Disclaimer

Die Übungen die hier gezeigt werden stammen aus der Vorlesung Logik und Logikprogrammierung! Für die Richtigkeit der Lösungen wird keine Gewähr gegeben.

Aufgabe 1.....

Emil hat seine Freunde Anne, Bernd, Christiane und Dirk auf eine Party eingeladen. Leider gibt es dabei einige Komplikationen.

- 1. Anne ist in Bernd verliebt und kommt nur mit, wenn Bernd auch kommt.
- 2. Bernd ist jedoch in Christiane verliebt und kommt nur, wenn Christiane auch kommt.
- 3. Zudem ist auch Dirk in Christiane verliebt und, falls Christiane kommt, kommt Dirk auch.
- 4. Wenn Dirk mitkommt, wird er auf jeden Fall Anne oder Bernd mitbringen.
- 5. Christiane ist die Situation peinlich und kommt, falls sowohl Bernd als auch Dirk mitkommen, nicht mit.
- (a) Formalisieren Sie die gegebenen Sachverhalte durch aussagenlogische Formeln. Hinweis: Die Motivationsgründe der einzelnen Personen können dabei vernachlässigt werden. Verwenden Sie die atomaren Formeln A für "Anne kommt mit", B für "Bernd kommt mit", C für "Christiane kommt mit" und D für "Dirk kommt mit".

Solution:

- 1. $A \rightarrow B$
- 2. $B \rightarrow C$
- 3. $C \rightarrow D$
- 4. $D \rightarrow (A \lor B)$
- 5. $(B \wedge D) \rightarrow \neg C$
- (b) Argumentieren Sie, dass keiner der vier Freunde Emils zur Party mitkommt.

Solution:

Ziel: $\neg A \land \neg B \land \neg C \land \neg D$

Es gilt: $B \to D$, da $B \to C$ und $C \to D$

Es gilt: $D \to B$, da $D \to (A \lor B)$ und $A \to B$

Es gilt: $B \leftrightarrow D$, da $B \rightarrow D$ und $D \rightarrow B$

Es gilt: $C \to B$, da $C \to D$ und $D \to B$

Es gilt: $B \leftrightarrow C$, da $B \rightarrow C$ und $C \rightarrow B$

Es gilt äquivalenz: $(\neg B \wedge \neg C \wedge \neg D) \vee (B \wedge C \wedge D)$

Angenommen $B \wedge C \wedge D$, dann $B \wedge D \Rightarrow \neg C$, also $\neg C$ und C! Widerspruch!

Es gilt: $\neg A$, da $A \rightarrow B$ und $\neg B$

Es gilt $\neg A \land \neg B \land \neg C \land \neg D$

Aufgabe 2.....

Sei $P = \{p_1, ..., p_k\}$ eine endliche, nicht-leere Menge atomarer Formeln. Wir können die Menge AL(P) der aussagenlogischen Formeln über den atomaren Formeln aus P als eine formale Sprache über dem Alphabet $\sum = \{\bot, \land, \lor, \rightarrow, \neg, (,)\} \lor P$ auffassen.

(a) Zeigen Sie, dass AL(P) nicht regulär ist.

Solution: Mit Satz von Myhill-Nerode: Betrachte Wörter $v_n = [(P_n)]^n P_n$. Für $m \neq n$ sind v_m, v_n in verschiedenen MN-Äquivalenzklassen: $v_m[I]^m \in AL(P)$ und $v_n[I]^m \notin AL(P)$ Also gibt es unendlich viele MN-Äquivalenzklassen und AL(P) ist nicht regulär

(b) Zeigen Sie, dass AL(P) jedoch kontextfrei ist, indem Sie eine kontextfreie Grammatik angeben, die AL(P) erzeugt.

Solution:

$$\begin{split} G &= (V, \sum, P, S) \\ S &\to \bot |p_1| ... |p_k| \neg S|(S \wedge S)|(S \vee S)|(S \to S) \end{split}$$

Aufgabe 3.....

Zeigen Sie per vollständiger Induktion über den Formelaufbau, dass in jeder Formel die Anzahl der öffnenden Klammern gleich der Anzahl der schließenden Klammern ist, d.h. zeigen Sie, dass für alle endlichen Mengen atomarer Formeln $P = \{p_1, ..., p_k\}$ und alle $\phi \in AL(P)$, dass $|\phi|_{\ell} = |\phi|_{\ell}$ gilt.

Solution:

Induktion über Formelaufbau.

I.A.: $E = \bot : |\bot|_1 = 0 = |\bot|_1$, $E = p_i : |p_i|_1 = 0 = |p_i|_1$

I.V.: für $E, \Phi \in AL(P)$ gilt $|E|_{\ell} = |E|_{\ell}, |\Phi|_{\ell} = |\Phi|_{\ell}$

I.S.: $\neg E : |\neg E|_{(} = |\neg|_{(} + |E|_{(} = |\neg|_{(} + |E|_{)} = |E|_{)} = |\neg|_{)} + |E|_{)} = |\neg E|_{)}$ $(E \land \Phi) : |(E \land \Phi)|_{(} = |(|_{(} + |E|_{(} + | \land | + |\Phi|_{(} + |))|_{(} = 1 + |E|_{(} + |\Phi|_{(} + 0 = 1 + |E|_{)} + 0 + |\Phi|_{)} = |(E \land \Phi)|_{(} = |(|_{(} + |E|_{(} + | \land | + |\Phi|_{(} + |))|_{(} = 1 + |E|_{(} + |\Phi|_{(} + 0 = 1 + |E|_{)} + 0 + |\Phi|_{)} = |(E \land \Phi)|_{(} = |(|_{(} + |E|_{(} + | \land | + |\Phi|_{(} + |))|_{(} = 1 + |E|_{(} + |\Phi|_{(} + 0 = 1 + |E|_{)} + 0 + |\Phi|_{)} = |(E \land \Phi)|_{(} = |(|_{(} + |E|_{(} + | \land | + |\Phi|_{(} + |))|_{(} = 1 + |E|_{(} + |\Phi|_{(} + 0 = 1 + |E|_{)} + 0 + |\Phi|_{)} = |(E \land \Phi)|_{(} = |(|_{(} + |E|_{(} + | \land | + |\Phi|_{(} + |))|_{(} = 1 + |E|_{(} + |\Phi|_{(} + 0 = 1 + |E|_{(} + |\Phi|_{(} + |\Phi|_{($

 $|(|_1 + |E|_1 + |\wedge| + |\Phi|_1 + |)|_1 = |(E \wedge \Phi)_1|$

 $(E \vee \Phi), (E \to \Phi)$ analog

Aufgabe 4.....

Seien ϕ, ψ aussagenlogische Formeln. Wir sagen, dass ψ eine Teilformel von ϕ ist wenn ϕ (als syntaktisches Wort) ein Infix von ψ ist. Zum Beispiel ist p_1 eine Teilformel von $\neg (p_2 \land p_1)$, nicht aber \neg (, da dies keine aussagenlogische Formel ist. Sei $TF(\phi)$ die Anzahl der Teilformeln von ϕ . Zeigen Sie per vollständiger Induktion über den Formelaufbau, dass für jede aussagenlogische Formel ϕ die Anzahl der Teilformeln von ϕ kleiner gleich der Länge von ϕ ist, also $TF(\phi) \leq |\phi|$.

Solution:

I.A.: $E = \bot : TF(\bot) = 1 = |E|, \quad E = p_i : TF(p_i) = 1 = |E|$

I.V.: gelte für Formel $E, \Psi, d.h.$ TF(E) < |E| und $TF(\Psi) < |\Psi|$

I.S.:

- $\neg E : TF(\neg E) < 1 + TF(E) < 1 + |E| = |\neg E|$
- $(E \wedge \Psi) : TF(E \wedge \Psi) = 1 + TF(E) + TF(\Psi) \le 1 + |E| + |\Psi| \le 3 + |E| + |\Psi| = |(E \wedge \Psi)|$
- $(E \vee \Psi), (E \rightarrow \Psi)$ analog

Also folgt aus der vollständigen Induktion

Aufgabe 5.....

Vervollständigen Sie die folgende Deduktion um die angewendeten Regeln, gestrichenen Hypothesen und fehlenden Formeln. Markieren Sie zudem für alle gestrichenen Hypothesen, durch welche Regelanwendung diese gestrichen wurden.

$$\frac{\neg \phi \land \neg \psi}{?} (\land E_1) \qquad \frac{\neg \phi \land \neg \psi}{?} (\land E_2) \qquad \psi \qquad (\neg E)$$

$$\frac{?}{\neg (\neg \phi \land \neg \psi)} (\neg I) \qquad \frac{?}{\neg (\neg \phi \land \neg \psi)} (\neg I)$$

$$\frac{\neg (\neg \phi \land \neg \psi)}{\neg B}$$

$$\frac{[\neg \phi \land \neg \psi]^2}{\neg \phi} \xrightarrow{(\land E_1)} [\phi]^1 \xrightarrow{(\neg E)} \frac{[\neg \phi \land \neg \psi]^3}{\neg \psi} \xrightarrow{(\land E_2)} [\psi]^1 \xrightarrow{(\neg E)} (\neg E)$$

$$\frac{\bot}{\neg (\neg \phi \land \neg \psi)} \xrightarrow{(\neg I(3))} (\lor E(1))$$

$$\frac{\neg (\neg \phi \land \neg \psi)}{\neg B}$$

Aufgabe 6.....

In Aufgabe 1 haben wir einen Sachverhalt durch folgende Formeln formalisiert:

$$A \to B, B \to C, C \to D, D \to (A \lor B), (B \land D) \to \neg C$$

Konstruieren Sie eine formale Deduktion von $\neg B$, die nur diese Formeln als Hypothesen nutzt (alle anderen Hypothesen sind gestrichen).

Solution:

Version 1:

Version 2:

$$\underbrace{ \begin{bmatrix} [B]^1 & B \to C \\ \hline C & C \to D \\ \hline C & \hline \end{bmatrix}}_{[B]^1} \underbrace{ \begin{bmatrix} [B]^1 & B \to C \\ \hline C & D \\ \hline D & \hline \end{bmatrix}}_{(B \land D)} (B \land D) \to \neg C \\ \underbrace{ \begin{bmatrix} (B \land D) & \neg C \\ \hline - \neg C & \hline \end{bmatrix}}_{(T(1))} (A \land B)$$

Aufgabe 7.....

Wir wollen in dieser Aufgabe zeigen, dass in der Aussagenlogik sowohl Konjunktion als auch Disjunktion assoziativ sind. Seien dazu p_1, p_2, p_3 aussagenlogische Formeln.

(a) Zeigen Sie, dass $\{p_1 \land (p_2 \land p_3)\} \vdash (p_1 \land p_2) \land p_3$ gilt.

Solution:

$$\frac{p_1 \wedge (p_2 \wedge p_3)}{\underbrace{p_1}}_{(\wedge E_1)} \stackrel{(\wedge E_1)}{\underbrace{(p_2 \wedge p_3)}}_{(\wedge E_1)} \stackrel{(\wedge E_2)}{\underbrace{(p_2 \wedge p_3)}}_{(\wedge E_1)} \stackrel{(\wedge E_2)}{\underbrace{(p_2 \wedge p_3)}}_{(\wedge E_2)} \stackrel{(\wedge E_2)}{\underbrace{(p_2 \wedge p_3)}}_{(\wedge E_2)}$$

Also gilt $p_1 \wedge (p_2 \wedge p_3) \vdash (p_1 \wedge p_2) \wedge p_3$

(b) Zeigen Sie, dass $\{p1 \lor (p_2 \lor p_3)\} \vdash (p_1 \lor p_2) \lor p_3$ gilt, indem Sie die folgende Deduktion vervollständigen.

Solution:
$$\frac{[p_{1}]^{1}}{(p_{1}\vee p_{2})} \stackrel{(\vee I_{1})}{(p_{1}\vee p_{2})} \stackrel{[(p_{2}\vee p_{3})]^{1}}{(p_{1}\vee p_{2})\vee p_{3}} \stackrel{[p_{2}]^{2}}{(p_{1}\vee p_{2})\vee p_{3}} \stackrel{(\vee I_{2})}{(p_{1}\vee p_{2})\vee p_{3}} \stackrel{(\vee I_{2})}{(p_{1}\vee p_{2})\vee p_{3}} \stackrel{(\vee I_{2})}{(p_{1}\vee p_{2})\vee p_{3}} \stackrel{(\vee I_{2})}{(p_{2}\vee p_{3})} \stackrel{(\vee I_{2})}{(p_{2}\vee p_{3})\vee p_{3}} \stackrel{(\vee I_{2})}{(p_{2}\vee p_{2})\vee p_{3}} \stackrel{(\vee I_{2})}{(p_{2}\vee p_$$

Aufgabe 8.

Werten Sie die folgenden Formeln für die jeweils angegebene Belegung aus.

(a) $p_1 \to (p_2 \wedge p_3)$ für die K_3 -Belegung mit $B(p_1) = \frac{1}{2}, B(p_2) = 1$ und $B(p_3) = 0$

Solution:
$$B(p_1 \rightarrow (p_2 \wedge p_3)) = max(...)$$

(b) $(p_1 \vee p_2) \rightarrow (p_2 \wedge p_3)$ für die F-Belegung mit $B(p_1) = 0.3, B(p_2) = 0.7$ und $B(p_3) = 1$

Solution:
$$B((p_1 \lor p_2) \to (p_2 \land p_3) = max(B(p_2 \land p_3), 1 - B(p_1 \lor p_2)) = max(min(B(p_2), B(p_3))) | 1 - max(B(p_1), B(p_2))) = max(min(0.7, 1), 1 - max(0.5, 0.7)) = 0.7$$

(c) $\neg (p_1 \rightarrow (p_2 \land p_3))$ für die B_R -Belegung mit $B(p_1) = \mathbb{R}, B(p_2) = [1, \pi]$ und $B(p_3) = [3, 42]$

Solution:
$$B(\neg(p_1 \to (p_2 \land p_3))) = \mathbb{R} \backslash B(p_1 \to (p_2 \land p_3)) = \mathbb{R} \backslash (B(p_2 \land p_3) \cup (\mathbb{R} \backslash B(p_1))) = \mathbb{R} \backslash [(B(p_2) \cap B(p_3)) \cup (\mathbb{R} \backslash B(p_1))] = \mathbb{R} \backslash [[1, \pi] \cap [3, 42] \cup \mathbb{R} \backslash \mathbb{R}] = \mathbb{R} \backslash [3, \pi]$$

(d) $p_1 \rightarrow (p_2 \wedge p_3)$ für die $H_{mathbbR}$ -Belegung mit $B(p_1) = \mathbb{R}_{>0}, B(p_2) = (-10, 5)$ und $B(p_3) = (-20, -3)$

Solution:
$$B(p_1 \to (p_2 \land p_3)) = Inneres(B(p_2 \land p_3), \mathbb{R} \backslash B(p_1)) = Inneres(B(p_1) \cap B(p_2), \mathbb{R} \backslash B(p_1)) = Inneres(\mathbb{R}_{\leq 0}) = \mathbb{R}_{< 0}$$

Aufgabe 9.....

Bearbeiten Sie die folgenden Teilaufgaben

- (a) Entscheiden Sie welche der folgenden Paare $\Gamma \Vdash_W \varphi$ erfüllen. Beweisen Sie Ihre Behauptung zum Beispiel durch Angabe einer Wahrheitstabelle.
 - i. $\Gamma = \{p_1 \rightarrow p_1\}, \varphi = p_1, W \in \{B, K_3\}$

ρ_1	p_2	$p_1 \to p_2$	$\Gamma = \inf\{p_1 \to p_2, \varphi\}$	$\Gamma \vdash p_2$
)	0	1	0	1
)	$\frac{1}{2}$	1	0	X
	$\tilde{1}$	1	0	1
.	0	0	$\frac{1}{2}$	X
	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
	1	$\frac{\overline{2}}{1}$	$\stackrel{\circ}{0}$	1
	0	$\overset{2}{0}$	0	1
	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	/
	1	1	$\begin{pmatrix} 2\\1 \end{pmatrix}$	1

B Tautologie, keine K_3 Tautologie

ii. $\Gamma = \{p_1 \to p_2, p_1\}, \varphi = p_2, W \in \{B, K_3\}$

Solut	ion:		
p_1	p_2	$p_1 \rightarrow p_2$	$p_1 \rightarrow p_2 \Vdash p_2$
w	W	w	W
w	0.5	w	W
w	f	f	w
0.5	w	w	W
0.5	0.5	w	W
0.5	f	f	W
f	w	w	f
f	0.5	W	f
f	f	w	f

iii. $\Gamma = \{p_3 \lor (p_1 \land p_2)\}, \varphi = (p_3 \lor p_1) \land (p_3 \lor p_2), W \in \{B\}$

Solı	ution:	.:							
p_1	p_2	p_3	$p_1 \wedge p_2$	$p_3 \vee (p_1 \wedge p_2)$	$p_3 \vee p_1$	$p_3 \vee p_2$	$(p_3 \vee p_1) \wedge (p_3 \vee p_2)$	$p_3 \vee$	$(p_1 \wedge p_2) \Vdash (p_3 \vee p_3)$
w	W	w	W	W	W	W	W		\leftrightarrow
w	w	f	W	W	w	w	W		\leftrightarrow
w	f '	w	f	w	w	w	W		\leftrightarrow
w	f '	f	f	f	w	f	f	1	\leftrightarrow
f	w	w	f	w	w	w	W		\leftrightarrow
f	w	f	f	f	f	w	f		\leftrightarrow
f	f	w	f	w	w	w	W		\leftrightarrow
f	f '	f	f	f	f	f	f		\leftrightarrow
			1		,	,	1	*	

(b) Entscheiden Sie für $W \in \{B, K_3\}$, welche der folgenden Formeln W-Tautologie sind. Beweisen Sie Ihre Behauptung.

i.
$$\neg (p_1 \land \neg p_1)$$

$$B[\neg(p_1 \land \neg p_2)] = 1_b - \inf\{B(p_1), -B(p_1)\} = 1_B - 0_B = 1_B \Rightarrow \text{B Tautologie für } K_3 \text{ betrachte Belegung } B = \frac{1}{2}$$

$$K[\neg(p_1 \land \neg p_1)] = 1_b - \inf\{B(p_1), -B(p_1)\} = 1 - \frac{1}{2} \Rightarrow \text{ keine } K_3 \text{ Tautologie } \Rightarrow Tautologie}$$

ii. $\neg (p_1 \wedge \bot)$

$$\begin{array}{c|c|c} \textbf{Solution:} \\ \hline p_1 & p_1 \land \bot & \neg (p_1 \land \bot) \\ \hline w & f & w \\ f & f & w \\ \Rightarrow Tautologie \\ \end{array}$$

iii. $(p_1 \lor p_2 \lor p_3) \to (p_1 \to (p_2 \to p_3))$

Solu	tion	:				
p_1	p_2	p_3	$A = p_1 \vee p_2 \vee p_3$	$p_2 \rightarrow p_3$	$B = p_1 \to (p_2 \to p_3)$	$A \rightarrow B$
W	w	w	W	w	W	w
w	w	f	w	f	f	w
W	f	w	w	w	W	w
W	f	f	w	w	W	w
f	w	w	w	w	W	w
f	w	f	w	f	W	w
f	f	w	w	w	W	w
f	f	f	f	w	W	W
'			l			

 $\Rightarrow Tautologie$

Aufgabe 10

Wir erweitern die Aussagenlogik um den zweistelligen Operator $\bar{\wedge}$ (nicht . . . und . . .).

(a) Überlegen Sie sich, wie Sie eine Aussage "nicht (φ und ψ)" beweisen bzw. in einem Beweis verwenden würden und geben Sie entsprechende Regeln ($\bar{\wedge}I$) und ($\bar{\wedge}E$) an. Hinweis: Orientieren Sie sich für ($\bar{\wedge}E$) an der Regel ($\vee E$) und nutzen Sie, dass $\varphi \bar{\wedge} \psi \equiv \neg \varphi \vee \neg \psi$.

Solu	tion	n:		
φ	ψ	$\varphi \bar{\wedge} \psi$		
w	w	f		
w	f	W		
f	w	W		
f	f	W		
			$egin{array}{c} rac{\neg arphi}{\neg (arphi \wedge \psi)} \ (ar{\wedge} I_1) \ \hline rac{\neg \psi}{\neg (arphi \wedge \psi)} \ (ar{\wedge} I_2) \ \hline rac{\neg (arphi \wedge \psi)}{arphi} \ (ar{\wedge} E_1) \ \hline rac{\neg (arphi \wedge \psi)}{\psi} \ (ar{\wedge} E_2) \end{array}$	

(b) Verwenden Sie die Regel aus Aufgabenteil (a), um zu zeigen, dass $p_1 \bar{\wedge} \neg p_1$ ein Theorem ist.

Solution:
$$\begin{array}{c|c|c|c} \textbf{Solution:} & & & \\ \hline p_1 & \neg p_1 & p_1 \wedge \neg p_1 & \neg (p_1 \wedge \neg p_1) \\ \hline w & f & f & w \\ f & w & f & w \\ \end{array}$$

(c) Beschreiben Sie die Semantik des Operators durch Angabe einer Funktion $\bar{\wedge}_W$ wie auf den Folien 3.9ff für die Wahrheitswertebereiche $W \in \{B, B_R, K_3, F\}$.

Solution:

Wahrheitswertebereich B $a \bar{\wedge}_W b = \neg(a \wedge b) = \neg(max(a,b))$

Wahrheitswertebereich $B_{\mathbb{R}}$ $a \bar{\wedge}_W b = \neg(a \wedge b) = \neg(a \cup b)$

Wahrheitswertebereich K_3 $a \bar{\wedge}_W b = \neg(a \wedge b) = \neg(max(a, b))$

Wahrheitswertebereich F $a\bar{\wedge}_W b = \neg(a \wedge b) = \neg(max(a,b))$

(d) Überprüfen Sie, ob die Formel $(p_1 \to p_2) \bar{\wedge} \neg p_1$ eine W-Tautologie ist für $W \in \{B, K_3, B_R\}$.

Solution:

$\begin{array}{c} p_1 \\ \hline w \\ w \\ 0.5 \\ 0.5 \\ 0.5 \\ f \end{array}$	$\begin{array}{c c} p_2 \\ \hline w \\ 0.5 \\ f \\ w \\ 0.5 \\ f \\ w \end{array}$	$ \begin{array}{c} p_1 \rightarrow p_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$(p_1 ightarrow p_2) ar{\wedge} eg p_1$ W W G	ot= Tautologie

(e) Angenommen wir erweitern die Regeln des natürlichen Schließens um $(\bar{\wedge}I)$ und $(\bar{\wedge}E)$. Geben Sie zum Beweis des Korrektheitslemmas für das natürliche Schließen und den Wahrheitswertebereich B den Induktionsschritt für diese Regeln an.

Solution:

(f) Zeigen Sie per vollständiger Induktion über den Formelaufbau, dass es zu jeder aussagenlogischen Formel φ eine Formel ψ gibt, die nur $\bar{\wedge}$ als Operator enthält und äquivalent zu φ ist, $\varphi \equiv \psi$.

......

Solution:

Aufgabe 11

Zeigen Sie (kurz) die folgenden Aussagen.

(a) Die Formelmenge $\{\varphi\}$ ist erfüllbar genau dann, wenn $\neg \varphi$ kein Theorem ist.

(b) Wenn φ eine F-Tautologie ist, dann ist \bot eine Teilformel von φ .

Solution: zeige \bot keine Teilformel von $\varphi \to \varphi$ keine K_3 Tautologie. Idee: betrachte K_3 Belegung $B = \frac{1}{2}$, zeige $B(\varphi) = \frac{1}{2}$ induktiv

(c) Das natürliche Schließen ist auch ohne die Regel (\perp) vollständig.

Solution: ersetzte Deduktion durch Falsum

(d) Für jede aussagenlogische Formel φ gibt es unendlich viele, paarweise verschiedene, äquivalente Formeln.

Solution: definiere Folge $(\varphi)_{i=N}$ mit $\varphi_1=\varphi$ und $\varphi_{i+1}=\varphi_i+\varphi$ Idee: Kombination der Menge mit beliebige u.u. unendlich vielen Formeln $\neg\bot$ unendlich viele, da $\wedge(\neg\bot)$ unendlich oft zusammenhängen kann paarweise verschieden, da $\phi(\wedge(\neg\bot))^n\neq\phi(\wedge(\neg\bot))^m$ äquivalent: $\wedge(\neg\bot)$ ändert den Wert einer Formel nicht

Aufgabe 12

Sei T = (V, E, w) ein endlich verzweigter Baum mit Wurzelwund unendlich vielen Knoten.

(a) Beschreiben Sie mit einer Formelmenge Γ_T , dass in T ein unendlicher Pfad von der Wurzel aus existiert. Verwenden Sie atomare Formeln $\{p_v|v\in V\}$, wobei p_v die intendierte Bedeutung "der Knoten v liegt auf einem unendlichen Pfad von der Wurzel aus" hat.

Hinweis: D.h. Γ_T ist eine Formelmenge, sodass die unendlichen Pfade von w aus in T genau die sind, die die Form $\{v|B(p_v)=1\}$ haben für eine passende Belegung B mit $B(\gamma)=1$ für alle $\gamma\in\Gamma_T$.

Solution:

(b) Verwenden Sie den Kompaktheitssatz der Aussagenlogik um zu beweisen, dass T einen unendlichen Pfad von der Wurzel aus besitzt.

Hinweis: Zeigen Sie zunächst, dass T beliebig lange Pfade von der Wurzel aus besitzt.

Solution:

Aufgabe 13

Bearbeiten Sie die folgenden Teilaufgaben!

(a) Überprüfen Sie mittels Makierungsalgorithmus, ob die unten angegebene Folgerung gilt.

$$p_1 \wedge (p_2 \vee \neg p_3 \vee \neg p_5) \wedge (\neg p_1 \vee p_3) \wedge (\neg p_3 \vee p_4) \wedge (\neg p_1 \vee p_2) \Vdash p_5$$

Solution: Markierungsalgorithmus M:

- Eingabe: Menge von Hornklauseln (Negationen auf linke Seite, Positive auf Rechte)
- Ausgabe: $M(\Gamma) = \text{erf\"{u}llbar} \leftrightarrow \Gamma \text{ erf\"{u}llbar}$
- Grundlage: $\Gamma \Vdash \varphi \leftrightarrow \Gamma \cup \{\neg \varphi\}$ unerfüllbar
- $\{(p_1), (p_2 \vee \neg p_3 \vee \neg p_5), (\neg p_1 \vee p_3), (\neg p_3 \vee p_4), (\neg p_1 \vee p_2), \neg p_5\}$
- Hornklauseln
 - 1. $\neg \bot \rightarrow p_1$
 - 2. $p_3 \wedge p_5 \rightarrow p_2$
 - 3. $p_1 \rightarrow p_3$
 - 4. $p_3 \rightarrow p_4$
 - 5. $p_1 \rightarrow p_2$
 - 6. $p_5 \rightarrow \bot$
- Markier-Algorithmus
 - $-p_1$ für 1.
 - $-p_3, p_4$ für 3.,5.
 - $-p_4$ für 4.
 - keine Terme übrig, allg. Terminiert mit "erfüllbar"
- $\bullet \text{ erfüllbar} \to \text{Folgerung falsch} \to \Gamma \not\Vdash \varphi$
- (b) Überprüfen Sie mittels Makierungsalgorithmus, ob die folgende Formel eine Tautologie ist.

$$(p_1 \wedge \neg p_2 \wedge p_3) \vee (p_4 \wedge \neg p_1) \vee (p_2 \wedge \neg p_4) \vee \neg p_2 \vee p_4$$

Solution:

- φ Tautologie $\leftrightarrow \{\neg \varphi\}$ unerfüllbar
- $\phi = (p_1 \land \neg p_2 \land p_3) \lor (p_4 \land \neg p_1) \lor (p_2 \land \neg p_4) \lor \neg p_2 \lor p_4$
- $\bullet \ \neg \phi = (\neg p_1 \lor p_2 \lor \neg p_3) \land (\neg p_4 \lor p_1) \land (\neg p_2 \lor p_4) \land p_2 \land \neg p_4$
- Hornklauseln
 - 1. $p_1 \wedge p_3 \rightarrow p_2$
 - $2. p_4 \rightarrow p_1$
 - 3. $p_2 \rightarrow p_4$
 - 4. $\neg \varnothing \rightarrow p_2$
 - 5. $p_4 \rightarrow \bot$
- Markier-Algorithmus
 - $-p_2$ für 4.
 - $-p_4$ für 3.
 - wegen 5. bricht Algorithmus ab mit unerfüllbar
- Ausgabe unerfüllbar da $p_4 \to \bot$, also ist ϕ Tautologie

Aufgabe 14

Bearbeiten Sie die folgenden Teilaufgaben!

(a) Überprüfen Sie mittels SLD-Resolution, ob die unten angegebene Folgerung gilt.

$$p_1 \wedge \left(\neg p_1 \vee \neg p_2 \vee p_4\right) \wedge \left(\neg p_1 \vee p_3 \vee \neg p_4\right) \wedge \left(p_6 \vee \neg p_3\right) \wedge \left(\neg p_2 \vee p_5 \vee \neg p_6\right) \Vdash \neg p_2 \vee \left(p_4 \wedge p_5\right)$$

Solution: SLD Resolution für $B(M_1 \to \bot, M_2 \to \bot, ..., M_n \to \bot)$ mit $M_n \to \bot \in \Gamma$ und $M_{ind} = M_n \land \{\varphi\} \land N$ für $N \to \varphi \in \Gamma$. $M_n = \varnothing \Leftrightarrow \Gamma$ unerfüllbar

- Horn-Klauseln
 - 1. $\varnothing \to p_1$
 - 2. $p_1 \wedge p_2 \rightarrow p_4$
 - 3. $p_1 \wedge p_4 \rightarrow p_3$
 - 4. $p_3 \to p_6$
 - 5. $p_6 \wedge p_2 \rightarrow p_5$
 - 6. $\neg \bot \rightarrow p_2$
 - 7. $p_4 \wedge p_5 \rightarrow \bot$
- $\bullet~{\rm SLD}$ Mengen
 - aus 7.: $M_1 = \{p_4, p_5\}$
 - aus 5.: $M_2 = \{p_2, p_4, p_6\}$
 - aus 4.: $M_3 = \{p_2, p_3, p_4\}$
 - aus 3.: $M_4 = \{p_1, p_2, p_4\}$
 - aus 2.: $M_5 = \{p_1, p_2\}$
 - aus 1.+6.: $M_6 = \emptyset$
- $M = \varnothing \to \Gamma$ unerfüllbar $\to \varphi_{links} \Vdash \varphi_{rechts}$

		••															
-	1 \	T TI	c	α .	$_{ m mittels}$	OT D	T) 1		1	1.	C 1 1		٦ 1		DD 1	1 .	
1	h١	Lhorr	rutan	10	mittale	\sim 1.11	- 14 09011	1110n	Λh	dia	talgand	\triangle H	ormal	α in α	191110	പറനാവ	101
١	ν	COUL	лиси	ω	111100013	D	-11/05/01/	uuion.	OD.	uic	TOTECHO		OTHE	CILIC	Lauto	10210	100.

$$(p_2 \land \neg p_1 \land p_3) \lor (p_4 \land p_1 \land p_3) \lor (\neg p_4 \land p_1 \land p_2) \lor \neg p_3 \lor \neg p_2$$

Solution:

- Invertiere Formel für SLD
- Horn-Klauseln
 - 1. $p_2 \wedge p_3 \rightarrow p_1$
 - 2. $p_1 \wedge p_3 \wedge p_4 \rightarrow \bot$
 - 3. $p_1 \wedge p_2 \rightarrow p_4$
 - 4. $\neg \bot \rightarrow p_3$
 - 5. $\neg \bot \rightarrow p_2$
- SLD Mengen
 - aus 2.: $M_1 = \{p_1, p_3, p_4\}$
 - aus 1.: $M_2 = \{p_2, p_3, P_4\}$
 - aus 3.: $M_3 = \{p_1, p_2, p_3\}$
 - aus 1.: $M_4 = \{p_2, p_3\}$
 - aus 4.+5.: $M_5 = \emptyset$
- $M = \emptyset \to \{\neg \varphi\}$ unerfüllbar $\to \varphi$ Tautologie

Aufgabe 15

Leiten Sie die folgenden Äquivalenzen her, Sie können die Äquivalenzen auf Folie 5.13 verwenden.

(a) $a \to b \equiv \neg b \to \neg a$

Solution: $a \to b \equiv \neg a \lor b \equiv b \lor \neg a \equiv \neg \neg b \lor \neg a \equiv \neg b \to \neg a$

(b) $a \lor (a \land b) \equiv a$

Solution: nutze $\alpha = \beta$ gdw $\alpha \leftrightarrow \beta$ ist Theorem, gdw $\alpha \to \beta, \beta \to \alpha$ Theoreme

(c) $\neg a \rightarrow \bot \equiv a$

Solution: $\neg a \rightarrow \bot \equiv \neg \neg a \lor \bot \equiv a \lor \bot \equiv a \lor (a \land \neg a) \equiv a$

Aufgabe 16 Sei A eine endliche Menge. Der Wahrheitswertebereich B_A hat die Form $(2^A, \subseteq, \to_2 A, \neg_2 A)$ mit $\neg B_A(X) = A \setminus X$ und $\rightarrow B_A(X,Y) = (A \setminus X) \cup Y$. Zeigen Sie, dass natürliches Schließen für jeden Wahrheitswertebereich B_A korrekt ist. Hinweis: Führen Sie die Korrektheit für Wahrheitswertebereiche der Form B_A auf die Korrektheit für den Boole'schen Wahrheitswertebereich zurück.

Solution:

Aufgabe 17

Beweisen oder widerlegen Sie die folgenden Aussagen!

(a) Aus $\Gamma \not\Vdash_W \phi$ folgt $\Gamma \Vdash_w \neg \phi$ für jeden Wahrheitswertebereich W.

Solution:
$$\Gamma = \{\neg\bot\}, \ \varphi = p, \ W = K_3, \ K_3 \text{ Belegung } B = \frac{1}{2} \rightarrow \inf B[\Gamma] = 1 \text{ und } B(\varphi) = B(p) = \frac{1}{2} \rightarrow f \not\Vdash_{k_3} \varphi, \neg \varphi$$

(b) Es gibt eine Menge aussagenlogischer Formeln Γ und eine Formel ϕ mit $\Gamma \vdash \phi$ und $\Gamma \vdash \neg \phi$.

Solution: $\Gamma = \{\bot\}, \varphi$ beliebig, z.b. $\varphi = \bot$

(c) Angenommen, es gäbe eine aussagenlogische Formel ϕ mit $\varnothing \vdash \phi$ und $\varnothing \vdash \neg \phi$. Dann ist jede aussagenlogische Formel ein Theorem.

Solution: betrachte ψ , ist Deduktion für $\varnothing \to \psi \to \psi$ Theorem

Der Schnitt zweier B-Belegungen B_1, B_2 sei $B_1 \cap B_2$, wobei $B_1 \cap B_2(pi) = min(B_1(p_i), B_2(p_i))$ für alle atomarenFormeln p_i .

(a) Zeigen Sie, dass Belegungen, die Horn-Formeln erfüllen unter Schnitt abgeschlossen sind, dass also für jede Horn-Formel ϕ und B-Belegungen B_1, B_2 gilt: Wenn $B_1(\phi) = 1$ und $B_2(\phi) = 1$, dann auch $B_1 \cap B_2(\phi) = 1$.

Solution:

(b) Verwenden Sie Aufgabenteil (a) um zu zeigen, dass $\phi = \neg (p_1 \land p_2) \rightarrow (p_3 \lor p_4)$) keine Horn-Formel ist.

Solution:

Aufgabe 19

Seien x, y, z Variablen, P ein einstelliges Relationssymbol, Q ein zwei-stelliges Relationssymbol, a ein null-stelliges Funktionssymbol und f ein einstelliges Funktionssymbol. Geben Sie die freien Variablen der folgenden Formeln an. Welche der Formeln sind Sätze?

(a) $\forall x: Q(x,x) \to \exists x: Q(x,y)$

Solution: y frei \rightarrow kein Satz

(b) $P(f(x)) \rightarrow \exists x : P(x)$

Solution: x vorn frei \rightarrow kein Satz

(c) $P(a) \vee P(f(a))$

Solution: keine freien Variablen \rightarrow ist Satz

(d) $\exists z: (Q(z,x) \lor Q(y,z)) \rightarrow \exists y: (Q(x,y) \land Q(x,z))$

Solution: y vorn frei, z hinten frei \rightarrow kein Satz

Aufgabe 20

Sei $X = \{x_1, ..., x_n\}$ eine endliche, nicht-leere Menge von Variablen und \sum' eine endliche Signatur mit Relationen $R_1, ..., R_r$, Funktionen $f_1, ..., f_k$ und ar entsprechende Stelligkeitsfunktion. Wir können die Menge PL(X) der prädikatenlogischen \sum' -Formeln mit Variablen aus X als eine formale Sprache über dem Alphabet $\sum = \{\bot, \land, \lor, \rightarrow, \neg, (,), \exists, \forall, =\} \cup \{,\} \cup X \cup \sum'$ auffassen. Geben Sie eine kontextfreie Grammatik für PL(X) an.

$$G = (\{F, X', A, T\}, \sum, P, F)$$

$$F \to A|(F \wedge F)|(F \wedge F)|(F \to F)|\neg F| \forall X'F| \exists X'F$$

$$X' \to x_1 | \dots | x_n$$

$$A \to \bot | T = T | R_1(T, ..., T) | ... | R_r(T, ..., T) (R_1(T, ...T) \to T, ..., T = ar(R_1))$$

$$T \to X'|f_1(T,...,T)|...|f_k(T,...,T)$$

Aufgabe 21

Geben Sie für jedes der folgenden Graphenpaare G1, G2 einen prädikatenlogischen Satz an, sodass G1 Modell für diese Formel ist, G2 aber nicht.

 G_i :

G₁:

(d) G_1 :

Solution:

- a) $\exists u, u' : (v \neq v' \land \neg E(v, v'))$
- b) $\exists v, w, w' : (E(v, w) \land E(v, w') \land E(w, w') \land v \neq w \neq w')$
- c) $\neg \exists v : E(v, v)$)
- d) $\exists v : \forall v' : \neg E(v, v')$

Aufgabe 22

Sei Γ die Signatur bestehend aus einem zwei-stelligen Relationssymbol \in . Für eine Menge von Mengen M definieren wir die Struktur S mit $U_S = M$ und \in Seben Sie für jede der folgenden Aussagen eine Formel an, die diese beschreibt.

(a) Es gibt eine Menge, die keine Menge enthält.

Solution: $\exists M : \forall x : \neg (x \in M)$

(b) Für alle Mengen A, B gibt es eine Menge, die genau A und B enthält.

Solution: $\forall A, B : \exists C : \forall D : (D \in C \Leftrightarrow ((D = A) \lor (D = B)))$

(c) Für jede Menge A gibt es eine Menge B, die genau die Elemente der Elemente der Menge A enthält.

Solution: $\forall A : \exists B : \forall C : (C \in B \Leftrightarrow \exists D : (D \in A \land C \in D))$

Aufgabe 23

Sei Γ die Signatur bestehend aus einem zwei-stelligen Relationssymbol E. Für einen (gerichteten) Graphen G=(V,E) definieren wir dann die Struktur G mit $V=U_G$ und $E=E^G$. Welche der folgenden Aussagen sind sind wahr? Begründen Sie Ihre Aussage!

(a) $\{\exists x \exists y \exists z : (E(x,y) \land E(y,z) \land E(z,x))\}$ ist erfüllbar.

Solution: wahr: Steht ein erstes Element zu einem zweiten Element und dieses wiederum zu einem dritten Element in Relation, so steht auch das erste Element zum dritten Element in Relation. Z.B. folgt aus a < b und b < c stets a < c.

(b) $\{\exists x \forall y : E(x,y)\}$ ist erfüllbar, aber nicht allgemeingültig.

Solution: wahr. Es existiert ein Element, was in Relation zu allen anderen Elementen des Graphen steht, z.B. die Wurzel des Graphen.

(c) $\{\forall x \forall y : (E(x,y) \to \neg E(y,x))\} \Vdash \forall x \forall y : (E(x,y) \land E(y,x) \to x = y)$

Solution: wahr: Es gibt keine zwei verschiedenen Elemente, die in beiden Richtungen in Relation stehen, z.B. folgt aus $a \le b$ und $b \le a$ stets a = b

(d) $\{\forall x \forall y : (E(x,y) \lor E(y,x))\} \Vdash \exists x \exists y : (E(x,y) \land \neg x = y)$

Solution: wahr: Je zwei verschiedene Elemente stehen stets auf genau eine Weise in Relation, z.B. wenn stets entweder a < b oder b < a gilt.

Aufgabe 24

Vervollständigen Sie die unten aufgeführte Deduktion, indem Sie die verwendeten Regeln angeben und gege-benenfalls temporäre Hypothesen kenntlich machen. Welche syntaktische Folgerung wird durch die Deduktiongezeigt?

Solution:

$$\frac{\exists x \forall y : E(x,y)}{\exists x : E(x,y)} \xrightarrow{\text{(\forall-E)}} \xrightarrow{\text{(\exists-I)}} \xrightarrow{\text{(\exists-E)}} \xrightarrow{\text{(\exists-E)}} \xrightarrow{\text{(\exists-E)}} \xrightarrow{\text{(\forall-I)}} \xrightarrow{\text{(\exists-E)}} \xrightarrow{\text{(\exists-I)}} \xrightarrow{\text{(I-I)}} \xrightarrow{\text{($I$$$

Folgerung: die Reihenfolge von \exists und \forall ist innerhalb der selben Stufe irrelevant und kann vertauscht werden: $\exists x \forall y ... \rightarrow \forall y \exists x ...$

Aufgabe 25

Sei \sum eine Signatur mit dem zweistelligen Funktionssymbol f. Zeigen Sie durch Angabe einer geeigneten Deduktion, dass für beliebige \sum -Terme s_1, s_2, t_1, t_2 gilt: $\{s_1 = t_1, s_2 = t_2\} \vdash f(s_1, s_2) = f(t_1, t_2)$.

Solution:

$$\frac{f(s_1, s_2) \quad [s_1 = t_1]^1}{\frac{f(t_1, s_2)}{f(t_1, t_2)}} (GfG^1) \qquad [s_2 = t_2]^2 (GfG^2)$$

Aufgabe 26

Geben Sie für die folgenden (inkorrekten) Ableitungen je einen fehlerhaften Ableitungsschritt an. Begründen Sie!

(a)
$$\frac{\exists x(x=a)}{\forall x(x=a)} \frac{[x=a]^1}{\forall x(x=a)} \frac{(\forall -I)}{(\exists -E^1)}$$

Solution: Der Schritt \forall -I ist fehlerhaft, da x frei in x=a vorkommt.

$$\text{(b)} \quad \frac{\frac{[\forall y(P(y,y))]^1}{\exists x \forall y(P(x,y))} \, {}^{(\exists \text{-I})}}{\forall y(P(y,y)) \to \exists x \forall y(P(x,y))} \, {}^{(\to \text{-I}^1)}$$

Solution: \exists -I ändert in der Hypothese y zu x, was nicht zulässig ist $(P(y,y) \neq P(x,y))$

(c)
$$\frac{[\exists x (P(x))]^2 \qquad [P(x)]^1}{\frac{P(X)}{\forall x (P(x))}} (\exists -\text{E}^2)} \\ \frac{\exists x (P(x)) \rightarrow \forall x (P(x))}{\exists x (P(x)) \rightarrow \forall x (P(x))} (\rightarrow -\text{I}^1)}$$

Solution: \exists -E fehlerhaft, da x frei in P(x)

Aufgabe 27

Wir betrachten die Formelmenge $\Gamma = \{\exists B \forall C (\neg C \in B), \forall A \forall B \exists C (A \in C \land B \in C \land \forall D (D \in C \rightarrow C = A \lor C = B))\}$ und die Formel $\varphi = \exists C \exists B \forall A (\neg A \in B \land B \in C)$ für die Signatur, die nur das zweistellige Relationssymbol \in enthält. Zeigen Sie, dass $\Gamma \vdash \varphi$ gilt indem Sie eine Deduktion angeben.

Solution: $\frac{\forall C(\neg C \in B)}{\neg A \in B}_{\forall A(\neg A \in B)}^{(\forall -E)} \xrightarrow{[\neg (\forall A(\neg A \in B))]}_{(iE)} (iE)$ $\frac{\exists B \forall C(\neg C \in B)}{\exists C(A \in B \land B \in C \land \psi)}_{\exists C(A \in B \land B \in C \land \psi)}_{(\forall -E)} (iE)$ $\frac{\bot}{\exists C(A \in C \land B \in C \land \psi)}_{\exists C(A \in C \land B \in C \land \psi)}_{(\forall -E)} (iE)$ $\frac{\bot}{\exists C(A \in C \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in C \land B \land B \in C \land \psi)}_{(A \in$

Aufgabe 28

Geben Sie zum Beweis des Korrektheitslemmas für das natürliche Schließen in der Prädikatenlogik den Induktionsschritt für den Fall $(\exists -I)$ an.

Solution:

I.V.: es gelte $\Gamma \vdash \varphi$, zu zeigen ist $\Gamma \Vdash \varphi$

I.A.: mit $\varphi[x := t]$ wird über keine Variable aus t in φ quantifiziert.

I.S.:

Aufgabe 29

In dieser Aufgabe betrachten wir Mengen von Schließregeln. Wir sagen, dass eine Menge von R von Schließregeln verifizierbar ist, wenn es entscheidbar ist, ob in einer Deduktion ausschließlich Regeln aus R verwendet wurden. Beispielsweise sei R_{nat} die Menge der Regeln des natürlichen Schließens. In der Vorlesung haben wir bereits gesehen, dass R_{nat} verifizierbar ist.

Begründen Sie jeweils kurz, dass Ihre Regelmenge die entsprechenden Eigenschaften hat. Geben Sie je eine Mengen von Schließregeln an, die

(a) nicht vollständig, aber korrekt und verifizierbar ist.

Solution:

 $R_a = \{(R)\}$

- Nicht vollständig, da z.B. $\forall x(x=x)$ nicht ableitbar mit Regeln aus R_a
- Korrekt und verifizierbar, da $R_a \in R_{nat}$
- (b) vollständig, nicht korrekt, aber verifizierbar ist.

Solution:

 $R_L = \{(\bot), (F)\},$ wobei (F) die Regel I^F .

- Vollständig, da $\varnothing \vdash \epsilon$ f.o. ϵ durch $\frac{I}{\epsilon}$
- nicht Korrekt, da für jede Formel gilt $\varnothing \vdash \epsilon$ und $\varnothing \vdash \neg \epsilon$
- Verifizierbar, da jede Deduktio die Form $\frac{I}{\epsilon}$ hat
- (c) vollständig und korrekt, aber nicht verifizierbar ist.

Solution:

 $R_c = \{(\Vdash)\}$ wobei $\frac{\Gamma}{\epsilon}$ gdw. $\Gamma \Vdash \epsilon$

- Vollständig und Korrekt, da $\Gamma \vdash \epsilon$ gdw $\Gamma \Vdash \epsilon$
- nicht verifizierbar, da die Menge der allgmeingültigen Formeln ist nicht entscheidbar.
- ϵ allgemeingültig $\Leftrightarrow \varnothing \Vdash \epsilon \Leftrightarrow \frac{0}{\epsilon}(I)$ ist eine Deduktion

Aufgabe 30

Wir betrachten die folgenden Sachverhalte:

- Vorlesungen werden von genau einem Professor gehalten.
- Studierende können Vorlesungen besuchen.
- Studierende können den Vortragsstil eines Professors mögen.
- Ein Studierender besucht eine Vorlesung genau dann, wenn er den Vortragsstil des Professors mag.
- Jedes Objekt ist entweder ein Studierender, ein Professor oder eine Vorlesung, aber nicht Mehreres davonzugleich.

Bearbeiten Sie die folgenden Teilaufgaben!

(a) Formalisieren Sie die angegebenen Sachverhalte in der Prädikatenlogik. Verwenden Sie dazu einstellige Relationssymbole P(rofessor), S(tudierender), V(orlesung) und zweistellige Relationssymbole H(ält die Vorlesung), M(ag den Vortragsstil), B(esucht die Vorlesung). Formalisieren Sie insbesondere auch zwischen welchen Objekten die Beziehungen H,M und B bestehen können.

Solution:

- $\forall x \exists y (H(x,y) \land \forall z (H(z,y) \to x = z))$
- $\forall x \forall y (H(x,y) \to P(x) \land V(x))$
- $\forall x \forall y (M(x,y) \to S(X) \land P(y))$
- $\forall x \forall y (B(x,y) \to S(x) \land V(y))$
- $\forall x \forall y (B(x,y) \leftrightarrow \exists z (M(x,z) \land H(z,y)))$
- $\forall x ((S(x) \lor P(x) \lor V(x)) \land \neg (S(x) \land P(x)) \land \neg (S(x) \land V(x)) \land \neg (P(x) \land V(x)))$
- (b) Wir sagen, dass zwei Objekte o_1 und o_2 äquivalent sind (in Zeichen $o_1 \sim o_2$), wenn sie gleich sind oder vom gleichen Professor gehalten werden. Weisen Sie nach, dass die resultierende Relation \sim unter den gegebenen Voraussetzungen eine Kongruenz ist.

Solution: \sim ist Kongruenz:

- Punkt 1, Äquivalenzrelation:
 - Reflexivität: $\forall x(x\sim x);$ Sei o_1 ein Objekt. Dann $o_1=o_1,$ also $o_1\sim o_1$
 - Symmetrie: $\forall x \forall y (x \sim y \rightarrow y \sim x)$; Gelte $o_1 \sim o_2$ gdw gdw. $o_1 = o_2$ oder $\exists p(H(p,o_1) \land H(p,o_2))$ gdw. $o_2 = o_1$ oder $\exists p(H(p,o_2) \land H(p,o_1))$ gdw. $o_2 \sim o_1$
 - Transitivität: $\forall x \forall y \forall z (x \sim y \land y \sim z \rightarrow x \sim z)$; Gelte $o_1 \sim o_2$ und $o_2 \sim o_3$. Dann $(o_1 = o_2 \text{ oder } \exists p(H(p,o_1) \land H(p,o_2)))$ und $(o_2 = o_3 \text{ oder } \exists p'(H(p',o_2) \land H(p',o_3)))$. Falls $o_1 = o_2 \text{ oder } o_2 = o_3$, dann gilt $o_1 \sim o_3$. Ansonsten gilt $\exists p(H(p,o_1) \land H(p,o_2)) \land \exists p'(H(p',o_2) \land H(p',o_3))$. Da Vorlesungen von genau einem Professor gehalten werden gilt p = p'. Also werden o_1 und o_3 auch vom gleichen Professor gehalten. Somit $o_1 \sim o_3$
- Punkt 2 gilt, da keine Funktionen in Signatur
- Punkt 3, Relationen:
 - Seien $a_1, b_1, ..., a_k, b_k$ so dass $a_1 \sim b_1, ..., a_k \sim b_k$. Gelte $S(a_1)$ und $a_1 \sim b_1$. Also gilt $a_1 = b_1$ oder $\exists p(H(p, a_1) \land H(p, b_1))$. Falls $H(p, a_1)$, dann gilt $V(a_1)$ nach (ii) doch d_15 widerspricht (vi). Daher muss $a_1 = b_1$ gelten und somit $S(b_1)$
 - Für $P(a_1)$ analog
 - Gelte $V(a_1)$ und $a_1 \sim b_1$. Falls $a_1 = b_1$, dann gilt $V(b_1)$. Ansonsten $\exists p(H(p, a_1) \land H(p, b_1))$. Also gilt $V(b_1)$ nach (ii)
 - Gelte $M(a_1, a_2)$ und $a_1 \sim b_1$ und $a_2 \sim b_2$. Es gilt $S(a_1)$ und $P(a_1)$, also $\neg V(a_1)$ und $\neg V(a_2)$. Somit gilt $a_1 = b_1$ und $a_2 = b_2$, also $M(b_1, b_2)$
 - Gelte $H(a_1, a_2)$ und $a_1 \sim b_1$ und $a_2 \sim b_2$. Da $H(a_1, a_2)$ gilt $P(a_1)$ und $V(a_2)$. $(a_1 = b_1 \text{ oder } \exists p(H(p, a_1) \land H(p, b_1)))$ und $(a_2 = b = 2 \text{ oder } \exists p(H(p, a_2) \land H(p, b_2)))$. Also gilt $a_1 = b_1$. Wenn $a_2 = b_2$, dann $H(b_1, b_2)$. Ansonsten $\exists p(H(p, a_2) \land H(p, b_2))$. Also gilt $H(b_1, b_2)$
 - Gelte $B(a_1, a_2)$ und $a_1 \sim b_1$ und $a_2 \sim b_2$. $B(a_1, a_2)$ gdw $\exists p(M(a_1, p) \land H(p, a_2))$ gdw $\exists p(M(b_1, p) \land H(p, b_2))$ gdw $B(b_1, b_2)$
- also ist ∼ eine Kongruenz

Aufgabe 31

Sei \sum eine Signatur mit einem zweistelligen Relationssymbol E. Im Folgenden verstehen wir \sum -Strukturen G als unter Umständen unendliche, gerichtete Graphen $G = (U_G, E^G)$.

(a) Geben Sie für jedes $n \in \mathbb{N}$ eine Formel φ_n an, sodass ψ_n die Klasse der Graphen axiomatisiert, in denen es einen Pfad der Länge n gibt.

Solution:
$$\epsilon_n = \exists x_0 \exists x_1 ... \exists x_n (\bigwedge_{0 \le i < m} E(x_i, x_{i+1}))$$

(b) Geben Sie eine unendliche Formelmenge ϕ an, sodass $G \Vdash \Psi$ die Klasse der Graphen axiomatisiert, in denen es beliebig lange Pfade gibt.

Solution:
$$\Phi = \{E_n | n \in \mathbb{N}\}$$

(c) Zeigen Sie mithilfe des Kompaktheitssatzes der Prädikatenlogik, dass es keinen \sum -Satz ψ gibt, der die Klasse der Graphen axiomatisiert, die nicht beliebig lange Pfade besitzen. Hinweis: Nehmen Sie an, dass es so einen Satz ψ gibt und leiten Sie aus der Unerfüllbarkeit von $\phi \cup \{\psi\}$ mittels Kompaktheitssatz einen Widerspruch her.

Solution: Angenommen es gibt so einen Satz Ψ . Dann ist $\Phi \cup \{\Psi\}$ unerfüllbar. Also existiert nach Kompaktheitssatz eine endliche Teilmenge $\Phi' \subseteq \Phi \cup \{\Psi\}$, die unerfüllbar ist. Sei $m \in \mathbb{N}$ so, dass für alle $\epsilon_n \in \Phi'$ gilt $n \leq m$. Betrachte die Σ -Struktur $G = (U_G, E^G)$ mit $U_G = \{0, 1, ..., m\}, E^G = \{(i, i+1) | 0 \le i < m\}.$ Dann gilt $G \Vdash \epsilon_n$ für $n \le m$. Außerdem gilt $G \notin \Psi$. Also gilt $G \Vdash \Psi' \to \text{Widerspruch zur Unerfüllbarkeit. Somit kann die Annahme$ nicht stimmen und so ein Satz Psi kann nicht existieren.

Aufgabe 32

Sei f ein einstelliges Funktionssymbol und R ein zweistelliges Relationssymbol. Weiterhin sei

$$\varphi = \neg \exists x (R(x, f(x)) \land \forall y \exists x (R(y, x)))$$

(a) Berechnen Sie eine Formel ψ_1 in Pränexform, die äquivalent ist zu φ .

Solution:
$$\psi_1 = \forall y \exists x \neg \exists z (R(z, f(z)) \land R(y, x))$$

(b) Berechnen Sie eine Formel ψ_2 in Skolemform, die erfüllbarkeitsäquivalent ist zu φ .

Solution:
$$a = \exists x; b = \neg \exists z$$

 $\psi_2 = \forall y (R(b, f(b)) \land R(y, a))$

Der Algorithmus zur Berechnung der Skolemform liefert für die Formel $\exists x : P(x)$ das Ergebnis P(a)mit einer neuen Konstanten a. Zeigen Sie, dass diese beiden Formeln nicht äquivalent sind.

Solution: Die Variable x und Konstante a bilden für P nur logische Äquivalenz im Fall von x =a, sonst nicht. Die erfüllbarkeitsäquivalenz besteht dennoch, da dies nicht von einer bestimmten Variable x abhängt.

Aufgabe 34

Sei \sum die Signatur mit dem zweistelligen Relationssymbol R, der Konstante a und dem zweistelligen Funktionssymbol g. Gegeben sei weiterhin die folgende Formel: $\varphi = \forall x \forall y : (R(x, g(x, y)) \lor R(x, a) \land$ $(\neg R(y,x) \lor R(y,g(x,y)))$. Geben Sie jeweils mindestens zwei Elemente des Herbrand-Universums und der Herbrand-Expansion an.

```
 \begin{aligned}  & \textbf{Solution:} \ \ H_{\varphi} = \{a, g(a, a), R(a, a), R(g(a, a), a), \ldots\} \\ & E(\varphi)_1 = (R(a, g(a, a)) \vee R(a, a) \wedge (\neg R(a, a) \vee R(a, g(a, a)))) \ \text{mit} \ [x/a][y/a] \\ & E(\varphi)_2 = (R(g(a, a), g(g(a, a), a)) \vee R(g(a, a), a) \wedge (\neg R(a, g(a, a)) \vee R(a, g(g(a, a), a)))) \ \text{mit} \ [x/g(a, a)][y/a] \end{aligned}
```

Aufgabe 35

Sei \sum die Signatur mit dem zweistelligen Relationssymbol R und den Konstanten a und b. Betrachten Sie die folgende Formel $\varphi = \forall x \forall y : (R(a,b) \land (R(x,x) \rightarrow R(a,y)) \land \neg R(y,a)).$

(a) Berechnen Sie die Herbrand-Expansion $E(\varphi)$.

```
Solution:  \begin{split} H_\varphi &= \{a,b,R(a,b),\ldots\} \\ E(\varphi) &= \{R(a,b) \wedge (R(x,x) \to R(a,y)) \wedge \neg R(y,a) | x,y \in H_\varphi\} \end{split}
```

(b) Überprüfen Sie, ob $E(\varphi)$ aussagenlogisch erfüllbar ist.

Aufgabe 36

Sei \sum die Signatur mit dem einstelligen Relationssymbol P, der Konstante a und den einstelligen Funktionssymbolen f und g. Betrachten Sie die Formel $\varphi = \forall x : (P(a) \land (P(x) \rightarrow P(f(x))) \land \neg P(g(x)))$. Weiterhin sei A eine Struktur mit

- $U_A = \mathbb{Q}$,
- $P^A = \mathbb{N} \setminus \{0\},$
- $a^A = 1$,
- $f^A(n) = n + 1$ für alle $n \in \mathbb{Q}$ und
- $g^A(n) = 0$ für alle $n \in \mathbb{Q}$.

Dann kann leicht $A \Vdash \varphi$ gezeigt werden. Konstruieren Sie aus A eine Herbrand-Struktur B, welche ebenfalls Modell für φ ist.

Solution:

$$H_{\varphi} = \{a, f(a), g(a), \dots\}$$