Effizienz
e bekannte Lésungen: Modifikation/Kombination von EDF

— realisierte Strategien:

1. SCAN-EDF (Kopfbewegung in eine Richtung bis
Mitte-/Randzylinder; EDF iiber alle angefragten Blécke in dieser
Richtung)

Group Sweeping (SCAN nach Fristen gruppenweiser Bedienung)
Mischstrategien

W

e Vereinfachung: o.g. Algorithmen i.d.R. zylinderorientiert
— Dberiicksichtigen bei Optimierung nur Positionierzeiten
(Positionierzeit meist >> Latenzzeit)

Ubertragungzeit Positionierzeit

mechanisch: Armbewegung

m mit
i\ Lese/Schreibkopfen
B

Latenzzeit
mechanisch: Fest-
plattendrehung

Kommunikation und Synchronisation

e zeitlichen Nichtdeterminismus vermeiden:
Interprozess-Kommunikation

— Minimierung blockierender Kommunikationsoperationen
— indirekte Kommunikation — Geschwindigkeitsausgleich
— keine FIFO-Ordnungen (nach Fristen priorisieren)

e Synchronisation: keine FIFO-Ordnungen

Cyclic Asynchronous Buffer (CAB)

O neu, ungelesen
© alt, ungelesen
O gelesen

Sender —>
(aberschreit)

Kommunikation zwischen 1 Sender und n Empfingern

e nach erstem Schreibzugriff: garantiert niemals undefinierte
Wartezeiten durch Blockierung von Sender/Empfinger

e Lesen/Uberschreiben in zyklischer Reihenfolge:

e Most-Recently-Written (MRW) Zeiger auf jiingstes, durch Sender
vollstdndig geschriebenes Element

e Least-Recently-Written (LRW) Zeiger auf dltestes durch Sender
geschriebenes Element

e sowohl MRW als auch LRW kénnen ausschlieBlich durch Sender
manipuliert werden — keine inkonsistenten Zeiger durc
konkurrierende Schreibzugriffe

o sowohl MRW als auch LRW zeigen niemals auf ein Element, das
gerade geschrieben wird — keine inkonsistenten Inhalte durch
konkurrierende Schreib-/Lesezugriffe

o Regeln fiir Sender

— muss nach jedem Schreiben MRW auf geschriebenes
Element setzen
— muss bevor LRW geschrieben wird LRW inkrementieren

e Regel fiir Empfinger: muss immer nach Lesen von MRW als
nichstes LRW anstelle des Listennachbarn lesen

Sonderfall 1: Empfinger schneller als Sender

e nach Zugriff auf MRW muss auf Lesesequenz bei LRW fortgesetzt
werden — transparenter Umgang mit nicht-vollem Puffer

o Abschwichung der Ordnungsgarantien:Empfianger weifl nur, dass
Aktualitdt der Daten zwischen LRW und MRW liegt

e Empfinger niemals durch leeren Puffer blockiert

Sonderfall 2: Sender schneller als Empfianger

e Schreiben in Puffer in Reihenfolge der Elemente — keine
blockierenden Puffergrenzen — niemals Blockierung des Senders
e keine Vollstandigkeitsgarantien: Empfinger kann nicht sicher sein,
eine temporal stetige Sequenz zu lesen
— Szenarien, in denen Empfinger sowieso nur an aktuellsten Daten
interessiert (z.B. Sensorwerte)

Konkurrierende Zugriffe

e ... sind durch Empfinger immer unschédlich (da lesend)

e ... miissen vom Sender nach Inkrementieren von LRW
nicht-blockierend erkannt werden (Semaphormodell ungeeignet)

e schnellerer Sender iiberspringtein gesperrtes Element durch
erneutes Inkrementieren von LRW, MRW muss nachziehen

Architekturen
e miissen Echtzeitmechanismen unterstiitzen; ermdoglicht
entsprechende Strategien zur Entwicklungs-oder Laufzeit
e miissen funktional geringe Komplexitit aufweisen — theoretische
und praktische Beherrschung von Nichtdeterminismus
e Architekturen fiir komplementire NFE

— Sparsamkeit — hardwarespezifische Kernelimplementierung
— Adaptivitdt — pKernel, Exokernel

e zu vermeiden
— starke HW-Abstraktion — Virtualisierungsarchitekturen

— Kommunikation und Synchronisationskosten — verteilte BS
— Hardwareunabhingigkeit und Portabilitdt — vgl. Mach

Beispiel-Betriebssysteme
VRTX (Versatile Real-Time Executive)

e Entwickler: Hunter & Ready

Eckdaten: Makrokernel . . .
war erstes kommerzielles Echtzeitbetriebssystem fiir eingebettete

Systeme
e Nachfolger (1993 bis heute): Nucleus RTOS (Siemens)
e Anwendung: Eingebettete Systeme in Automobilen, Mobiltelefone
e Einsatzgebiete im Hubble-Weltraumteleskop

VxWorks

Entwickler: Wind River Systems (USA)

Eckdaten: modularer Makrokernel
Erfolgsfaktor: POSIX-konforme API

dhnlich QNX: | skalierbarer” Kernel, zuschneidbar auf
Anwendungsdomine (— Adaptivitdtsansatz)
Anwendung: eingebettete Systeme, Luft-und Raumfahrt,
Unterhaltungselektronik

e Einsatzgebiete: NASA Mars Rover, SpaceX Dragon

DRYOS

Entwickler: Canon Inc.
Eckdaten: Mikrokernel(GroBe: 16 kB)

Echtzeit-Middleware (Geritetreiber — Objektive)
Anwendungen: AE-und AF-Steuerung/-Automatik, GUI,
Bildbearbeitung, RAW-Konverter, ...

o POSIX-kompatible Prozessverwaltung

DROPS (Dresden Real-Time Operating System)

e Entwickler: TU Dresden, Lehrstuhl Betriebssysteme
e Eckdaten: Multi-Server-Architektur auf Basis eines L4-Mikrokerns

Advanced Operating Systems

Adapt1v1t at (Flexibility)

als unmittelbar geforderte NFE: eingebettete Systeme, Systeme in

garstiger Umwelt
e diese Anwendungsdominen fordern typischerweise auch andere
wesentliche NFE
— Adaptivitiat als komplementire NFE zur Forderung von

Robustheit funktionale Adaptivitdtdes BS reduziert Kernelkomplexitit

Sicherheit TCB-Grofle — Verifizierbarkeit, adaptive Reaktion auf
Bedrohungen

Echtzeitfihigkeit adaptives Scheduling/Uberlast/Interruptbehandlung

Performanz Last-und Hardwareadaptivitit

Erweiterbarkeit von Abstraktionen, Schnittstellen, Multiplexing

‘Wartbarkeit Anpassung des BS an Anwendungen, nicht umgekehrt

Sparsamkeit Lastadaptivitit, adaptive Datenstrukturen

e Begriff
— Fahigkeit eines Systems, sich an breites Spektrum
verschiedener Anforderungen anzupassen
= so gebaut, dass breites Spektrum verschiedener nicht
funktionaler Eigenschaften unterstiitzt
— letztere: komplementér zur allgemeinen NFE Adaptivitéit

e Adaptivitidt jeweils anhand komplementirer Eigenschaften
dargestellt:

— Exokernel: {Adaptivitit}U{Performanz,
Echtzeitfihigkeit, Wartbarkeit, Sparsamkeit }

— Virtualisierung: {Adaptivitit}U{Wartbarkeit, Sicherheit,
Robustheit}

— Container: {Adaptivitiat}U{Wartbarkeit, Portabilitét,
Sparsamkeit }

e Beispielsysteme

— Exokernel OS: Aegis/ExOS, Nemesis, MirageOS
— Virtualisierung: Vmware, VirtualBox, Xen
— Containersoftware: Docker

Exokernelarchitektur
e Grundfunktion von Betriebssystemen

— physische Hardware darstellen als abstrahierte Hardware
mit komfortableren Schnittstellen

— Schnittstelle zu Anwendungen (API): Abstraktionen der
Hardware

e Problem: Implementierungsspielraumfiir Anwendungen wird
begrenzt

1. Vorteile doménenspezifischer Optimierungender
Hardwarebenutzung kénnen nicht ausgeschopft werden —
Performanz, Sparsamkeit

2. die Implementierung existierender Abstraktionen kann bei
verdnderten Anforderungen nicht an Anwendungen
angepasst werden — Wartbarkeit

3. Hardwarespezifikationen, insbesondere des Zeitverhaltens
(E/A, Netzwerk etc.), werden von Effekten des
BS-Management iiberlagert — Echtzeitfiahigkeit

Exokernelmechanismen

User Space
Library-Betriebssysteme

Kemel Space { | | = R |

fiir Appy

|
i physische Hardware i Hardware

e Trennung von Schutz und Abstraktion der Ressourcen
e Ressourcen-Schutz und -Multiplexing verbleibt beim Kernel
e Ressourcen-Abstraktion Aufgabe der Library-Betriebssysteme

12/16

— autonome Management-Strategien durch in Anwendungen
importierte Funktionalitit

1. systemweit(durch jeweiliges BS vorgegebene) starre
Hardware-Abstraktionen vermieden X .
2. anwendungsdoménenspezifische Abstraktionen sehr einfach

3. (Wieder-) Verwendung eigener/fremder
Managementfunktionalitit wesentlich erleichtert —
komplementéire NFEn (Performanz, Sparsamkeit, ...)

e Funktion des Exokernels

— Prinzip: definiert Low-level-Schnittstelle (so hardwarenah
wie moglich)

— Adressierung ermoéglichen ohne Informationen iiber Seiten,
Segmente, Paging-Attribute, ...

— Library-Betriebssysteme: implementieren darauf jeweils
geeignete anwendungsnahe Abstraktionen

— Anwendungsprogrammierer: wihlen geeignete
Library-Betriebssysteme bzw. schreiben ihre eigenen
Exokernelmechanismen

e prinzipielle Exokernelmechanismen am Beispiel Aegis/ExOS

implementiert Multiplexing der Hardware-Ressourcen
exportiert geschiitzte Hardware-Ressourcen

e minimal: drei Arten von Mechanismen

Secure Binding erlaubt geschiitzte Verwendung von Hardware-
Ressourcen durch Anwendungen, Behandlung von Ereignissen

Visible Resource Revocation beteiligt Anwendungen am Entzug von
Ressourcen mittels (kooperativen) Ressourcen-Entzugsprotokolls

Abort-Protokoll erlaubt ExokernelBeendigung von
Ressourcenzuordnungen bei unkooperativen Applikationen

Secure Binding

e Schutzmechanismus, trennt Autorisierung zur Benutzung einer
Ressource von tatsdchlicher Benutzung

e implementiert fiir Exokernel erforderliches Zuordnungswissen von
(HW-)Ressource zu Mangement-Code

e — ”Binding” in Aegis implementiert als Unix-Hardlink auf
Metadatenstruktur zu einem Gerédt im Kernelspeicher

e Zur Implementierung benétigt

— Hardware-Unterstiitzung zur effizienten Rechtepriifung
(HW-Caching)

— Software-Caching von Autorisierungsentscheidungen im
Kernel

— Downloading von Applikationscode in Kernel zur effizienten

Durchsetzung

e . Secure Binding” erlaubt Exokernel Schutz von Ressourcen ohne
deren Semantik verstehen zu miissen

Visible Resource Revocation

monolithische BS: entziehen Ressourcen ,,unsichtbar”, d.h. transparent
fiir Anwendungen

e Vorteil: im allgemeinen geringere Latenzzeiten, einfacheres und
komfortableres Programmiermodell
e Nachteil: Anwendungen erhalten keine Kenntnis iiber Entzug
— erforderliches Wissen fiir Management-Strategien

Exokernel-BS: entziehen Ressourcen ,,sichtbar” — Dialog zwischen

Exokernel und Library-BS

e Vorteil: effizientes Management durch Library-BS mdoglich
e Nachteil: Performanz bei sehr hdufigem Entzug, Verwaltungs-und
Fehlerbehandlungsstrategien zwischen verschiedenen Library-BS
miissen korrekt und untereinander kompatibel sein...
— Abort-Protokoll notwendig, falls dies nicht gegeben ist

Abort-Protokoll

o Ressourcenentzug bei unkooperativen Library-Betriebssystemen
e notwendig aufgrund von Visible Ressource Revocation
e Dialog:

— Exokernel: ,,Bitte Seitenrahmen x freigeben.”

— Library-BS: ,,...”

— Exokernel: ,,Seitenrahmen x innerhalb von 50 us freigeben”
— Library-BS: ,,...”

— Exokernel: (fiihrt Abort-Protokoll aus)

— Library-BS: X (,,Abort” hier Prozess terminieren)

e harte Echtzeit-Fristen in wenigsten Anwendungen beriicksichtigt
— Abort = nur Widerruf der Secure Bindings, nicht Terminierung
— anschliefend: Informieren des entsprechenden Library-BS
e ermoglicht sinnvolle Reaktion des Library-BS
e bei zustandsbehafteten Ressourcen: Exokernel kann Zustand auf
Hintergrundspeicher sichern — Management-Informationen zum
Aufriumen durch Library-BS

Aegls mit Library-OS ExOS

sehr effiziente Exokerne, begrenzte Anzahl einfacher
Systemaufrufe (10) und Kernel-interne Primitiven

e sicheres Hardware-Multiplexing auf niedriger Abstraktionsebene
(,,Jow-level”) mit geringem Overhead

e trad. Abstraktionen (VMM, IPC) auf Anwendungsebene effizient
implementierbar — einfache Erweiter-/Spezialisierbarkeit

e hochspezialisierte Implementierungen von Abstraktionen
generierbar

e geschiitzte Kontrollflussiibergabe: als IPC-Primitive im
Aegis-Kernel, 7-mal schneller als zuvor

e Ausnahmebehandlung bei Aegis: 5-mal schneller als bei damals
bester Implementierung

e durch Aegis: Flexibilitdt von ExOS, mit Mikrokernel nicht

erreichbar X X
o Aegis erlaubt Anwendungen Konstruktion effizienter

IPC-Primitiven (ApKernel: nicht vertrauenswiirdige
Anwendungen koénnen keinerlei spezialisierte IPC-Primitiven
nutzen)

Xok mit Library-OS ExOS

e fiir x86-Hardware implementiert

e Kernel-Aufgaben: Multiplexing von Festplatte, Speicher,
Netzwerk,...

e Standard Lib-BS (wie Aegis): ExOS ,,Unix as a Library”

e hochperformant

o Abstraktionen und Operationen auf Exokernel-Basis

e Secure Bindings fiir Metadaten-Modifikation

Fazit Exokernelarchitektur
o Abstraktionen und Mechanismen des Betriebssystems kénnen den
Erfordernissen der Anwendungen angepasst werden
— Ergebnis: betrichtliche Performanzsteigerungen

Performanz, Sparsamkeit ermoglicht direkte HW-Benutzung und
Effizienzoptimierung

Wartbarkeit Hardwareabstraktionen flexibel an Anwendungsdomé&nen
anpassbar, ohne BS modifizieren/wechseln

Echtzeitfahigkeit Zeitverhalten des Gesamtsystems durch direkte
Steuerung der Hardware weitestgehend kontrollierbar

Idee

e User-Space: anwendungsspezifische Hardwareabstraktionen
e Kernel-Space: nur Multiplexing und Schutz der HW-Schnittstellen
e Praxis: kooperativer Ressourcenentzug zwischen Kernel, Lib. OS

Ergebnisse

hochperformante Hardwarebenutzung durch spez. Anwendungen
funktional kleiner Exokernel (— Sparsamkeit, Korrektheit)
flexible Nutzung problemgerechter HW-Abstraktionen

keine Isolation von Anwendungen — Parallelisierbarkeit: teuer
und schwach— keine Robustheit und Sicherheit der Anwendungen

Advanced Operating Systems

Virtualisierung
VM, VM, VM, VM,

API, APl

BB

‘ Virtualisierungssoftware ‘

virtueller
Kernel Mode

virtueller
User Mode

===

/==

| physische Hardware \

— auf gleicher Hardware mehrere unterschiedliche Betriebssysteme
ausfithrbar machen
Ziele von Virtualisierung

e Adaptivitdt (dhnlich wie Exokernen)
o Wartbarkeit
e Sicherheit
— Isolation von Anwendungs-und Kernelcode durch getrennte
Adressrdume
— Einschriankung der Fehlerausbreitung — angreifbare
Schwachstellen
— Uberwachung der Kommunikation zwischen Teilsystemen
— Sandboxing (vollstindig von logischer Ablaufumgebung
isolierte Software)

e Robustheit: siehe Sicherheit

Architekturvarianten - drei unterschiedliche Prinzipien:

1. Typ-1-Hypervisor (frither: VMM - ,,Virtual Machine Monitor”)
2. Typ-2-Hypervisor
3. Paravirtualisierung

Typ-1-Hypervisor
e Idee des Typ-1-Hypervisors:

— Multiplexing & Schutz der Hardware (ermdoglicht
Multiprozess-Betrieb)

— abstrahierte Maschine mit ,,angenehmerer” Schnittstelle als
die reine Hardware (z.B. Dateien, Sockets, Prozesse, ...)

e Typ-1-Hypervisor trennt beide Kategorien

— lduft wie ein Betriebssystem unmittelbar {iber der Hardware

— bewirkt Multiplexing der Hardware, liefert aber keine
erweiterte Maschine an Anwendungsschicht

— ,,Multi-Betriebssystem-Betrieb”

e Bietet mehrmals die unmittelbare Hardware-Schnittstelle an,
wobei jede Instanz eine virtuelle Maschine jeweils mit den
unveréanderten Hardware-Eigenschaften darstellt

e Urspriinge: Time-Sharing an Grofirechnern

e heute: Forderungen nach Virtualisierung von Betriebssystemen

— universeller Einsatz des PC fiir Einzel- und
Serveranwendungen — verénderte Anforderungen an
Virtualisierung

— Wartbarkeit: vor allem 6konomische Griinde

1. Anwendungsentwicklung und -bereitstellung
(Lizenzkosten)

2. Administration: einfache Sicherung, Migration
virtueller Maschinen

3. Legacy-Software

— spéter: Sicherheit, Robustheit — Cloud-Computing
e ideal hierfiir: Typ-1-Hypervisor
v Gast-BS angenehm wartbar

v Softwarekosten beherrschbar
Anwendungen isolierbar

Hardware-Voraussetzungen

e Ziel: Nutzung von Virtualisierung auf PC-Hardware

13/16

o systematische Untersuchung der Virtualisierbarkeit von
Prozessoren bereits 1974 durch Popek & Goldberg

— Gast-BS (aus Sicht der CPU im User Mode) muss sicher
sein konnen, dass privilegierte Instruktionen
(Maschinencode im Kernel) ausgefiihrt werden

— dies geht nur, wenn tatsachlich der HV diese Instruktionen
ausfiihrt

— dies geht nur, wenn CPU bei jeder solchen Instruktion im
Nutzermodus Kontextwechsel zum HV ausfithren, welcher
Instruktion emuliert

e virtualisierbare Prozessoren bis ca. 2006:

v IBM-Architekturen (PowerPC, bis 2006 Apple-Standard)
X Intel x86-Architekturen (386, Pentium, teilweise Core i)

Privilegierte Instruktionen ohne Hypervisor

1. User Mode: Anwendung bereitet Befehl und Parameter vor

2. User Mode: Privilegierte Instruktion — CPU veranlasst
Kontext-und Privilegierungswechsel, Ziel: BS-Kernel

3. Kernel Mode: BS-Dispatcher behandelt Befehl und Parameter,
ruft weitere privilegierte Instruktionen auf

Privilegierte Instruktionen mit Typ-1-Hypervisor

1. User Mode: Anwendung bereitet Befehl und Parameter vor

2. User Mode: Trap — Kontext-und Privilegierungswechsel, Ziel:
Typ-1-HV

3. Kernel Mode: HV-Dispatcher ruft Dispatcher im Gast-BS auf

4. User Mode: BS-Dispatcher behandelt Befehl und Parameter, ruft
weitere privilegierte Instruktionen auf — Kontext-und
Privilegierungswechsel, Ziel: Typ-1-HV

5. Kernel Mode: HV fiihrt privilegierte Instruktionen anstelle des
Gast-BS aus

Sensible und privilegierte Instruktionen

e Maschinenbefehlen, die nur im Kernel Mode ausgefiihrt werden
diirfen — sensible Instruktionen

Maschinenbefehlen im User Mode, die Wechsel des
Privilegierungsmodus auslésen — privilegierte Instruktionen
Prozessor virtualisierbar falls sensible Instr. C privilegierte Instr.
Befehl im UserM. nicht erlaubt — 16st Privilegierungswechsel aus
kritische Instruktionen = sensible Instr. \ privilegierte Instr.
Beispiele fiir sensible Instruktionen bei Intel x86: mov auf
Steuerregistern

Folgen fiir Virtualisierung

privilegierte Instruktionen bei virtualisierbaren Prozessoren

e bei Ausfithrung einer privilegierten Instruktion in virtueller
Maschine: immer Kontrollflussiibergabe an im Kernel-Modus
laufende Systemsoftware - hier Typ-1-HV

e HV kann (anhand des virtuellen Privilegierungsmodus) feststellen

1. ob sensible Anweisung durch Gast-BS
2. oder durch Nutzerprogramm (Systemaufruf!) ausgeldst

e Folgen

1. privilegierte Instruktionen des Gast-Betriebssystems
werden ausgefiithrt — ,,trap-and-emulate”

2. Einsprung in Betriebssystem, hier also Einsprung in
Gast-Betriebssystem — Upcall durch HV

e privilegierte Instruktionen bei nicht virtualisierbaren Prozessoren
typischerweise ignoriert

Intel-Architektur ab 386

e keine Unterstiitzung fiir Virtualisierung ...

e kritische Instruktionen im User Mode werden von CPU ignoriert
o Pentium-Familie konnte Kernel-Code explizit feststellen, ob im
Kernel- oder Nutzermodus — Gast-BS trifft evtl. fehlerhafte

Entscheidungen

e Diese Architekturprobleme (bekannt seit 1974) wurden 20 Jahre
lang im Sinne von Riickwirtskompatibilitdt auf
Nachfolgeprozessoren iibertragen ...

Typ-2-Hypervisor

Anwendungen
der Gast-BS

O
Kernely i

[Typ-2-HV

Virtuali- APl
sierungs-

software [

Host-0S-Kemel }

(o]

[=l=]=]=l=]=N=]=]

| Gast-Betriobssystem(e)

—
Virtualisierung ohne Hardwareunterstiitzung, keine Moglichkeit...

e trap-and-emulate zu nutzen
e um korrekt den Privilegierungsmodus zu wechseln
e den korrekten Code im HV auszufiihren

Ubersetzungsstrategie in Software

o vollstindige Ubersetzung des Maschinencodes, der in VM
ausgefiihrt wird, in Maschinencode, der im HV ausgefiihrt wird

e praktische Forderung: HV sollte selbst abstrahierte
HW-Schnittstelle zur Ausfithrung des (komplexen!)
Ubersetzungscodes zur Verfiigung haben

— Typ-2-HV als Kompromiss

e korrekte Ausfiihrung von virtualisierter Software auf
virtualisierter HW

e beherrschbare Komplexitidt der Implementierung

aus Nutzersicht

e liuft als gewdhnlicher Nutzer-Prozess auf Host-Betriebssystem
e VMware bedienbar wie physischer Rechner
e persistente Daten des Gast-BS auf virtuellem Speichermedium

Mechanismus: Code-Inspektion

e Bei Ausfithrung eines Bindrprogramms in der virtuellen Maschine:
zunéchst inspiziert Typ-2-HV den Code nach Basisblocken

e Basisblock: Befehlsfolge, die mit privilegierten Befehlen oder
solchen Befehlen abgeschlossen ist, die den Kontrollfluss éndern

o Basisblocke werden nach sensiblen Instruktionen abgesucht

o diese werden jeweils durch Aufruf einer HV-Prozedur ersetzt, die
jeweilige Instruktion behandelt

Mechanismus: Binary Translation (Bindrcodeiibersetzung)

e modifizierter Basisblock: wird innerhalb des HV in Cache
gespeichert und ausgefiihrt

e Basisblock ohne sensible Instruktionen: lduft unter Typ-2-HV
exakt so schnell wie unmittelbar auf Hardware

e sensible Instruktionen: nach dargestellter Methode abgefangen

und emuliert — dabei hilft das Host-BS (z.B. durch eigene
Systemaufrufe)

Mechanismus: Caching von Basisblocken

e HV nutzt zwei parallel arbeitende Module

— Translator: Code-Inspektion, Binary Translation
— Dispatcher: Basisblock-Ausfithrung

zusitzliche Datenstruktur: Basisblock-Cache

Dispatcher: sucht Basisblock mit jeweils nédchster auszufithrender
Befehlsadresse im Cache; falls miss — suspendieren (zugunsten
Translator)

e Translator: schreibt Basisblocke in Basisblock-Cache

Advanced Operating Systems

e Annahme: irgendwann ist Grofteil des Programms im Cache,
dieses lduft dann mit nahezu Original-Geschwindigkeit (Theorie)

Performanzmessungen

Typ2-HV keinesfalls so schlecht, wie einst erwartet wurde

e trap-and-emulate,, erzeugt Vielzahl von Traps —
Kontextwechsel zwischen jeweiliger VM und HV

e insbesondere bei Vielzahl an VMs sehr teuer: CPU-Caches, TLBs,
Heuristiken zur spekulativen Ausfiihrung werden verschmutzt

e wenn sensible Instruktionen durch VMware-Prozeduren innerhalb

des Programms ersetzt: keine Kontextwechsel-Overheads

Studie (von Vmware)

e last-und anwendungsabhingig kann Softwarelésung sogar
Hardwareldsung iibertreffen

e viele moderne Typl-HV benutzen aus Performanzgriinden
ebenfalls Binary Translation

Paravirtualisierung

Funktionsprinzip

e ... unterscheidet sich prinzipiell von Typ-1/2-Hypervisor
e wesentlich: Quellcode des Gast-Betriebssystems modifiziert
e sensible Instruktionen: durch Hypervisor-Calls ersetzt
— Gast-Betriebssystem arbeitet vollstindig wie Nutzerprogramm,
welches Systemaufrufe zum Betriebssystem (hier Hypervisor)
ausfithrt
e Hypervisor: muss geeignetes Interface definieren (HV-Calls)
— Menge von Prozedur-Aufrufen zur Benutzung durch
Gast-Betriebssystem
e bilden eine HV-API als Schnittstelle fiir Gast-Betriebssysteme

Verwandtschaft mit Mikrokernel-Architekturen

e entfernt alle sensiblen Instruktionen aus Gast-Betriebssystem:...
e ersetzt durch Hypervisor-Aufrufe, um Systemdienste zu nutzen...
e hat man praktisch den Hypervisor in Mikrokernel transformiert
e ... das wird schon gemacht: L*Linux (TU Dresden)
— Basis: stringente L* Kernel-Implementierung
— Anwendungslaufzeitumgebung: paravirtualisierter
Linux-Kernel als Serverprozess
— Ziele: Isolation, Echtzeitfihigkeit durch direktere
HW-Interaktion

Zwischenfazit Virtualisierung

Ziele: Adaptivitdt komplementir zu

‘Wartbarkeit 6konomischer Betrieb ohne dedizierte Hardware
Sicherheit von nichtvertrauenswiirdigen Anwendungen isoliert
Robustheit Fehler in VMs beeintréichtigen nicht andere VMs

Idee: drei gingige Prinzipien

Typ-1-HV unmittelbares HW-Multiplexing, trap-and-emulate

Typ-2-HV HW-Multiplexing auf Basis eines Host-OS,
binarytranslation

Paravirtualisierung Typ-1-HV fiir angepasstes Gast-OS, kein
trap-and-emulate notig — HV &hnelt pKern

Ergebnisse

VMs mit individuell anpassbarer Laufzeitumgebung
isolierteVMs

kontrollierbare VM-Interaktion (untereinander und mit HW)
keine hardwarespezifischen Optimierungen aus VM heraus
moglich — Performanz, Echtzeitfahigkeit, Sparsamkeit

> NN\

14/16

Container

Idee

Container,

sorSpae-

Ressourcen (Tools,
Bibliotheken, ...)

Container,

sichtbare BS- {

Dateisystem-
management

I physische Hardware |

Ziel Adaptivitdt , im Dienste von ...
... Wartbarkeit durch Kapselung von

— Anwendungsprogrammen

— durch sie benutzte Bibliotheken

— Instanzen bestimmter BS-Ressourcen
... Portabilitdt: Betrieb von Anwendungen, die lediglich von
einem bestimmten BS-Kernel abhéngig sind

— Abhéngigkeitskonflikten (Anwendungen und Bibliotheken)
— fehlenden Abhéngigkeiten (Anwendungen und Bibliotheken)
— Versions-und Namenskonflikten

... Sparsamkeit: problemgerechtes ,,Packen” von Anwendungen in
Container — Reduktion an Overhead: selten (oder gar nicht)
genutzter Code, Speicherbedarf, Hardware, ...

private Sichten bilden = private User-Space-Instanzen
Kontrolle dieser Container i.S.v. Multiplexing, Unabhingigkeit
und API: BS-Kernel

keine Form der BS-Virtualisierung, eher:
,;Userspace-Virtualisierung”

Anwendungsfille fiir Container

Anwendungsentwicklung: konfliktfreies Entwickeln und Testen
unterschiedlicher Software, fiir unterschiedliche
Zielkonfigurationen BS-User-Space

Anwendungsbetrieb und -administration

— Entschirfung von ,,dependency hell”

— einfache Migration, einfaches Backup von Anwendungen
ohne den BS-Kernel

— einfache Verteilung generischer Container fiir bestimmte
Aufgaben

= Kombinationen von Anwendungen

Anwendungsisolation? — Docker

Zwischenfazit: Container
Ziele: Adaptivitidt komplementér zu...

Wartbarkeit Vermeidung von Administrationskosten
Portabilitéit Vereinfachung von Abhingigkeitsverwaltung
Sparsamkeit Optimierung der Speicher-und Verwaltungskosten

Idee

unabhéngige User-Space-Instanz fiir jeden Container
Aufgaben Kernel: Unterstiitzung der Containersoftware bei
Multiplexing und Herstellung der Unabhéngigkeit dieser
Instanzen

Ergebnisse

v
v
X
X

vereinfachte Anwendungsentwicklung

vereinfachter Anwendungsbetrieb

Infrastruktur nétig iiber (lokale) Containersoftware hinaus, um
Containern zweckgerecht bereitzustellen und zu warten

keine vollstédndige Isolationméglich

Beispielsysteme

Virtualisierung: VMware, VirtualBox
Paravirtualisierung: Xen

Exokernel: Nemesis, MirageOS, RustyHermit
Container: Docker, LupineLinux

Hypervisor - VMware

e stellt verschiedene Virtualisierungs-Softwareprodukte her:

— VMware Workstation: mehrere unabhéngige Instanzen von
x86- bzw. x86-64-Betriebssystemen auf einer Hardware
betreibbar

— VMware Fusion: dhnliches Produkt fiir Intel
Mac-Plattformen

— VMware Player: (eingestellte) Freeware fiir
nichtkommerziellen Gebrauch

— VMware Server (eingestellte Freeware, ehem. GSX Server)

— VMware vSphere (ESXi): fiir Desktop/Server-Systeme,
Typ-2-HV

e spezielle vin- Treiber in Host-Betriebssystem eingefiigt
e diese ermdglichen: direkten Hardware-Zugriff
e durch Laden der Treiber entsteht ,,Virtualisierungsschicht”

Hypervisor - VirtualBox

e Virtualisierungs-Software fiir x86- bzw. x86-64-Betriebssysteme
fiir Industrie und ,,Hausgebrauch” (urspriinglich: Innotek , dann
Sun, jetzt Oracle)

e frei verfiigbare professionelle Losung, als Open Source Software

unter GNU General Public License(GPL) version 2. ...

lauffihig auf Windows, Linux, Macintosh und Solaris Hosts

e unterstiitzt groe Anzahl von Gast-Betriebssystemen

o reiner Typ-2-Hypervisor

Paravirutalisierung: Xen

entstanden als Forschungsprojekt der University of Cambridge
frei verfiigbar als Open Source Software unter GNU (GPL)
lauffihig auf Prozessoren x86, x86-64, PowerPC, ARM, MIPS
unterstiitzt groe Anzahl von Gast-Betriebssystemen

bekannt fiir Paravirtualisierung

unterstiitzt heute auch andere Virtualisierungs-Prinzipien

Architektur

e Gast-BSe laufen in Xen Doménen (,,dom;”, analog V M;)
e genau eine, obligatorische, vertrauenswiirdige Domé&ne: domg

— Bereitstellen und Verwalten der virtualisierten Hardware
fiir andere Doménen

— Hardwareverwaltung/-kommunikation fiir paravirtualisierte
Gast-BSe (Geritetreiber)

— Interaktionskontrolle (Sicherheitspolitiken)

e domg im Detail: ein separates, hochkritisch administriertes,
vertrauenswiirdiges BS mit eben solchen Anwendungen zur
Verwaltung des gesamten virtualisierten Systems

Sicherheit

e Sicherheitsmechanismusin Xen: Xen Security Modules (XSM)

e (Para-)Typ-1-Virtualisierung von BS unterstiitzt NFE Sicherheit

e PDP: Teil des vertrauenswiirdigen BS in domo, PEPs: XSMs im
Hypervisor

Advanced Operating Systems

Exokernel
Nemesis

e Betriebssystemaus EU-Verbundprojekt ,,Pegasus,, zur
Realisierung eines verteilten multimediafihigen Systems

e Anwendungen: sollen Freiheit haben, Betriebsmittel in fiir sie
geeignetster Weise zu nutzen (= Exokernel-Prinzip)

e Realisierung als sog. vertikal strukturiertes Betriebssystem

e weitaus meiste Betriebssystem-Funktionalitédt innerhalb der
Anwendungen ausgefiihrt (= Exokernel-Prinzip)

e Echtzeitanforderungen durch Multimedia — Vermeidung von
Client-Server-Kommunikationsmodell wegen schlecht
beherrschbarer zeitlicher Verzdgerungen

MirageOS + Xen

e Spezialfall: Exokernel als paravirtualisiertes BS auf Xen
e Ziele : Wartbarkeit (Herkunft: Virtualisierungsarchitekturen ...)

— Okonomischer HW-Einsatz
— Unterstiitzung einfacher Anwendungsentwicklung
— nicht explizit: Unterstiitzung von Legacy-Anwendungen!

e Idee: ,,Unikernel” — eine Anwendung, eine API, ein Kernel
e Unikernel in MirageOS

nicht Teil von Library-BS
und Exokernel

....... domy (Appy)._...._..,
Appy
User-Space-Ressourcen API fiir Appy
User Space
BS-Abstraktionen Library-BS
MirageOS Exokernel
Kernel Space { [Xen-HV

| physische Hardware

Ergebnis: Kombination von Vorteilen zweier Welten

e Virtualisierungsvorteile: Sicherheit, Robustheit (— Xen-Prinzip
genau einer vertrauenswiirdigen, isolierten Doméne domg)

e Exokernelvorteile: Wartbarkeit, Sparsamkeit

e nicht: Exokernelvorteil der hardwarenahen
Anwendungsentwicklung... (— Performanz und Echzeitfihigkeit)

Container: Docker

e Idee: Container fiir einfache Wartbarkeit von
Linux-Anwendungsprogrammen entwickeln, testen, portieren —
Portabilitit

e Besonderheit: Container kénnen wie Software-Repositories
benutzt, verwaltet, aktualisiert, verteilt werden

e Management von Containers: Docker Client — leichtgewichtiger
Ansatz zur Nutzung der Wartbarkeitsvorteile von Virtualisierung

e Fortsetzung unter der OCI (Open Container Initiative)

e Implementierung der Containertechnik basierend auf
Linux-Kernelfunktionen

— Linux Containers (LXC): BS-Unterstiitzung fiir
Containermanagement

— cgroups: Accounting/Beschrinkung der
Ressourcenzuordnung

— union mounting: Funktion zur logischen Reorganisation
hierarchischer Dateisysteme

Container; Container;

User-Space-
Ressourcan |

FS, Net,

sichtbare BS- {

AUFS,
OverlayFS

physische Hardware

15/16

Performanz und Parallelitat

Motivation

Hochleistungsrechnen, HPC (,,high performancecomputing”
,,Big Data”: Dienstleistungen fiir Kunden
Wettervorhersage

anspruchsvolle Multimedia- Anwendungen (Animationen,
VR-Rendering)

Performanzbegriff

e Minimierung der fiir korrekte Funktion (= Lésung eines
Berechnungsproblems) zur Verfiigung stehenden Zeit.

e technischer: Maximierung der Anzahl pro Zeiteinheit
abgeschlossener Berechnungen

Anforderungen hochparallelen Rechnens an ...

e Hardware: Prozessorarchitekturen .
e Systemsoftware: Betriebssystemmechanismen

e Anwendungssoftware: Parallelisierbarkeitvon Problemen

Hardware-Voraussetzungen

e Entwicklungstendenzen der Rechnerhardware
Multicore-Prozessoren: seit ca. 2006 (in groBerem Umfang)
bei CPU-Taktfrequenz >> 4GHz z.Zt. physikalische Grenze

Anzahl der Kerne wichst nicht linear
Taktfrequenz wichst asymptotisch, nimmt nur noch marginal zu

Performanz durch Parallelisierung ...
1. Performanz-Steigerung von Anwendungen: primér durch
Parallelitdt, Multi-Threaded-Anwendungen
2. erforderlich: Betriebssystem-Unterstiitzung — Scheduling,
Sychronisation
3. weiterhin: Sprachen, Compiler, verteilte Algorithmen ...

... auf Prozessorebene
Vorteile von Multicore-Prozessoren

1. moglich wird: Parallelarbeit auf Chip-Ebene — Vermeidung
der Plagen paralleler verteilter Systeme

2. bei geeigneter Architektur: Erkenntnisse und Software aus Gebiet
verteilter Systeme als Grundlage verwendbar

3. durch gemeinsame Caches (architekturabhéingig): schnellere
Kommunikation (speicherbasiert), billigere Migration von
Aktivitdten kann moglich sein

4. hohere Energieeffizienz: mehr Rechenleistung pro Chipfliche,
geringere elektrische Leistungsaufnahme — weniger
Gesamtabwirme, z.T. einzelne Kerne abschaltbar

5. Baugréfe: geringeres physisches Volumen

Nachteile von Multicore-Prozessoren

1. durch gemeinsam genutzte Caches und Busstrukturen: Engpésse
(Bottlenecks) méglich

2. zur Vermeidung thermischer Zerstérungen: Lastausgleich
zwingend erforderlich! (Ziel: ausgeglichene Lastverteilung auf
einzelnen Kernen)

zum optimalen Einsatz zwingend erforderlich
1. Entwicklung Hardwarearchitektur
2. zusétzlich: Entwicklung geeigneter Systemsoftware

3. zusitzlich: Entwicklung geeigneter Anwendungssoftware

Maulticore-Prozessoren
Terminologie und Abkiirzungen

MC multicore (processor)
CMP chip-level multiprocessing, hochintegrierte Bauweise fiir MC

SMC symmetric multicore — SMP ... symm. multi-processing
AMC asymmetric multicore - AMP ... asymmetric multi-processing
UP uni-processing, singlecore (SC) oder uniprocessor

Architekturen von Multicore-Prozessoren

o Netzwerkbasiertes Design
— Prozessorkerne des Chips u. ihre lokalen Speicher (oder
Caches) durch Netzwerkstruktur verbunden

— groBte Ahnlichkeit zu traditionellen verteilten Systemen
— Verwendung bei Vielzahl von Prozessorkernen (Skalierbar)

S5 o
© ©
2 2

5% 5%
83 83
g g
Kern Kern

Verbindungsnetzwerk

uRy way
59 %
%3 98
3 3

32 32
el] -8

e Hierarchisches Design

— mehrere Prozessor-Kerne teilen sich baumartige Caches

— jeder Prozessorkern hat eigenen L1-Cache

— L2-Cache, Zugriff auf Hauptspeicher u. Grofiteil der Busse
— Verwendung: typischerweise Serverkonfigurationen

Cache / Speicher

e Pipeline-Design
— Daten durch Prozessor-Kerne schrittweise verarbeitet
— durch letzten Prozessor: Ablage im Speichersystem
— Verwendung: Graphikchips, Netzwerkprozessoren

|
v

Kern

Kern

Kern

Kern

4

Jayoreds [ayoen

Symmetrische u. asymmetrische Multicore-Prozessoren

e symmetrische Multicore-Prozessoren (SMC): alle Kerne identisch,
d.h. gleiche Architektur und gleiche Fihigkeiten

e asymmetrische MC-Prozessoren (AMC): Multicore-Architektur,
jedoch mit Kernen unterschiedlicher Architektur und/oder
unterschiedlichen Fahigkeiten

Superskalare Prozessoren
e Bekannt aus Rechnerarchitektur: Pipelining

— parallele Abarbeitung von Teilen eines Maschinenbefehls in
Pipeline-Stufen

— ermoglicht durch verschiedene Funktionseinheiten eines
Prozessors fiir verschiedene Stufen

— sowie mehrere Pipeline-Register

e superskalare Prozessoren: solche, bei denen zur Bearbeitung einer
Pipeling-Stufe erforderlichen Funktionseinheiten n-fach vorliegen

Advanced Operating Systems

o Ziel
— Skalarprozessor (mit Pipelining): 1 Befehl pro Takt
(vollstédndig) bearbeitet
— Superskalarprozessor: bis zu n Befehle pro Taktbearbeitet

e Verbereitung heute: universell

Parallelisierung in Betriebssystemen
e Basis fiir alle Parallelarbeit aus BS-Sicht: Multithreading

— Kernel-Level-Threads (KLTs): BS implementiert Threads
— Scheduler kann mehrere Threads nebenldufig planen —
Parallelitdt moglich

— User-Level-Threads (ULTs): Anwendung implementiert
Threads — keine Parallelitdt moéglich

e grundlegend fiir echt paralleles Multithreading

— parallelisierungsfiahige Hardware

— kausal unabhéngige Threads

— passendes Programmiermodell, insbesondere
Synchronisation!

— Programmierer 4+ Compiler

e BS-Abstraktionen miissen Parallelitdt unterstiitzen
e BS muss Synchronisationsmechanismen implementieren

16/16

Synchronisations- und Sperrmechanismen
e Synchronisationsmechanismen zur Nutzung

— durch Anwendungen — Teil der API
— durch den Kernel

e Verhinderung konkur. Zugriffe auf logische/physische Ressourcen

— Vermeidung von race conditions
— Herstellung einer korrekten Ordnung entsprechend
Kommunikationssemantik (z.B. ,,Schreiben vor Lesen”)

Erinnerung: Reader-Writer-Problem

e wechselseitiger Ausschluss (mutual exclusion)
e kritischer Abschnitt (critical section)
e Synchronisationsprobleme

— write in vollen Puffer
— read aus leerem Puffer = . .
— wihrend read durch gleichzeitiges write zugegriffen

Sperrmechanismen (Locks)

e Wechselseitiger Ausschluss ...

— ist in nebenldufigen Systemen zwingend erforderlich

— ist in echt parallelen Systemen allgegenwirtig

— skaliert d4uflerst unfreundlich mit Code-Komplexitiat —
(monolithischer) Kernel-Code

Mechanismen in Betriebssystemen: Locks
Arten von Locks am Beispiel Linux

— Big Kernel Lock (BKL)

— atomic-Operationen

— Spinlocks

— Semaphore (Spezialform: Reader/Writer Locks)

atomic*

Bausteine der komplexeren Sperrmechanismen

Granularitét: einzelne Integer- (oder sogar Bit-) Operation
Performanz: mittels Assembler implementiert

atomic_* Geschmacksrichtungen: read, set, add, sub, inc, dec u. a.
keine explizite Lock-Datenstruktur — Deadlocks durch
Mehrfachsperrung syntaktisch unmdéglich

definierte Linge des kritischen Abschnitts — unndotiges Sperren
sehr preiswert

	Zusammenfassung
	Hardwarebasis
	Betriebssystemarchitektur
	Ressourcenverwaltung
	Betriebssystemabstraktionen
	Betriebssysteme als Softwareprodukte

	Sparsamkeit und Effizienz
	Robustheit und Verfügbarkeit
	Sicherheit
	Echtzeitfähigkeit
	Adaptivität
	Performanz und Parallelität
	Synergetische und konträre Eigenschaften

	Sparsamkeit und Effizienz
	Motivation
	Energieeffizienz
	Energieeffiziente Dateizugriffe
	Prefetching-Mechanismus
	Energieeffizientes Prozessormanagement
	Energieeffizientes Scheduling
	Systemglobale Energieeinsparungsmaßnahmen
	Hardwaretechnologien

	Speichereffizienz
	Hauptspeicherauslastung
	Hintergrundspeicherauslastung

	Architekturentscheidungen
	Makrokernel (monolithischer Kernel)
	Mikrokernel
	BS: TinyOS
	BS: RIOT

	Robustheit und Verfügbarkeit
	Robustheitsbegriff
	Fehler, Ausfälle und ihre Vermeidung

	Fehlerhafter Zustand
	Isolationsmechanismen
	Strukturierte Programmierung
	Adressraumisolation

	Mikrokernelarchitektur
	Modularer Makrokernel vs. Mikrokernel
	Mikrokernel: Mach
	L4
	Mikrokernel - Designprinzipien

	Micro-Reboots
	Beispiel-Betriebssystem: MINIX

	Verfügbarkeit
	QNX Neutrino: Hochverfügbares Echtzeit-BS

	Sicherheit
	Sicherheitsziele
	Schadenspotenzial
	Bedrohungen
	Professionelle Malware: Root Kit
	Schwachstellen
	Zwischenfazit

	Sicherheitspolitiken
	Sicherheitspolitiken und -modelle
	Zugriffssteuerungspolitiken
	Traditionell: DAC, IBAC
	Modellierung: Zugriffsmatrix
	Modern: MAC, MLS

	Autorisierungsmechanismen
	Traditionell: ACLs, SUID

	Modern: SELinux
	Isolationsmechanismen
	Intel SGX

	Sicherheitsarchitekturen
	Referenzmonitorprinzip
	Trusted Computing Base (TCB)

	Echtzeitfähigkeit
	Charakteristika von Echtzeit-Prozessen
	Periodische Prozesse (pP)
	Aperiodische Prozesse (aP)
	Parameter von Echtzeit-Prozessen

	Echtzeitfähige Betriebssysteme
	Echtzeitscheduling
	RC Algorithmus
	Umgang mit gemischten Prozessmengen
	Prioritätsumkehr
	Überlast
	Echtzeit-Interruptbehandlung

	Echtzeit-Speicherverwaltung
	Kommunikation und Synchronisation
	Architekturen
	Beispiel-Betriebssysteme

	Adaptivität (Flexibility)
	Exokernelarchitektur
	Exokernelmechanismen
	Secure Binding
	Visible Resource Revocation
	Abort-Protokoll
	Aegis mit Library-OS ExOS
	Xok mit Library-OS ExOS
	Fazit Exokernelarchitektur

	Virtualisierung
	Typ-1-Hypervisor
	Typ-2-Hypervisor
	Paravirtualisierung
	Zwischenfazit Virtualisierung

	Container
	Zwischenfazit: Container
	Exokernel
	Container: Docker

	Performanz und Parallelität
	Hardware-Voraussetzungen
	Performanz durch Parallelisierung ...
	... auf Prozessorebene
	Multicore-Prozessoren
	Superskalare Prozessoren

	Parallelisierung in Betriebssystemen
	Synchronisations- und Sperrmechanismen

