
Network Security

Einleitung
Sicherheitsziele
Vertraulichkeit Confidentiality, Anonymität

• nur bestimmtem Personenkreis zugänglich

Integrität der Daten Data Integrity

• jede Veränderung von Daten zu erkennen

Rechenschaftspflicht Accountability

• für Kommunikationsereignis verantwortliche Stelle
identifizieren

Verfügbarkeit Availability

• Dienste sollten verfügbar sein und korrekt funktionieren

Kontrollierter Zugang Controlled Access

• nur autorisierte Stellen erhalten Zugriff

Bedrohungen
Maskerade oder Man-in-the-Middle-Angriff

• Entität gibt sich als eine andere Entität aus

Lauschangriff Eavesdropping

• Entität liest Informationen, die sie nicht lesen soll

Verletzung der Berechtigung Authorization Violation

• Entität nutzt Dienst, für die sie nicht vorgesehen ist

Verlust oder Veränderung von (übertragenen) Informationen

• Daten werden verändert oder zerstört

Verweigerung von Kommunikationsakten Denial of
Communication Acts, Repudiation

• Enität leugnet fälschlicherweise seine Teilnahme

Fälschung von Informationen Forgery of Information

• Entität erstellt neue Informationen im Namen anderer
Entität

Sabotage oder Denial-of-Service-Angriffe

• Verfügbarkeit und ordnungsgemäße Funktionieren
beeinträchtigen

Analyse der Netzwerksicherheit
• Risikopotenzial der allgemeinen Bedrohungen für nutzenden

Einheiten
• Aufwand (Ressourcen, Zeit...) zur Durchführung bekannter

Angriffe
• Es ist im Allgemeinen unmöglich, unbekannte Angriffe zu

bewerten
• kann besser nach den feinkörnigeren Angriffen auf der

Nachrichtenebene strukturiert werden

Angriffe auf Nachrichtenebene
• Passive Angriffe: Lauschangriff
• Aktive Angriffe: Verzögerung/Löschen/Einfügen/Modifizieren von

PDUs (Protocol Data Units)
• erfolgreiche Durchführung erfordert

– keine erkennbaren Nebeneffekte auf andere
Kommunikationen

– keine Nebenwirkungen auf andere PDUs der gleichen
Verbindung

Schutzmaßnahmen der Informationssicherheit
• Physische Sicherheit

– Schlösser oder andere physische Zugangskontrollen
– Manipulationssicherung empfindlicher Geräte
– Umweltkontrollen

• Personelle Sicherheit

– Identifizierung von sensiblen Positionen
– Verfahren zur Überprüfung der Mitarbeiter
– Sicherheitsschulung und -bewusstsein

• Administrative Sicherheit

– Kontrolle des Imports von Fremdsoftware
– Verfahren zur Untersuchung von Sicherheitsverstößen
– Überprüfung von Prüfpfaden
– Überprüfung von Kontrollen der Rechenschaftspflicht

• Strahlungssicherheit

– Kontrolle von Funkfrequenzen und anderen
elektromagnetischen Abstrahlungen

– Bezeichnet als TEMPEST-Schutz

• Mediensicherheit

– Absicherung der Speicherung von Informationen
– Kontrolle der Kennzeichnung, Vervielfältigung und

Vernichtung von sensiblen Informationen
– Sicherstellen, dass Medien mit sensiblen Informationen

sicher vernichtet werden
– Scannen von Medien auf Viren

• Lebenszyklus-Kontrollen

– Vertrauenswürdiger Systementwurf, -implementierung,
-bewertung und -übernahme

– Programmierstandards und -kontrollen
– Kontrollen der Dokumentation

• Computer-Sicherheit

– Schutz von Informationen während der
Speicherung/Verarbeitung in einem Computersystem

– Schutz der Datenverarbeitungsgeräte selbst

• Sicherheit der Kommunikation

– Schutz von Informationen während des Transports von
einem System zu einem anderen

– Schutz der Kommunikationsinfrastruktur selbst

Kommunikationssicherheit
• Sicherheitsdienst: abstrakter Dienst, der bestimmte

Sicherheitseigenschaft gewährleisten soll
• Sicherheitsdienst kann sowohl mit Hilfe von kryptografischen

Algorithmen und Protokollen als auch mit herkömmlichen Mitteln
realisiert werden

• Dokument auf USB-Stick vertraulich, indem es verschlüsselt
gespeichert und Datenträger in Tresor verschlossen

• i.d.R. ist Kombination aus kryptografischen und anderen Mitteln
am effektivsten

• Kryptographischer Algorithmus: mathematische Umwandlung von
Eingabedaten in Ausgabedaten

• Kryptografisches Protokoll: Reihe von Schritten und Austausch
von Nachrichten

Sicherheitsdienste - Überblick
Authentifizierung Authentication

• grundlegendste Sicherheitsdienst,
• Entität besitzt Identität, die sie vorgibt zu haben

Integrität Integrity

• Daten nicht unentdeckt verändern können

Vertraulichkeit Confidentiality

• Geheimhaltung geschützter Daten

Zugriffskontrolle Access Control

• Zugriff auf Dienste/Information nur mit Berechtigung

Nicht-Abstreitbarkeit Non Repudiation

Sicherheitsunterstützende Mechanismen
Schlüsselverwaltung alle Aspekte des Lebenszyklus von

kryptografischen Schlüsseln
Zufallszahlengenerierung Generierung von kryptographisch sicheren

Zufallszahlen
Ereigniserkennung/Sicherheitsprüfpfad Erkennung und

Aufzeichnung von Ereignissen, zur Erkennung von Angriffen oder
Bedingungen, die von Angriffen ausgenutzt werden könnten

Erkennung von Eindringlingen Analyse der aufgezeichneten
Sicherheitsdaten, um erfolgreiche Einbrüche oder Angriffe zu
erkennen

Beglaubigung Registrierung durch vertrauenswürdige Partei, die
bestimmte Eigenschaften der Daten bestätigen kann

Traffic Padding & Cover Traffic Erzeugung von gefälschtem
Verkehr, um die Analyse des Verkehrsflusses zu verhindern

Routing-Kontrolle Beeinflussung des Routings von PDUs in Netzwerk

Kryptologie
Kryptologie Wissenschaft, die sich mit sicherer und meist geheimer

Kommunikation beschäftigt
Kryptographie die Lehre, mit der Informationen in verschlüsseltem

Text verborgen und später von legitimen Nutzern mit Hilfe eines
geheimen Schlüssels offengelegt werden können

Kryptoanalyse die Wissenschaft der Wiedergewinnung von
Informationen aus Chiffren ohne Kenntnis des Schlüssels

Chiffre Methode zur Umwandlung einer Nachricht (Klartext), um ihre
Bedeutung zu verschleiern

Verschlüsselung von Daten: Umwandlung von Klartextdaten in
Chiffretext, um deren Bedeutung zu verbergen

Signierung von Daten: Berechnung eines Prüfwerts oder digitalen
Signatur für gegebenen Klartext oder Geheimtext, der anderen
Stellen, die auf die signierten Daten zugreifen können, überprüft
werden kann

Symmetrische Kryptografie, die 1 Schlüssel für die
Ver-/Entschlüsselung oder die Signierung/Prüfung verwendet

Asymmetrische Kryptografie mit 2 verschiedenen Schlüsseln für die
Ver-/Entschlüsselung oder die Unterzeichnung/Prüfung

Kryptografische Hash-Funktionen mit 0 Schlüsseln (,,Schlüssel”
wird an Daten ,,angehängt” oder ,,vermischt”)

Kryptoanalyse
• Arten der Kryptoanalyse

– Nur Chiffretext: bestimmte Muster können erhalten bleiben
– Bekannte Chiffretext-Klartext-Paare
– Gewählter Klartext oder gewählter Chiffretext
– Differentielle Kryptoanalyse und lineare Kryptoanalyse
– Neuere Entwicklung: verwandte Schlüsselanalyse

• Kryptoanalyse der Public-Key-Kryptographie

– Schlüssel öffentlich zugänglich, kann ausgenutzt werden
– zielt eher darauf ab, das Kryptosystem selbst zu knacken
– näher an reinen mathematischen Forschung als klassische

Kryptoanalyse
– Berechnung von diskreten Logarithmen
– Faktorisierung von großen ganzen Zahlen

Brute-Force-Angriff
• probiert alle möglichen Schlüssel aus, bis er verständlichen

Klartext findet
• Jeder kryptog. Algorithmus kann mit BF angegriffen werden
• Im Durchschnitt Hälfte aller möglichen Schlüssel ausprobieren

Wie groß ist groß?
Referenz Größe
Sekunden in einem Jahr ca. 3 ∗ 107

Taktzyklen pro Jahr (50 MHz Computer) ca. 1, 6 ∗ 1015

Binäre Zeichenketten der Länge 64 264 ca. 1, 8 ∗ 1019

Binäre Zeichenfolgen der Länge 128 2128 ca. 3, 4 ∗ 1038

Binäre Zeichenfolgen der Länge 256 2256 ca. 1, 2 ∗ 1077

Elektronen im Universum 8, 37 ∗ 1077

1/41

Network Security

Wichtige Eigenschaften von
Verschlüsselungsalgorithmen

• Fehlerfortpflanzung charakterisiert Auswirkungen von
Bit-Fehlern bei Übertragung von Chiffretext zu rekonstruiertem
Klartext

• Je nach Verschlüsselungsalgorithmus können pro fehlerhaftem
Chiffretext-Bit ein oder mehrere fehlerhafte Bits im
rekonstruierten Klartext vorhanden sein

• Synchronisierung charakterisiert die Auswirkungen verlorener
Chiffretext-Dateneinheiten auf den rekonstruierten Klartext

• Einige Verschlüsselungsalgorithmen können sich nicht von
verlorenem Chiffretext erholen und benötigen daher eine explizite
Neusynchronisierung im Falle verlorener Nachrichten

• Andere Algorithmen führen eine automatische
Neusynchronisierung nach 0 bis n (n je nach Algorithmus)
Chiffretextbits durch.

Klassifizierung von Verschlüsselungsalgorithmen
• Art der Operationen

Substitution jedes Element des Klartextes in anderes Element
umwandeln

Transposition Elemente des Klartextes neu anordnen

• Anzahl der verwendeten Schlüssel

Symmetrisch denselben Schlüssel
Asymmetrisch unterschiedliche Schlüssel

• Art und Weise, in der Klartext verarbeitet wird

Stromchiffren arbeiten mit Bitströmen und verschlüsseln ein
Bit nach dem anderen

– Idee lineare rückgekoppelter Schieberegister
– meiste Stromchiffren verbreiten keine Fehler
– anfällig für den Verlust der Synchronisation

Blockchiffren arbeiten mit Blöcken der Breite b, wobei b vom
jeweiligen Algorithmus abhängt

Symmetrische Kryptographie
Symmetrische Verschlüsselung

• Derselbe Schlüssel KA,B wird für die Verschlüsselung und
Entschlüsselung von Nachrichten verwendet

• Wenn P die Klartextnachricht bezeichnet, bezeichnet E(KA,B , P)
den Chiffretext und es gilt D(KA,B , E(KA,B , P)) = P

• Alternativ schreibt man manchmal PKA,B oder EKA,B (P)

Symmetrische Block-Verschlüsselungsarten
Electronic Code Book Mode: ECB

• Jeder Block Pi der Länge b wird unabhängig verschlüsselt:
Ci = E(K, pi)

• Bitfehler in Chiffretextblock Ci führt zu völlig falsch
wiederhergestellten Klartextblock P ′i

• Verlust der Synchronisation hat keine Auswirkungen, wenn
ganzzahlige Vielfache der Blockgröße b verloren gehen

• Nachteil: identische Klartextblöcke werden zu identischem
Chiffretext verschlüsselt

Cipher Block Chaining Mode: CBC
• Vor Verschlüsselung eines Klartextblocks Pi wird dieser mit dem

vorangegangenen Chiffretextblock Ci−1 XOR-verknüpft

– Ci = E(K,Ci−1 ⊕ Pi)
– Pi′ = Ci−1 ⊕D(K,Ci)

– Um C1 zu berechnen, einigen sich beide Parteien auf einen
Anfangswert (IV) für C0

• Fehlerfortpflanzung: Ein verfälschter Chiffretextblock führt zu
zwei verfälschten Klartextblöcken, da P ′i mit Ci−1 und Ci
berechnet wird

• Synchronisation: Wenn die Anzahl der verlorenen Bits ein
ganzzahliges Vielfaches von b ist, wird ein zusätzlicher Block
Pi+1 verzerrt, bevor die Synchronisation wiederhergestellt wird

• Vorteil: identische Klartextblöcke werden zu nicht-identischem
Chiffretext verschlüsselt

Ciphertext Feedback Mode: CFB
• Ein Blockverschlüsselungsalgorithmus, der mit Blöcken der Größe

b arbeitet, kann in einen Algorithmus umgewandelt werden, der
mit Blöcken der Größe j(j < b) arbeitet

– S(j, x) bezeichnen die j höherwertigen Bits von x
– Pi, Ci den i-ten Block von Klartext und Geheimtext der

Länge j bezeichnen
– IV ist ein Anfangswert, auf den sich beide Parteien geeinigt

haben
– R1 = IV
– Rn = (Rn−1 ∗ 2j mod 2b)⊕ Cn−1

– Cn = S(j, EK(Rn))⊕ Pn
– S(j, EK(Rn))⊕ Cn = S(j, EK(Rn))⊕ S(j, EK(Rn))⊕ Pn
– S(j, EK(Rn))⊕ Cn = Pn

• Ein gängiger Wert für j ist 8 für die Verschlüsselung von einem
Zeichen pro Schritt

• Fehlerfortpflanzung: Da die Chiffretextblöcke schrittweise durch
das Register geschoben werden, verfälscht ein fehlerhafter Block
Ci den wiederhergestellten Klartextblock P ′i sowie die folgenden
db/je-Blöcke

• Synchronisation: Wenn die Anzahl der verlorenen Bits ein
ganzzahliges Vielfaches von j ist, werden db/je zusätzliche Blöcke
verfälscht, bevor die Synchronisation wiederhergestellt ist

• Nachteil: Die Verschlüsselungsfunktion E muss häufiger berechnet
werden, da eine Verschlüsselung von b Bit durchgeführt werden
muss, um j Bit des Klartextes zu verbergen. Beispiel: Bei
Verwendung von DES mit Verschlüsselung von jeweils einem
Zeichen ⇒ muss die Verschlüsselung 8-mal häufiger durchgeführt
werden

Output-Feedback-Modus: OFB
• Der Blockverschlüsselungsalgorithmus wird zur Erzeugung einer

Pseudozufallsfolge Ri verwendet, die nur von K und IV abhängt

– S(j, x) bezeichnen die j höherwertigen Bits von x
– Pi, Ci bezeichnen den i-ten Block von Klartext und

Chiffretext der Länge j
– IV sei ein Anfangswert, auf den sich beide Parteien

geeinigt haben
– R1 = IV
– Rn = (Rn−1 ∗ 2j mod 2b)⊕ S(j, EK(Rn−1)) // j-bit

Linksverschiebung + verschlüsselter alter Wert
– Cn = S(j, EK(Rn))⊕ Pn
– S(j, EK(Rn))⊕ Cn = S(j, EK(Rn))⊕ S(j, EK(Rn))⊕ Pn
– S(j, EK(Rn))⊕ Cn = Pn

• Der Klartext wird mit der Pseudo-Zufallssequenz XOR-verknüpft,
um den Chiffretext zu erhalten und umgekehrt

• Fehlerfortpflanzung: Einzelbitfehler führen nur zu Einzelbitfehlern
→ keine Fehlermultiplikation

• Synchronisierung: Wenn einige Bits verloren gehen, ist eine
explizite Re-Synchronisation erforderlich

• Vorteil: Die Pseudo-Zufallsfolge kann vorberechnet werden, um
die Auswirkungen der Verschlüsselung auf die
Ende-zu-Ende-Verzögerung gering zu halten

• Wie bei CFB muss die Verschlüsselungsfunktion E häufiger
berechnet werden, da eine Verschlüsselung von b Bit durchgeführt
werden muss, um j Bit des Klartextes zu verbergen

• Es ist für einen Angreifer möglich, bestimmte Bits des Klartextes
zu manipulieren

Datenverschlüsselungsstandard (DES)
• symmetrische Blockchiffre mit Blöcken der Länge 128 Bit
• unter Verwendung von Schlüsseln der Länge 128 Bit
• NSA reduzierte Blockgröße auf 64 Bit, die Größe des Schlüssels

auf 56 Bit und änderte Details in den Substitutionsfeldern des
Algorithmus

DES - Einzelne Iteration

• Die rechten 32 Bit der zu verschlüsselnden Daten werden mit
Hilfe einer Expansions-/Permutationstabelle auf 48 Bit erweitert

• linke und rechte 28 Bit des Schlüssels werden zirkulär nach links
verschoben und der resultierende Wert wird mit Hilfe einer
Permutations-/Kontraktionstabelle auf 48 Bit verkürzt

• beide oben genannten Werte XOR-verknüpft und in Auswahl-
und Ersetzungsbox eingegeben

• Intern wird diese Operation durch 8 so genannte s-Boxen
realisiert, von denen jede einen Sechs-Bit-Wert auf einen
Vier-Bit-Wert gemäß einer boxspezifischen Tabelle abbildet, was
insgesamt zu einem 32-Bit-Ausgang führt

• Ausgang des obigen Schritts wird erneut permutiert und mit den
linken 32 Bit der Daten XOR-verknüpft, was zu den neuen
rechten 32 Bit der Daten führt

• Die neuen linken 32 Bit der Daten sind der rechte Wert der
vorherigen Iteration

2/41

Network Security

DES - Entschlüsselung
• Unter Verwendung der Abkürzung f(R,K) kann der

Verschlüsselungsprozess wie folgt geschrieben werden

– Li = Ri−1

– Ri = Li−1 ⊕ f(Ri−1, Ki)
– Aufteilung der Daten in zwei Hälften und Organisation der

Verschlüsselung gemäß den obigen Gleichungen
– Dieses Konzept wird in vielen Blockchiffren verwendet und

wird als Feistel-Netzwerk bezeichnet

• Der DES-Entschlüsselungsprozess ist im Wesentlichen derselbe
wie die Verschlüsselung. Er verwendet den Chiffretext als Eingabe
für den Verschlüsselungsalgorithmus, wendet aber die
Unterschlüssel in umgekehrter Reihenfolge an

• Die Ausgangswerte sind also

– L′0||R
′
0 = InitialPermutation (Chiffretext)

– chiffretext = InverseInitialPermutation (R16||L16)
– L′0||R

′
0 = InitialPermutation (InverseInitialPermutation

(R16||L16)) = R16||L16

• Nach einem Schritt der Entschlüsselung

– L′1 = R′0 = L16 = R15

– R′1 = L′0 ⊕ f(R′0, K16) = R16 ⊕ f(R15, K16) =

, , L15 ⊕ f(R15, K16)′′ ⊕ f(R15, K16) = L15

• Diese Beziehung gilt für den gesamten Prozess als

– Ri−1 = Li
– Li−1 = Ri ⊕ f(Ri−1, Ki) = Ri ⊕ f(Li, Ki)

• Der Ausgang der letzten Runde ist schließlich

– L′16||R
′
16 = R0||L0

• Nach der letzten Runde führt DES einen 32-Bit-Tausch und die
inverse Anfangspermutation durch

– InverseInitialPermutation(L0||R0) =
InverseInitialPermutation(InitialPermutation(Klartext)) =
Klartext

DES - Sicherheit
• Schwächen der Schlüssel

– Schwache Schlüssel: Vier Schlüssel sind schwach, da sie
Unterschlüssel erzeugen, die entweder alle 0 oder alle 1
enthalten.

– Halbschwache Schlüssel: Es gibt sechs Schlüsselpaare, die
Klartext zu identischem Chiffriertext verschlüsseln, da sie
nur zwei verschiedene Unterschlüssel erzeugen

– Möglicherweise schwache Schlüssel: Es gibt 48 Schlüssel, die
nur vier verschiedene Unterschlüssel erzeugen

– Insgesamt werden 64 Schlüssel von 72057594037927936 als
schwach angesehen

• Algebraische Struktur

– Wäre DES geschlossen, dann gäbe es für jedes K1, K2 ein
K3, so dass: E(K2, E(K1,M)) = E(K3,M), also wäre die
doppelte Verschlüsselung nutzlos

– Wäre DES rein, dann gäbe es für jedes K1, K2, K3 ein K4,
so dass E(K3, E(K2, E(K1,M))) = E(K4,M), also wäre
die dreifache Verschlüsselung nutzlos

– DES ist weder geschlossen noch rein, daher kann ein
Mehrfachverschlüsselungsschema verwendet werden, um die
Schlüssellänge zu erhöhen

• Differentielle Kryptoanalyse

– Im Jahr 1990 veröffentlichten E. Biham und A. Shamir
diese Analysemethode

– Sie sucht gezielt nach Unterschieden in Chiffretexten, deren
Klartexte bestimmte Unterschiede aufweisen, und versucht,
daraus den richtigen Schlüssel zu erraten

– Der grundlegende Ansatz benötigt einen ausgewählten
Klartext zusammen mit seinem Chiffretext

– DES mit 16 Runden ist gegen diesen Angriff immun, da der
Angriff 247 gewählte Klartexte oder 255 bekannte Klartexte
benötigt

– Die Entwickler von DES erklärten in den 1990er Jahren,
dass sie in den 1970er Jahren über diese Art von Angriffen
Bescheid wussten und dass die s-Boxen entsprechend
entworfen wurden

• Schlüssellänge

– Da 56-Bit-Schlüssel in 10, 01 Stunden durchsucht werden
kann, wenn man 106 Verschlüsselungen/µs durchführen
kann, kann DES nicht mehr als ausreichend sicher
angesehen werden.

Erweiterung der Schlüssellänge von DES
• Doppelter DES: Da DES nicht geschlossen ist, führt die doppelte

Verschlüsselung zu einer Chiffre, die 112-Bit-Schlüssel verwendet

– Leider kann sie mit einem Aufwand von 256 angegriffen
werden.

– Da C = E(K2, E(K1, P)) haben wir
X := E(K1, P) = D(K2, C)

– Wenn ein Angreifer ein bekanntes
Klartext/Chiffretext-Paar erhalten kann, kann er zwei
Tabellen erstellen (meet-in-the-middle-attack)

∗ Tabelle 1 enthält die Werte von X, wenn P mit allen
möglichen Werten von K verschlüsselt ist

∗ Tabelle 2 enthält die Werte von X, wenn C mit allen
möglichen Werten von K entschlüsselt wird

∗ Sortiere die beiden Tabellen und konstruiere Schlüssel
KT1||KT2 für alle Kombinationen von Einträgen, die
den gleichen Wert ergeben.

• Da es für jeden beliebigen Klartext 264 mögliche
Chiffretext-Werte gibt, die mit Double-DES erzeugt werden
könnten, gibt es beim ersten bekannten Klartext/Chiffretext-Paar

durchschnittlich 2112/264 = 248 Fehlalarme.
• Jedes weitere Klartext/Chiffretext-Paar verringert die Chance,

einen falschen Schlüssel zu erhalten, um den Faktor 1/264, so dass

bei zwei bekannten Blöcken die Chance 2−16 beträgt.
• Der Aufwand, der erforderlich ist, um Double DES zu knacken,

liegt also in der Größenordnung von 256, was nur geringfügig
besser ist als der Aufwand von 255, der erforderlich ist, um Single
DES mit einem Angriff mit bekanntem Klartext zu knacken, und
weit entfernt von den 2111, die wir von einer Chiffre mit einer
Schlüssellänge von 112 Bit erwarten würden

• Diese Art von Angriff kann durch die Verwendung eines
dreifachen Verschlüsselungsschemas umgangen werden, wie es
1979 von W. Tuchman vorgeschlagen wurde

• C = E(K3, D(K2, E(K1, P)))
• Die Verwendung der Entschlüsselungsfunktion D in der Mitte

ermöglicht die Verwendung von Dreifachverschlüsselungsgeräten
mit Gegenstellen, die nur Einfachverschlüsselungsgeräte besitzen,
indem K1 = K2 = K3 gesetzt wird.

• Dreifachverschlüsselung kann mit zwei (Einstellung K1 = K3)
oder drei verschiedenen Schlüsseln verwendet werden

• Bislang sind keine praktischen Angriffe gegen dieses Verfahren
bekannt

• Nachteil: die Leistung beträgt nur 1/3 der einfachen
Verschlüsselung, so dass es besser sein könnte, gleich eine andere
Chiffre zu verwenden, die eine größere Schlüssellänge bietet

fortgeschrittener Verschlüsselungsstandard AES
• Oktober 2000: Rijndael wird als Vorschlag des NIST für AES

bekannt gegeben
• Rundenbasierte symmetrische Chiffre
• Keine Feistel-Struktur (unterschiedliche Verschlüsselungs- und

Entschlüsselungsfunktionen)

• Schlüssellänge: 128, 192, oder 256 Bit
• Blocklänge: 128, 192 oder 256 Bit (nur 128 standardisiert)
• Anzahl der Runden: 10, 12, 14
• Der Algorithmus arbeitet mit

– state[4, 4]: ein Byte-Array mit 4 Zeilen und 4 Spalten (für
128-Bit-Blockgröße)

– key[4, 4]: ein Array mit 4 Zeilen und 4 Spalten (für
128-Bit-Schlüsselgröße)

• Verschlüsselung: (für eine Block- und Schlüsselgröße von 128 Bit)
in Runden 1− 9 werden vier Operationen verwendet

ByteSub eine nicht-lineare Byte-Substitution durch eine feste
Tabelle (s-Box)

ShiftRow die Zeilen des Zustands werden zyklisch um
verschiedene Offsets verschoben

MixColumn die Spalten von state[] werden als Polynome über

GF (28) betrachtet und modulo x4 + 1 mit einer festen

Matrix multipliziert:

(02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

)
RoundKey ein Round-Key wird mit dem Status XORiert
- Runde 10 macht keinen Gebrauch von der Operation

MixColumn

• Entschlüsselung

– Rundenschlüssel und Operationen werden in umgekehrter
Reihenfolge angewendet

– Der MixColumn-Schritt kann nur durch Multiplikation mit
der inversen Matrix (auch über GF (28)) invertiert werden

–

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e


– Oft werden tabellarische vorberechnete Lösungen

verwendet, die mehr Platz benötigen

AES - Sicherheit
• Die einfache mathematische Struktur von AES ist der

Hauptgrund für seine Geschwindigkeit, führte aber auch zu Kritik
• Nur die ByteSub-Funktion ist wirklich nichtlinear und verhindert

eine effektive Analyse
• AES kann als eine große Matrix-Operation beschrieben werden
• Bereits während der Standardisierung wurden Angriffe für

reduzierte Versionen entwickelt

– Ein Angriff mit 232 gewähltem Klartext gegen eine
7-Runden-Version von AES

– Signifikante Reduktion der Komplexität auch für eine
9-Runden-Version von AES mit 256-Schlüsselgröße mit
einem zugehörigen Schlüsselangriff

• 2011 wurde der erste Angriff gegen vollständigen AES bekannt

– Schlüsselwiederherstellung in 2126.1 für AES mit 128 Bit,
2189.7 für AES mit 192 Bit, 2254.4 für AES mit 256 Bit

– ,,Praktischer,, Angriff (geht nicht von verwandten
Schlüsseln aus)

– nur ein kleiner Kratzer in Anbetracht von 10 Jahren
kryptographischer Forschung

Stromchiffre-Algorithmus RC4
• Stromchiffre, die 1987 von Ron Rivest erfunden wurde
• RC4 wird im Output-Feedback-Modus (OFB) betrieben

– Der Verschlüsselungsalgorithmus erzeugt eine
Pseudozufallsfolge RC4(IV,K), die nur vom Schlüssel K
und einem Initialisierungsvektor IV abhängt

– Der Klartext Pi wird dann mit der Pseudozufallssequenz
XOR-verknüpft, um den Chiffretext zu erhalten und
umgekehrt

– C1 = P1 ⊕ RC4(IV1, K)
– P1 = C1 ⊕ RC4(IV1, K)

3/41

Network Security

• Pseudo-Zufallsfolge wird oft als Keystream bezeichnet
• Entscheidend für Sicherheit, dass Keystream niemals

wiederverwendet wird
• Wenn der Keystream wiederverwendet wird (d.h. IV1 = IV2 mit

demselben K), dann kann das XOR zweier Klartexte erhalten
werden

• RC4 verwendet einen Schlüssel variabler Länge bis zu 2048 Bit
• Eig. dient Schlüssel als Seed für Pseudo-Zufallsgenerator
• RC4 arbeitet mit zwei 256-Byte-Arrays: S, , 0, 255′′, K, , 0, 255′′

1. Initialisierung der Arrays
2. Erzeugen des Schlüsselstroms (nach Init i = 0;n = 0;)
3. XOR-Verknüpfung des Schlüsselstroms mit dem Klartext

oder Chiffretext

• Sicherheit von RC4

– Sicherheit gegen Brute-Force-Angriffe
– variable Schlüssellänge bis 2048 Bit
– durch Verringerung der Schlüssellänge auch beliebig

unsicher werden
– RSA Data Security Inc. behauptet, RC4 sei immun gegen

differentielle und lineare Kryptoanalyse und es seien keine
kleinen Zyklen bekannt

• RC4 mit 40-Bit-Schlüsseln hatte einen besonderen Exportstatus

– Secure Socket Layer (SSL) verwendet RC4 mit
40-Bit-Schlüsseln als Standardalgorithmus

– Schlüssellänge von 40 Bit ist nicht immun gegen
Brute-Force

• Je nach Schlüsselplanungsmethode kann RC4 stark verwundbar
sein

• empfohlen min. erste 3072 Bytes des Schlüsselstroms zu verwerfen
• sollte nicht mehr verwendet werden, auch nicht bei längeren

Schlüsseln

KASUMI
• Verwendet zur Verschlüsselung von Anrufen in GSM und UMTS
• Entwickelt für Hardware-Implementierung (< 10k Gatter)
• Schnelle Implementierung möglich
• 64-Bit-Blockgröße
• 128-Bit-Schlüssellänge
• 8 Runden Feistel-Netzwerk
• Sicherheitsspanne nicht sehr groß

•
• linke 32 Bit der zu verschlüsselnden Daten werden durch zwei

nichtlineare Funktionen FO und FL verändert, die beide
Schlüsselmaterial verwenden

• Reihenfolge, in der FO und FL angewendet werden, hängt von
Rundenzahl ab

• FL teilt die Daten in 16-Bit-Wörter auf, die mit Schlüsselmaterial
kombiniert, permutiert und mit den Originalwerten
XOR-verknüpft werden

• FO ist ein 3-Runden-Feistel-Netzwerk mit einer
Modifizierungsfunktion FI, die selbst ein Feistel-ähnliches
Netzwerk ist, das zwei s-Boxen verwendet

• Der Ausgang des obigen Schritts wird mit den rechten 32 Bit der
Daten XOR-verknüpft, was zu den neuen rechten 32 Bit der
Daten führt

• Das neue linke 32-Bit der Daten ist der rechte Wert der
vorherigen Iteration

KASUMI - Sicherheit
• reduzierte Version (6 Runden) kann durch unmögliche

differentielle Kryptoanalyse angegriffen werden, bei der

unmögliche Zustände der Chiffre aus Chiffretext/Klartext-Paaren
abgeleitet werden

– Erste Veröffentlichung bereits ein Jahr nach der
Standardisierung

– Zeitkomplexität von 2100

• Für Vollversion von KASUMI verwandte Schlüsselangriffe möglich

– Ausgewählter Klartextangriff, bei dem der Angreifer
dieselben Daten mit mehreren ,,verwandten” Schlüsseln
verschlüsseln kann

– Zeitkomplexität von 276.1 und 232 im besten Fall
– Bedingungen, unter denen Angreifer Zugang zu verwandten

Schlüsseln in 3G-Netzen haben, sehr selten

• ETSI hat jedoch SNOW 3G eingeführt, um auf eine vollständige
Verletzung von KASUMI vorbereitet zu sein

– Stromchiffre basierend auf LFSR, in 7.500 ASIC-Gattern
implementiert

– anfällig für verwandte Schlüsselangriffe

Asymmetrische Kryptographie
• Allgemeine Idee:

– Verwenden Sie zwei verschiedene Schlüssel −K und +K für
die Ver- und Entschlüsselung

– Bei einem zufälligen Chiffretext c = E(+K,m) und +K
sollte es nicht möglich sein,
m = D(−K, c) = D(−K,E(+K,m)) zu berechnen.

– Dies impliziert, dass die Berechnung von −K bei +K nicht
möglich sein sollte.

– Der Schlüssel −K ist nur einer Entität A bekannt und wird
A’s privater Schlüssel −KA genannt

– Der Schlüssel +K kann öffentlich bekannt gegeben werden
und wird A’s öffentlicher Schlüssel +KA genannt

• Anwendungen:

– Verschlüsselung: Wenn B eine Nachricht mit dem
öffentlichen Schlüssel +KA von A verschlüsselt, kann er
sicher sein, dass nur A sie mit −KA entschlüsseln kann.

– Signieren: Wenn A eine Nachricht mit seinem eigenen
privaten Schlüssel −KA verschlüsselt, kann jeder diese
Signatur verifizieren, indem er sie mit A’s öffentlichem
Schlüssel +KA entschlüsselt

– Achtung! Entscheidend ist, dass jeder nachprüfen kann,
dass er wirklich den öffentlichen Schlüssel von A kennt und
nicht den Schlüssel eines Gegners!

• Entwurf von asymmetrischen Kryptosystemen:

– Schwierigkeit: Finde einen Algorithmus und eine Methode,
zwei Schlüssel −K, +K so zu konstruieren, dass es nicht
möglich ist, E(+K,m) mit der Kenntnis von +K zu
entschlüsseln

– Beschränkungen:

∗ Die Schlüssellänge sollte ,,überschaubar” sein
∗ Verschlüsselte Nachrichten sollten nicht beliebig

länger sein als unverschlüsselte Nachrichten (wir
würden einen kleinen konstanten Faktor tolerieren)

∗ Ver- und Entschlüsselung sollten nicht zu viele
Ressourcen verbrauchen (Zeit, Speicher)

– Grundlegende Idee: Man nehme ein Problem aus dem
Bereich der Mathematik/Informatik, das schwer zu lösen
ist, wenn man nur +K kennt, aber leicht zu lösen, wenn
man −K kennt

∗ Knapsack-Probleme: Grundlage der ersten
funktionierenden Algorithmen, die sich leider fast alle
als unsicher erwiesen haben

∗ Faktorisierungsproblem: Grundlage des
RSA-Algorithmus

∗ Diskreter-Logarithmus-Problem: Grundlage von
Diffie-Hellman und ElGamal

Einige mathematische Hintergründe
• Sei Z die Menge der ganzen Zahlen, und a, b, n ∈ Z
• Wir sagen, a teilt b(a|b), wenn es eine ganze Zahl k ∈ Z gibt, so

dass a× k = b
• a ist prim, wenn es positiv ist und die einzigen Teiler von a 1 und
a sind.

• r ist der Rest von a geteilt durch n, wenn r = a− ba/nc × n,
wobei bxc die größte ganze Zahl kleiner oder gleich x ist.

– Beispiel: 4 ist der Rest von 11 geteilt durch 7 als
4 = 11− b11/7c × 7

– Wir können dies auch anders schreiben: a = q × n+ r mit
q = ba/nc

• Für den Rest r der Division von a durch n schreiben wir
a MOD n

• Wir sagen, b ist kongruent a mod n, wenn es bei der Division
durch n den gleichen Rest wie a hat. Also teilt n (a− b), und wir
schreiben b ≡ a mod n

• Beispiele: 4 ≡ 11 mod 7, 25 ≡ 11 mod 7, 11 ≡ 25 mod 7,
11 ≡ 4 mod 7, −10 ≡ 4 mod 7

• Da der Rest r der Division durch n immer kleiner als n ist, stellt
man manchmal die Menge x mod n|x ∈ Z durch Elemente der
Menge Zn = 0, 1, ..., n− 1 dar

Größter gemeinsamer Teiler

• c = gcd(a, b) :⇔ (c|a) ∧ (c|b)∧, , ∀d : (d|a) ∧ (d|b)⇒ (d|c)′′ und
gcd(a, 0) := |a|

• Der gcd-Rekursionssatz

– ∀a, b ∈ Z+ : gcd(a, b) = gcd(b, a mod b)
– Beweis:

∗ Da gcd(a, b) sowohl a als auch b teilt, teilt es auch
jede Linearkombination von ihnen, insbesondere
(a− ba/bc × b) = a mod b, also
gcd(a, b)|gcd(b, a mod b)

∗ Da gcd(b, a mod b) sowohl b als auch a mod b teilt,
teilt es auch jede Linearkombination von beiden,
insbesondere ba/bc × b+ (a mod b) = a, also
gcd(b, a mod b)|gcd(a, b)

• Euklidischer Algorithmus: Der euklidische Algorithmus berechnet
aus a, b gcd(a, b)

• Erweiterter euklidischer Algorithmus: Der Algorithmus
ExtendedEuclid berechnet für a, b d, m, n so, dass:
d = gcd(a, b) = m× a+ n× b

– Beweis: (durch Induktion)

∗ Grundfall (a, 0) : gcd(a, 0) = a = 1× a+ 0× 0
∗ Induktion von (b, a mod b) auf (a, b):

· ExtendedEuclid berechnet d′,m′, n′ korrekt
(Induktionshypothese)

· d = d′ = m′ × b+ n′ × (a mod b) = m′ × b+ n′ ×
(a− ba/bc × b) = n′ × a+ (m′ − ba/bc × n′)× b

– Die Laufzeit von Euclid(a, b) und ExtendedEuclid(a, b) ist
von O(log b)

– Lemma 1: Sei a, b ∈ N und d = gcd(a, b). Dann gibt es
m,n ∈ N so, dass: d = m× a+ n× b

• Theorem 1 (Euklid): Wenn eine Primzahl das Produkt zweier
ganzer Zahlen teilt, dann teilt sie mindestens eine der ganzen
Zahlen: p|(a× b)⇒ (p|a)× (p|b)

– Der Beweis: Es sei p|(a× b)
∗ Wenn p|a dann sind wir fertig.
∗ Wenn nicht, dann gcd(p, a) = 1⇒ ∃m,n ∈ N : 1 =
m× p+ n× a⇔ b = m× p× b+ n× a× b

∗ Da p|(a× b), teilt p beide Summanden der Gleichung
und somit auch die Summe, die b ist

• Theorem 2 (Fundamentalsatz der Arithmetik): Die Faktorisierung
in Primzahlen ist bis zur Ordnung eindeutig.

4/41

Network Security

– Der Beweis:
∗ Wir werden zeigen, dass jede ganze Zahl mit einer

nicht eindeutigen Faktorisierung einen eigenen Teiler
mit einer nicht eindeutigen Faktorisierung hat, was zu
einem klaren Widerspruch führt, wenn wir schließlich
auf eine Primzahl reduziert haben.

∗ Nehmen wir an, dass n eine ganze Zahl mit einer nicht
eindeutigen Faktorisierung ist:
n = p1 × p2 × ...× pr = q1 × q2 × ...× qs. Die
Primzahlen sind nicht notwendigerweise verschieden,
aber die zweite Faktorisierung ist nicht einfach eine
Umordnung der ersten. Da p1 n dividiert, dividiert es
auch das Produkt q1 × q2 × ...× qs. Durch wiederholte
Anwendung von Satz 1 zeigen wir, dass es mindestens
ein qi gibt, das durch p1 teilbar ist. Gegebenenfalls
ordnen wir die qi’s so, dass es q1 ist. Da sowohl p1 als
auch q1 Primzahlen sind, müssen sie gleich sein. Wir
können also durch p1 dividieren und haben, dass n/p1
eine nicht-eindeutige Faktorisierung hat.

– Wir verwenden Theorem 2, um die folgende Korollarie 1 zu
beweisen

∗ Wenn gcd(c,m) = 1 und (a× c) ≡ (b× c)mod m,
dann a ≡ b mod m

∗ Der Beweis: Da (a× c) ≡ (b× c)mod m⇒ ∃n ∈ N :
(a× c)− (b× c) = n×m

∗ ⇔ (a− b)× c = n×m
∗ ⇔ p1× ...×pi×q1× ...×qj = r1× ...×rk×s1× ...×sl
∗ Man beachte, dass die p’s, q’s, r’s und s’s Primzahlen

sind und nicht verschieden sein müssen, aber da
gcd(c,m) = 1, gibt es keine Indizes g, h, so dass
qg = sh.

∗ Wir können also die Gleichung fortlaufend durch alle
q’s teilen, ohne jemals ein s zu ,,eliminieren” und
erhalten schließlich etwas wie
⇔ p1 × ...× pi = r1 × ...× ro × s1 × ...× sl (beachten
Sie, dass es weniger r’s geben wird)

∗ ⇔ (a− b) = r1 × ...× ro ×m⇒ a ≡ b mod m
– Bezeichne φ(n) die Anzahl der positiven ganzen Zahlen, die

kleiner als n und relativ zu n prim sind

∗ Beispiele: φ(4) = 2, φ(6) = 2, φ(7) = 6, φ(15) = 8
∗ Wenn p eine Primzahl ist ⇒ φ(p) = p− 1

• Theorem 3 (Euler): Seien n und b positive und relativ primäre
ganze Zahlen, d.h. gcd(n, b) = 1⇒ bφ(n) ≡ 1 mod n

– Beweis:
∗ Sei t = φ(n) und a1, ...at seien die positiven ganzen

Zahlen kleiner als n, die relativ zu n prim sind.
Definieren Sie r1, ..., rt als die Residuen von
b× a1 mod n, ..., b× at mod n, d.h.:
b× ai ≡ ri mod n.

∗ Beachten Sie, dass i 6= j ⇒ ri 6= rj . Wäre dies nicht
der Fall, hätten wir b× ai ≡ b× aj mod n und da
gcd(b, n) = 1, würde Korollar 1 ai ≡ aj mod n
implizieren, was nicht sein kann, da ai und aj per
Definition verschiedene ganze Zahlen zwischen 0 und
n sind

∗ Wir wissen auch, dass jedes ri relativ prim zu n ist,
denn jeder gemeinsame Teiler k von ri und n , d.h.
n = k ×m und ri = pi × k, müsste auch ai teilen,

∗ da b× aigleich
(pi × k) mod (k×m)⇒ ∃s ∈ N : (b× ai)− (pi × k) =
s× k ×m⇔ (b× ai) = s× k ×m+ (pi × k)

∗ Da k jeden der Summanden auf der rechten Seite
dividiert und k nicht durch b dividiert (n und b sind
relativ prim), müsste es auch ai dividieren, das relativ
prim zu n sein soll

∗ Somit ist r1, ..., rt eine Menge von φ(n) verschiedenen
ganzen Zahlen, die relativ prim zu n sind. Das
bedeutet, dass sie genau dasselbe sind wie a1, ...at,
nur dass sie in einer anderen Reihenfolge stehen.

Insbesondere wissen wir, dass
r1 × ...× rt = a1 × ...× at

∗ Wir verwenden nun die Kongruenz
r1 × ...× rt ≡ b× a1 × ...× b× at mod n
⇔ r1 × ...× rt ≡ bt × a1 × ...× at mod n
⇔ r1 × ...× rt ≡ b×r1 × ...× rt mod n

∗ Da alle ri relativ prim zu n sind, können wir Korollar
1 anwenden und durch ihr Produkt dividieren:
1 ≡ bt mod n⇔ 1 ≡ bφ(n) modn

• Satz 4 (Chinese Remainder Theorem):

– Seien m1, ...,mr positive ganze Zahlen, die paarweise
relativ prim sind,

– d.h. ganzi 6= j : gcd(mi,mj) = 1. Seien a1, ..., ar beliebige
ganze Zahlen.

– Dann gibt es eine ganze Zahl a derart, dass:

∗ a ≡ a1 mod m1
∗ a ≡ a2 mod m2∗ ...
∗ a ≡ ar mod mr

– Außerdem ist a eindeutig modulo M := m1 × ...×mr
– Beweis:

∗ Für alle i ∈ 1, ..., r definieren wir
Mi := (M/mi)φ(mi)

∗ Da Mi per Definition relativ prim zu mi ist, können
wir Theorem 3 anwenden und wissen, dass
Mi ≡ 1 mod mi

∗ Da Mi durch mj für jedes j 6= i teilbar ist, haben wir
∀j 6= i : Mi ≡ 0 mod mj

∗ Wir können nun die Lösung konstruieren, indem wir
definieren: a := a1 ×M1 + a2 ×M2 + ...+ ar ×Mr

∗ Die beiden oben angeführten Argumente bezüglich der
Kongruenzen der Mi implizieren, dass a tatsächlich
alle Kongruenzen erfüllt.

∗ Um zu sehen, dass a eindeutig modulo M ist, sei b
eine beliebige andere ganze Zahl, die die r
Kongruenzen erfüllt. Da a ≡ c mod n und
b ≡ c mod n⇒ a ≡ b mod n haben wir
∀i ∈ 1, ..., r : a ≡ b mod mi ⇒ ∀i ∈ 1,, r :
mi|(a− b)⇒M |(a− b), da die mi paarweise relativ
prim sind ⇔ a ≡ b mod M

• Lemma 2:

– Wenn gcd(m,n) = 1, dann ist φ(m× n) = φ(m)× φ(n)
– Der Beweis:

∗ Sei a eine positive ganze Zahl, die kleiner als und
relativ prim zu m× n ist. Mit anderen Worten: a ist
eine der ganzen Zahlen, die von φ(m× n) gezählt
werden.

∗ Betrachten Sie die Entsprechung
a→ (a mod m, a mod n). Die ganze Zahl a ist relativ
prim zu m und relativ prim zu n (andernfalls würde
sie m× n teilen). Also ist (a mod m) relativ prim zu
m und (a mod n) ist relativ prim zu n, da:
a = ba/mc ×m+ (a mod m), wenn es also einen
gemeinsamen Teiler von m und (a mod m) gäbe,
würde dieser Teiler auch a teilen. Somit entspricht
jede Zahl a, die durch φ(m× n) gezählt wird, einem
Paar von zwei ganzen Zahlen (a mod m, a mod n),
wobei die erste durch φ(m) und die zweite durch φ(n)
gezählt wird.

∗ Aufgrund des zweiten Teils von Satz 4 ist die
Einzigartigkeit der Lösung a mod (m× n) der
simultanen Kongruenzen: a ≡ (a mod m) mod m
a ≡ (a mod n) mod n können wir ableiten, dass
verschiedene ganze Zahlen, die durch φ(m× n)
gezählt werden, verschiedenen Paaren entsprechen:

· Um dies zu sehen, nehmen wir an, dass a 6= b,
gezählt durch φ(m× n), demselben Paar
(a mod m, a mod n) entspricht. Dies führt zu
einem Widerspruch, da b auch die Kongruenzen

erfüllen würde: b ≡ (a mod m) mod m
b ≡ (a mod n) mod n aber die Lösung dieser
Kongruenzen ist eindeutig modulo (m× n)

· Daher ist φ(m× n) höchstens die Anzahl solcher
Paare: φ(m× n) ≤ φ(m)× φ(n)

∗ Betrachten wir nun ein Paar von ganzen Zahlen (b, c),
von denen eine mit φ(m) und die andere mit φ(n)
gezählt wird: Mit Hilfe des ersten Teils von Satz 4
können wir eine einzige positive ganze Zahl a
konstruieren, die kleiner als und relativ prim zu m× n
ist: a ≡ b mod m und a ≡ c mod n. Die Anzahl
solcher Paare ist also höchstens
φ(m× n) : φ(m× n) ≤ φ(m)× φ(n)

Der RSA Public Key Algorithmus
• Der RSA-Algorithmus wurde 1977 von R. Rivest, A. Shamir und

L. Adleman ,,RSA78” erfunden und basiert auf Theorem 3.
• Seien p, q verschiedene große Primzahlen und n = p× q. Nehmen

wir an, wir haben auch zwei ganze Zahlen e und d, so dass:
d× e ≡ 1 mod φ(n)

• M sei eine ganze Zahl, die die zu verschlüsselnde Nachricht
darstellt, wobei M positiv, kleiner als und relativ prim zu n ist.

• Beispiel: Verschlüsseln mit = 99, A = 10, B = 11, ..., Z = 35.
Somit würde ,,HELLO” als 1714212124 kodiert werden. Falls
erforderlich, ist M in Blöcke kleinerer Nachrichten aufzuteilen:
17142 12124

• Zum Verschlüsseln berechnen Sie: E = Me mod n
• Dies kann mit dem Quadrat- und Multiplikationsalgorithmus

effizient durchgeführt werden

• Zum Entschlüsseln berechnet man: M ′ = Ed mod n

– Da d× e ≡ 1 mod φ(n)⇒ ∃k ∈ Z : (d× e)− 1 =
k × φ(n)⇔ (d× e) = k × φ(n) + 1

– haben wir:
M ′ ≡ Ed ≡Me×d ≡Mk×φ(n)+1 ≡ 1k ×M ≡M mod n

• Da (d× e) = (e× d) funktioniert die Operation auch in
umgekehrter Richtung, d.h. man kann mit d verschlüsseln und
mit e entschlüsseln

– Diese Eigenschaft erlaubt es, die gleichen Schlüssel d und e
zu verwenden:

– den Empfang von Nachrichten, die mit dem eigenen
öffentlichen Schlüssel verschlüsselt wurden

– Senden von Nachrichten, die mit dem eigenen privaten
Schlüssel signiert wurden

• So richten Sie ein Schlüsselpaar für RSA ein:

– Wählen Sie zufällig zwei Primzahlen p und q (mit jeweils
100 bis 200 Ziffern)

– Berechne n = p× q, φ(n) = (p− 1)× (q − 1) (Lemma 2)
– Wähle zufällig e, so dass gcd(e, φ(n)) = 1
– Berechne mit dem erweiterten euklidischen Algorithmus d

und c, so dass: e× d+ φ(n)× c = 1, wobei zu beachten ist,
dass dies impliziert, dass e× d ≡ 1 mod φ(n)

– Der öffentliche Schlüssel ist das Paar (e, n)
– Der private Schlüssel ist das Paar (d, n)

• Die Sicherheit des Verfahrens liegt in der Schwierigkeit der
Faktorisierung von n = p× q, da es einfach ist, φ(n) und dann d
zu berechnen, wenn p und q bekannt sind.

• In diesem Kurs wird nicht gelehrt, warum es schwierig ist, große n
zu faktorisieren, da dies einen tiefen Einblick in die Mathematik
erfordern würde.

– Wenn p und q bestimmte Eigenschaften erfüllen, sind die
besten bekannten Algorithmen exponentiell zur Anzahl der
Ziffern von n

– Bitte beachten Sie, dass es bei einer unglücklichen Wahl
von p und q Algorithmen geben könnte, die effizienter
faktorisieren können, und dass Ihre RSA-Verschlüsselung
dann nicht mehr sicher ist:

∗ Daher sollten p und q ungefähr die gleiche Bitlänge
haben und ausreichend groß sein

∗ (p− q) sollte nicht zu klein sein

5/41

Network Security

∗ Wenn man einen kleinen Verschlüsselungsexponenten,
z.B. 3, wählen will, kann es zusätzliche
Einschränkungen geben, z.B. gcd(p− 1, 3) = 1 und
gcd(q − 1, 3) = 1

– Die Sicherheit von RSA hängt auch davon ab, dass die
erzeugten Primzahlen wirklich zufällig sind (wie jede
Methode zur Schlüsselerzeugung bei jedem Algorithmus).

– Moral: Wenn Sie RSA selbst implementieren wollen, bitten
Sie einen Mathematiker oder besser einen Kryptographen,
Ihren Entwurf zu überprüfen.

Einige weitere mathematische Hintergründe
• Definition: endliche Gruppen

– Eine Gruppe (S,⊕) ist eine Menge S zusammen mit einer
binären Operation ⊕, für die die folgende Eigenschaften
gelten:

∗ Geschlossenheit: Für alle a, b ∈ S , haben wir
a⊕ b ∈ S

∗ Identität: Es gibt ein Element e ∈ S , so dass
e⊕ a = a⊕ e = a für alle a ∈ S

∗ Assoziativität: Für alle a, b, c ∈ S , gilt
(a⊕ b)⊕ c = a⊕ (b⊕ c)

∗ Inversen: Für jedes a ∈ S , gibt es ein einziges
Element b ∈ S , so dass dass a⊕ b = b⊕ a = e

– Erfüllt eine Gruppe (S,⊕) das Kommutativgesetz
∀a, b ∈ S : a⊕ b = b⊕ a dann nennt man sie eine abelsche
Gruppe

– Wenn eine Gruppe (S,⊕) nur eine endliche Menge von
Elementen hat, d.h. |S| <∞, dann wird sie eine endliche
Gruppe genannt

• Beispiele:

– (Zn,+n)

∗ mit Zn := , , 0′′n, , , 1
′′
n, ..., , , n− 1′′n

∗ wobei , , a′′n := b ∈ Z|b ≡ amodn und

∗ +n ist so definiert, dass , , a′′n+n, , b
′′
n =, , a+ b′′n

∗ eine endliche abelsche Gruppe ist. Für den Beweis
siehe die Tabelle mit den Eigenschaften der
modularen Arithmetik

– (Z∗n,×n)

∗ mit Z∗n := , , a′′n ∈ Zn|gcd(a, n) = 1, und

∗ ×n ist so definiert, dass , , a′′n×n, , b
′′
n =, , a× b′′n

∗ eine endliche abelsche Gruppe ist. Man beachte, dass
Z∗n nur die Elemente von Zn enthält, die eine
multiplikative Inverse modulo n haben. Zum Beweis
siehe Eigenschaften der modularen Arithmetik

∗ Beispiel:
Z∗
15=,,1′′15,,,2′′

15,,,4′′
15,,,7′′

15,,,8′′
15,,,11′′

15,,,13′′
15,,,14′′15

,

als 1× 1 ≡ 1mod15, 2× 8 ≡ 1mod15, 4× 4 ≡ 1mod15,
7× 13 ≡ 1mod15, 11× 11 ≡ 1mod15,
14× 14 ≡ 1mod15

• Wenn klar ist, dass es sich um (Zn,+n) oder (Z∗n,×n) handelt,

werden Äquivalenzklassen , , a′′n oft durch ihre repräsentativen
Elemente a dargestellt und +n und ×n durch + bzw. ×
bezeichnet.

– Definition: endliche Felder
∗ Ein Feld (S,⊕,⊗) ist eine Menge S zusammen mit

zwei Operationen ⊕, ⊗, so dass

· (S,⊕) und (S\e⊕,⊗) sind kommutative
Gruppen, d.h. nur das Identitätselement
bezüglich der Operation ⊕ muss kein Inverses
bezüglich der Operation ⊗ haben

· Für alle a, b, c ∈ S haben wir ein
⊗(b⊕ c) = (a⊗ b)⊕ (a⊗ c)

– Wenn |S| <∞ dann heißt (S,⊕,⊗) ein endliches Feld

• Beispiel: (Zp,+p,×p) ist ein endliches Feld für jede Primzahl p
• Definition: Primitive Wurzel, Generator

– Sei (S, ◦) eine Gruppe, g ∈ S und ga := g ◦ g ◦ ... ◦ g (a mal

mit a ∈ Z+)
– Dann heißt g eine primitive Wurzel oder ein Generator von

(S, ◦) :⇔ ga|1 ≤ a ≤ |S| = S
– Beispiele:

∗ 1 ist eine primitive Wurzel von (Zn,+n)
∗ 3 ist eine Primitivwurzel von (Z∗7 ,×7)

– Nicht alle Gruppen haben Primitivwurzeln, und diejenigen,
die sie haben, nennt man zyklische Gruppen

• Theorem 5:

– (Z∗n,×n) hat eine primitive Wurzel ⇔ n ∈ 2, 4, p, 2× pe,
wobei p eine ungerade Primzahl ist und e ∈ Z+

• Theorem 6:

– Wenn (S, ◦) eine Gruppe ist und b ∈ S, dann ist (S′, ◦) mit

S′ = ba|a ∈ Z+ ebenfalls eine Gruppe.
– Da S′ ⊆ S, heißt(S′, ◦) eine Untergruppe von (S, ◦)
– Wenn b eine Urwurzel von (S, ◦) ist, dann ist S′ = S

• Definition: Ordnung einer Gruppe und eines Elements

– Sei (S, ◦) eine Gruppe, e ∈ S ihr Identitätselement und
b ∈ S irgendein Element von S:

∗ Dann heiße |S| die Ordnung von (S, ◦)
∗ Sei c ∈ Z+ das kleinste Element, so dass bc = e ist

(falls ein solches c existiert, falls nicht, setze c =∞).
Dann wird c die Ordnung von b genannt.

• Theorem 7 (Lagrange):

– Ist G eine endliche Gruppe und H eine Untergruppe von G
, so ist |H| Teiler von |G|.

– Wenn also binG ist, dann ist die Ordnung von b Teiler von
|G|.

• Theorem 8:

– Ist G eine zyklische endliche Gruppe der Ordnung n und d
ist Teiler von n, dann hat G genau φ(d) Elemente der
Ordnung d. Insbesondere hat G φ(n)-Elemente der
Ordnung n.

• Die Theoreme 5, 7 und 8 sind die Grundlage des folgenden
Algorithmus, der eine zyklische Gruppe Z∗p und eine Urwurzel g

davon findet:

– Man wählt eine große Primzahl q, so dass p = 2q + 1 eine
Primzahl ist.

∗ Da p prim ist, besagt Satz 5, dass Z∗p zyklisch ist.

∗ Die Ordnung von Z∗p ist 2× q und

φ(2× q) = φ(2)× φ(q) = q − 1, da q prim ist.
∗ Die Wahrscheinlichkeit, dass eine Primitivwurzel

zufällig ausgewählt wird, beträgt also
(q − 1)/2q ≈ 1/2.

∗ Um effizient zu prüfen, ob ein zufällig gewähltes g
eine Urwurzel ist, müssen wir nur prüfen, ob
g2 ≡ 1modp oder gq ≡ 1modp ist. Wenn nicht, dann
muss seine Ordnung |Z∗p| sein, da Satz 7 besagt, dass

die Ordnung von g |Z∗p| teilen muss

• Definition: diskreter Logarithmus

– Sei p eine Primzahl, g eine Urwurzel von (Z∗p,×p) und c ein

beliebiges Element von Z∗p. Dann gibt es z so, dass:

gz ≡ cmodp
– z wird der diskrete Logarithmus von c modulo p zur Basis g

genannt

– Beispiel 6 ist der diskrete Logarithmus von 1 modulo 7 zur
Basis 3 als 36 ≡ 1mod7

– Die Berechnung des diskreten Logarithmus z bei gegebenem
g, c und p ist ein rechnerisch schwieriges Problem, und die
asymptotische Laufzeit der besten bekannten Algorithmen
für dieses Problem ist exponentiell zur Bitlänge von p

Diffie-Hellman-Schlüsselaustausch
• Der Diffie-Hellman-Schlüsselaustausch wurde erstmals in der

bahnbrechenden Arbeit ,,DH76” veröffentlicht, in der auch die
Grundidee der asymmetrischen Kryptographie vorgestellt wurde

• Der DH-Austausch in seiner Grundform ermöglicht es zwei
Parteien A und B, sich über einen öffentlichen Kanal auf ein
gemeinsames Geheimnis zu einigen:

– Öffentlicher Kanal bedeutet, dass ein potentieller Angreifer
E (E steht für Eavesdropper) alle zwischen A und B
ausgetauschten Nachrichten lesen kann

– Es ist wichtig, dass A und B sicher sein können, dass der
Angreifer nicht in der Lage ist, Nachrichten zu verändern,
da er in diesem Fall einen Man-in-the-Middle-Angriff
starten könnte

– Die mathematische Grundlage für den DH-Austausch ist
das Problem, diskrete Logarithmen in endlichen Feldern zu
finden.

– Der DH-Austausch ist kein asymmetrischer
Verschlüsselungsalgorithmus, wird aber dennoch hier
vorgestellt, da er gut zum mathematischen Charakter
dieser Vorlesung passt...

• Wenn Alice (A) und Bob (B) sich auf ein gemeinsames Geheimnis
s einigen wollen und ihr einziges Kommunikationsmittel ein
öffentlicher Kanal ist, können sie wie folgt vorgehen:

– A wählt eine Primzahl p, eine primitive Wurzel g von Z∗p
und eine Zufallszahl q:

∗ A und B können sich vor der Kommunikation auf die
Werte p und g einigen, oder A wählt p und g und
sendet sie mit seiner ersten Nachricht

∗ A berechnet v = gq mod p und sendet an B : p, g, v

– B wählt eine Zufallszahl r:
∗ B berechnet w = gr mod p und sendet an A : p, g, w

(oder einfach w)

– Beide Seiten errechnen das gemeinsame Geheimnis:

∗ A errechnet s = wq mod p
∗ B errechnet s′ = vr mod p
∗ Da gq×r mod p = gr×q mod p ist, gilt: s = s′

– Ein Angreifer Eve, der den öffentlichen Kanal abhört, kann
das Geheimnis s nur berechnen, wenn er entweder q oder r
berechnen kann, die die diskreten Logarithmen von v, w
modulo p zur Basis g sind.

• Wenn der Angreifer Eve in der Lage ist, Nachrichten auf dem
öffentlichen Kanal zu verändern, kann er einen
Man-in-the-Middle-Angriff starten:

– Eve generiert zwei Zufallszahlen q′ und r′: Eve berechnet

v′ = gq
′
mod p und w′ = gr

′
mod p

– Wenn A p, g, v sendet, fängt sie die Nachricht ab und
sendet an B : p, g, v′

– Wenn B p, g, w sendet, fängt sie die Nachricht ab und
sendet an A : p, g, w′

– Wenn das angebliche ,,gemeinsame Geheimnis” berechnet
wird, erhalten wir:

∗ A berechnet s1 = w′q mod p = vr
′
mod p, letzteres

berechnet von E

∗ B berechnet s2 = v′r mod p = wq
′
mod p, letzteres

berechnet von E
∗ A und E haben sich also auf ein gemeinsames

Geheimnis s1 geeinigt, und E und B haben sich auf
ein gemeinsames Geheimnis s2 geeinigt.

6/41

Network Security

– Wenn das ,,gemeinsame Geheimnis” nun von A und B
verwendet wird, um Nachrichten zu verschlüsseln, die über
den öffentlichen Kanal ausgetauscht werden sollen, kann E
alle Nachrichten abfangen und ent- bzw.
wiederverschlüsseln, bevor er sie zwischen A und B
weiterleitet.

• Zwei Gegenmaßnahmen gegen den Man-in-the-Middle-Angriff:

– Das gemeinsame Geheimnis wird ,,authentifiziert”,
nachdem es vereinbart worden ist.

∗ Wir werden dies im Abschnitt über die
Schlüsselverwaltung behandeln

– A und B verwenden ein sogenanntes Interlock-Protokoll,
nachdem sie sich auf ein gemeinsames Geheimnis geeinigt
haben:

∗ Dazu müssen sie Nachrichten austauschen, die E
weiterleiten muss, bevor sie sie entschlüsseln bzw.
wieder verschlüsseln kann.

∗ Der Inhalt dieser Nachrichten muss von A und B
überprüfbar sein.

∗ Dies zwingt E dazu, Nachrichten zu erfinden, und sie
kann entdeckt werden.

∗ Eine Technik, um zu verhindern, dass E die
Nachrichten entschlüsselt, besteht darin, sie in zwei
Teile aufzuteilen und den zweiten Teil vor dem ersten
zu senden.

· Wenn der verwendete
Verschlüsselungsalgorithmus bestimmte
Eigenschaften verhindert, kann E den zweiten
Teil nicht verschlüsseln, bevor sie den ersten
erhält.

· Da A den ersten Teil erst senden wird, nachdem
er eine Antwort (den zweiten Teil) von B erhalten
hat, ist E gezwungen, zwei Nachrichten zu
erfinden, bevor sie die ersten Teile erhalten kann.

• Bemerkung: In der Praxis muss die Zahl g nicht unbedingt eine
Urwurzel von p sein, es genügt, wenn sie eine große Untergruppe
von Z∗p erzeugt

ElGamal Algorithmus
• Der ElGamal-Algorithmus kann sowohl für die Verschlüsselung als

auch für digitale Signaturen verwendet werden (siehe auch
,,ElG85a”).

• Wie der DH-Austausch basiert er auf der Schwierigkeit, diskrete
Logarithmen in endlichen Feldern zu berechnen

• Um ein Schlüsselpaar zu erstellen:

– Wähle eine große Primzahl p, einen Generator g der
multiplikativen Gruppe Z∗p und eine Zufallszahl v, so dass

1 ≤ v ≤ p− 2. Berechnen Sie: y = gvmodp
– Der öffentliche Schlüssel ist (y, g, p)
– Der private Schlüssel ist v

• So signieren Sie eine Nachricht m :

– Wähle eine Zufallszahl k so, dass k relativ prim zu p− 1 ist.

– Berechne r = gkmodp
– Berechne mit dem erweiterten euklidischen Algorithmus
k−1, den Kehrwert von kmod(p− 1)

– Berechne s = k−1 × (m− v × r)mod(p− 1)
– Die Signatur über die Nachricht ist (r, s)

• Überprüfen einer Signatur (r, s) über eine Nachricht m:

– Bestätige, dass yr × rs mod p = gm mod p
– Der Beweis: Wir benötigen Folgendes

∗ Lemma 3: Sei p eine Primzahl und g ein Generator
von Z∗p. Dann sei i ≡ jmod(p− 1)⇒ gi ≡ gjmodp

∗ Beweis: i ≡ jmod(p− 1)⇒ es gibt k ∈ Z+ so, dass
(i− j) = (p− 1)× k

∗ Also g(i−j) = g(p−1)×k ≡ 1k ≡ 1modp, wegen
Theorem 3 (Euler) ⇒ gi ≡ gjmodp

– Als s ≡ k−1 × (m− v × r)mod(p− 1)

∗ ⇔ k × s ≡ m− v × rmod(p− 1)
∗ ⇔ m ≡ v × r + k × smod(p− 1)

∗ ⇒ gm ≡ g(v×r+k×s)modp mit Lemma 3

∗ ⇔ gm ≡ g(v×r) × g(k×s)modp
∗ ⇔ gm ≡ yr × rsmodp

• Sicherheit von ElGamal-Signaturen:

– Da der private Schlüssel v benötigt wird, um s berechnen
zu können, müsste ein Angreifer den diskreten Logarithmus
von y modulo p zur Basis g berechnen, um Signaturen zu
fälschen

– Entscheidend für die Sicherheit ist, dass für jede Nachricht
eine neue Zufallszahl k gewählt wird, denn ein Angreifer
kann das Geheimnis v berechnen, wenn er zwei Nachrichten
zusammen mit ihren Signaturen auf der Basis des gleichen
k erhält (siehe ,,Men97a”, Anmerkung 11.66.ii)

– Um zu verhindern, dass ein Angreifer eine Nachricht M mit
einer passenden Signatur erstellen kann, ist es notwendig,
die Nachricht M nicht direkt zu signieren, sondern einen
kryptographischen Hashwert m = h(M) davon zu signieren
(diese werden bald behandelt, siehe auch ,,Men97a”,
Anmerkung 11.66.iii)

• Um eine Nachricht m mit dem öffentlichen Schlüssel (y, g, p) zu
verschlüsseln:

– Wähle einen zufälligen k ∈ Z+ mit k < p− 1

– Berechne r = gk mod p

– Berechne s = m× yk mod p
– Der verschlüsselte Text ist (r, s), der doppelt so lang ist wie

m

• Entschlüsseln der Nachricht (r, s) mit v:

– Verwenden Sie den privaten Schlüssel v zur Berechnung von

r(p−1−v) mod p = r(−v) mod p
– Wiederherstellung von m durch Berechnung von

m = r(−v) × s mod p
– Beweis: r(−v) × s ≡ r(−v) ×m× yk ≡ g(−vk) ×m× yk ≡
g(−v×k) ×m× g(v×k) ≡ mmodp

• Sicherheit:

– Die einzige bekannte Möglichkeit für einen Angreifer, m
wiederherzustellen, ist die Berechnung des diskreten
Logarithmus v von y modulo p zur Basis g

– Für jede Nachricht wird ein neues zufälliges k benötigt

Elliptische Kurven Kryptographie
• Die bisher vorgestellten Algorithmen wurden für die

multiplikative Gruppe (Z∗p,×p) bzw. das Feld (Zp,+p,×p)

entwickelt.
• In den 1980er Jahren wurde festgestellt, dass sie verallgemeinert

und auch für andere Gruppen und Felder verwendet werden
können

• Die Hauptmotivation für diese Verallgemeinerung ist

– Zahlreiche mathematische Forschungen auf dem Gebiet der
Primzahlprüfung, der Faktorisierung und der Berechnung
diskreter Logarithmen haben zu Techniken geführt, mit
denen diese Probleme effizienter gelöst werden können,
wenn bestimmte Eigenschaften erfüllt sind:

∗ Als 1977 die RSA-129-Aufgabe gestellt wurde, ging
man davon aus, dass es etwa 40 Billiarden Jahre
dauern würde, die 129-stellige Zahl (≈ 428 Bit) zu
faktorisieren.

∗ Im Jahr 1994 benötigte eine Gruppe von Computern,
die über das Internet vernetzt waren, 8 Monate, um
die Zahl zu faktorisieren, was etwa 5000 MIPS-Jahre
entsprach.

∗ Fortschritte bei den Faktorisierungsalgorithmen
ermöglichten 2009 die Faktorisierung einer
232-stelligen Zahl (768 Bit) in etwa 1500
AMD64-Jahren ,,KAFL10”.

∗ ⇒ die Schlüssellänge muss erhöht werden (derzeit
etwa 2048 Bit)

– Einige der effizienteren Verfahren beruhen auf bestimmten
Eigenschaften der algebraischen Strukturen (Z∗p,×p) und

(Zp,+p,×p)
– Verschiedene algebraische Strukturen können daher die

gleiche Sicherheit mit kürzeren Schlüssellängen bieten

• Eine sehr vielversprechende Struktur für die Kryptographie lässt
sich aus der Gruppe der Punkte auf einer elliptischen Kurve über
einem endlichen Feld gewinnen

– Die mathematischen Operationen in diesen Gruppen
können sowohl in Hardware als auch in Software effizient
implementiert werden.

– Das Problem des diskreten Logarithmus gilt in der
allgemeinen Klasse, die sich aus der Gruppe der Punkte auf
einer elliptischen Kurve über einem endlichen Feld ergibt,
als schwierig

Gruppenelemente
• Algebraische Gruppe bestehend aus

– Punkte auf der Weierstraß’schen Gleichung:
y2 = x3 + ax+ b

– Zusätzlicher Punkt O im ,,Unendlichen”

• Kann über R berechnet werden, aber in der Kryptographie
werden Zp und GF (2n) verwendet

– Schon in R beeinflussen Argumente die Form erheblich
– y2 = x3 − 3x+ 5
– y2 = x3 − 40x+ 5

Punktaddition
• Addition von Elementen = Addition von Punkten auf der Kurve
• Geometrische Interpretation

– Jeder Punkt P : (x, y) hat einen Kehrwert −P : (x,−y)
– Eine Linie durch zwei Punkte P und Q schneidet sich

normalerweise mit einem dritten Punkt R
– Im Allgemeinen ist die Summe von zwei Punkten P und Q

gleich −R

• Addition (Sonderfälle)

– Der zusätzliche Punkt O ist das neutrale Element, d.h.
P +O = P

– P + (−P):

∗ Wird der inverse Punkt zu P addiert, schneiden sich
Linie und Kurve im ,,Unendlichen”

∗ Per Definition: P + (−P) = O

– P + P : Die Summe zweier identischer Punkte P ist der
Kehrwert des Schnittpunkts mit der Tangente durch P:

Grundlagen des ECC - Algebraische Addition
• Wenn einer der Summanden O ist, ist die Summe der andere

Summand
• Wenn die Summanden zueinander invers sind, ist die Summe O
• Für die allgemeineren Fälle ist die Steigung der Geraden:

α =


yQ−yP
xQ−xP

for P 6= −Q ∨ P 6= Q

3x2P+a

2yP
for P = Q

• Ergebnis der Punktaddition, wobei (xr, yr) bereits der
Spiegelpunkt (−R) ist

7/41

Network Security

Multiplikation
• Multiplikation von natürlicher Zahl n und Punkt P durch

mehrfache wiederholte Additionen
• Zahlen werden in 2er-Potenzen gruppiert, um eine logarithmische

Laufzeit zu erreichen, z.B. 25P = P + 8P + 16P
• Dies ist nur möglich, wenn das n bekannt ist!
• Wenn n für nP = Q unbekannt ist, muss ein Logarithmus gelöst

werden, was möglich ist, wenn die Koordinatenwerte aus R
gewählt werden

• Für Zp und GF (2n) muss das diskrete Logarithmusproblem für
elliptische Kurven gelöst werden, was nicht effizient durchgeführt
werden kann!

• Hinweis: Es ist nicht definiert, wie zwei Punkte multipliziert
werden, sondern nur eine natürliche Zahl n und der Punkt P

Kurven über Zp

• Über Zp zerfällt die Kurve in eine Menge von Punkten

• Für: y2 = x3 − 3x+ 5 mod 19
• Hinweis: Für einige x-Werte gibt es keinen y-Wert!

Berechnen Sie die y-Werte in Zp

• Im Allgemeinen etwas problematischer: Bestimmen Sie die
y-Werte für ein gegebenes x (da sein quadratischer Wert

berechnet wird) durch y2 ≡ f(x) mod p
• Daher wird p oft s.t. gewählt p ≡ 3 mod 4

• Dann wird y durch y1 ≡ f(x)
p+1
4 und y2 ≡ −f(x)

p+1
4 berechnet,

wenn und nur wenn überhaupt eine Lösung existiert
• Kurzer Beweis

– Aus dem Euler-Theorem 3 wissen wir, dass
f(x)p−1 ≡ 1 mod p

– Die Quadratwurzel muss also 1 oder -1 sein

f(x)
p−1
2 ≡ ±1 mod p

• Fall 1: f(x)
p−1
2 ≡ 1 mod p

– Multiplizieren Sie beide Seiten mit f(x):

f(x)
p−1
2 ≡ f(x) ≡ y2 mod p

– Da p+ 1 durch 4 teilbar ist, können wir die Quadratwurzel

ziehen, so dass f(x)
p−1
2 ≡ y mod p

• Fall 2: In diesem Fall existiert keine Lösung für den gegebenen
x-Wert (wie von Euler gezeigt)

Addition und Multiplikation in Zp

• Aufgrund des diskreten Strukturpunktes haben mathematische
Operationen keine geometrische Interpretation mehr, sondern

• Algebraische Addition ähnlich der Addition über R
• Wird der inverse Punkt zu P addiert, schneiden sich Linie und

,,Kurve” immer noch im ,,Unendlichen”
• Alle x- und y-Werte werden mod p berechnet
• Division wird durch Multiplikation mit dem inversen Element des

Nenners ersetzt
• Verwendung des erweiterten euklidischen Algorithmus mit w und

p zur Ableitung der Inversen −w
• Die algebraische Multiplikation einer natürlichen Zahl n und eines

Punktes P erfolgt ebenfalls durch wiederholte Addition von
Summanden der Potenz von 2

• Das Problem des diskreten Logarithmus ist die Bestimmung einer
natürlichen Zahl n in nP = Q für zwei bekannte Punkte P und Q

Foundations of ECC - Größe der erzeugten Gruppen
• Bitte beachten Sie, dass die Ordnung einer durch einen Punkt auf

einer Kurve über Zp erzeugten Gruppe nicht p− 1 ist!
• Die Bestimmung der exakten Ordnung ist nicht einfach, kann

aber mit Schoofs Algorithmus ,,Sch85” in logarithmischer Zeit
durchgeführt werden (erfordert viel mehr mathematischen
Hintergrund als hier gewünscht)

• Der Satz von Hasse über elliptische Kurven besagt jedoch, dass
die Gruppengröße n zwischen: p+ 1− 2

√
p ≤ n ≤ p+ 1 + 2

√
p

liegen muss
• Wie bereits erwähnt: Es genügt, relativ große Gruppen zu

erzeugen

ECDH
• Der Diffie-Hellman-Algorithmus kann leicht an elliptische Kurven

angepasst werden
• Wenn Alice (A) und Bob (B) sich auf ein gemeinsames Geheimnis

s einigen wollen:

– A und B einigen sich auf eine kryptographisch sichere
elliptische Kurve und einen Punkt P auf dieser Kurve

– A wählt eine Zufallszahl q: A berechnet Q = qP und
überträgt Q an Bob

– B wählt eine Zufallszahl r: B berechnet R = rP und
überträgt P an Alice

– Beide Seiten errechnen das gemeinsame Geheimnis:

∗ A errechnet S = qR
∗ B errechnet S′ = rQ
∗ Da qrP = rqP der geheime Punkt S = S′

• Angreifer, die den öffentlichen Kanal abhören, können S nur
berechnen, wenn sie entweder q oder r berechnen können, die die
diskreten Logarithmen von Q und R für den Punkt P sind

EC-Version des ElGamal-Algorithmus
• Die Anpassung von ElGamal für elliptische Kurven ist für die

Verschlüsselungsroutine recht einfach
• Ein Schlüsselpaar einrichten:

– Wählen Sie eine elliptische Kurve über einem endlichen
Feld, einen Punkt G, der eine große Gruppe erzeugt, und
eine Zufallszahl v, so dass 1 < v < n, wobei n die Größe der
induzierten Gruppe bezeichnet, Berechnen Sie: Y = vG

– Der öffentliche Schlüssel ist (Y,G,Kurve)
– Der private Schlüssel ist v

• Um eine Nachricht zu verschlüsseln:

– Wähle eine zufällige k ∈ Z+ mit k < n− 1, berechne
R = kG

– Berechne S = M + kY , wobei M ein von der Nachricht
abgeleiteter Punkt ist

∗ Problem: Die Interpretation der Nachricht m als
x-Koordinate von M ist nicht ausreichend, da der
y-Wert nicht existieren muss

∗ Lösung aus ,,Ko87”: Wähle eine Konstante c (z.B.
100) und prüfe, ob cm die x-Koordinate eines gültigen
Punktes ist, wenn nicht, versuche cm+ 1, dann
cm+ 2 usw.

∗ Um m zu entschlüsseln: nimm den x-Wert von M und
führe eine ganzzahlige Division durch c durch (der
Empfänger muss c ebenfalls kennen)

– Der Chiffretext sind die Punkte (R,S)
– Doppelt so lang wie m, wenn sie in so genannter

komprimierter Form gespeichert werden, d.h. nur die
x-Koordinaten werden gespeichert und ein einziges Bit, das
angibt, ob die größere oder kleinere entsprechende
y-Koordinate verwendet werden soll

• Um eine Nachricht zu entschlüsseln:

– Ableitung von M durch Berechnung von S − vR
– Beweis:
S − vR = M + kY − vR = M + kvG− vkG = M +O = M

• Eine Nachricht signieren:

– Wähle ein zufälliges k ∈ Z+ mit k < n− 1, berechne
R = kG

– Berechne s = k−1(m+ rv)mod n, wobei r der x-Wert von
R ist

– Die Signatur ist (r, s), wiederum etwa doppelt so lang wie n

• Überprüfen einer signierten Nachricht:

– Prüfen, ob der Punkt P = ms−1G+ rs−1Y die
x-Koordinate r hat

– Anmerkung: s−1 wird durch den Erweiterten Euklidischen
Algorithmus mit den Eingaben s und n (der Ordnung der
Gruppe) berechnet.

– Beweis: ms−1G+ rs−1Y = ms−1G+ rs−1vG =
(m+ rv)(s−1)G = (ks)(s−1)G = kG = R

• Diskussion zur Sicherheit:

– Wie in der ursprünglichen Version von ElGamal ist es
entscheidend, k nicht zweimal zu verwenden

– Nachrichten sollten nicht direkt signiert werden
– Weitere Prüfungen können erforderlich sein, d.h. G darf

nicht O sein, ein gültiger Punkt auf der Kurve usw. (siehe
,,NIST09” für weitere Details)

Sicherheit

• Die Sicherheit hängt stark von der gewählten Kurve und dem
Punkt ab:

• Die Diskriminante der Kurve darf nicht Null sein, d.h.
4a3 + 27b2 6≡ 0 mod p sonst ist die Kurve degradiert (eine
sogenannte ,,singuläre Kurve”)

• Menezes et. al. haben einen subexponentiellen Algorithmus für
sogenannte ,,supersinguläre elliptische Kurven” gefunden, der
aber im allgemeinen Fall nicht funktioniert ,,Men93a”

• Die konstruierten algebraischen Gruppen sollten so viele
Elemente wie möglich haben.

• In diesem Kurs wird nicht näher auf die Kryptographie
elliptischer Kurven eingegangen, da dies viel mehr Mathematik
erfordert, als für diesen Kurs erwünscht ist...

• Für Nicht-Kryptographen ist es am besten, sich auf vordefinierte
Kurven zu verlassen, z.B. ,,LM10” oder ,,NIST99” und Standards
wie ECDSA

• Viele Veröffentlichungen wählen die Parameter a und b so, dass
sie nachweislich durch einen Zufallsprozess gewählt werden (z.B.
veröffentlichen Sie x für h(x) = a und y für h(y) = b); so soll
sichergestellt werden, dass die Kurven keine kryptographische
Schwäche enthalten, die nur den Autoren bekannt ist

• Die Sicherheit ist abhängig von der Länge von p
• Die Sicherheit hängt auch stark von der Implementierung ab

– Die verschiedenen Fälle (z.B. mit O) in der
ECC-Berechnung können beobachtbar sein, d.h.
Stromverbrauch und Zeitunterschiede

– Angreifer können Seitenkanalangriffe ableiten, wie in
OpenSSL 0.9.8o ,,BT11”

∗ Ein Angreifer kann die Bitlänge eines Wertes k in kP
ableiten, indem er die für den Quadrat- und
Multiplikationsalgorithmus benötigte Zeit misst

∗ Der Algorithmus wurde in OpenSSL frühzeitig
abgebrochen, wenn keine weiteren Bits auf ,,1” gesetzt
wurden

– Angreifer könnten versuchen, ungültige Punkte zu
generieren, um Fakten über den verwendeten Schlüssel
abzuleiten, wie in OpenSSL 0.9.8g, was zu einer
Wiederherstellung eines vollen 256-Bit ECC-Schlüssels nach
nur 633 Abfragen führte ,,BBP12”

• Lektion gelernt: Machen Sie es nicht selbst, es sei denn, Sie
müssen es tun und wissen, was Sie tun!

8/41

Network Security

Weitere Anmerkungen
• Wie bereits erwähnt, ist es möglich, kryptographische elliptische

Kurven über G(2n) zu konstruieren, was in
Hardware-Implementierungen schneller sein kann.

• Wir haben auf Details verzichtet, da dies nicht viele neue
Erkenntnisse gebracht hätte!

• Elliptische Kurven und ähnliche algebraische Gruppen sind ein
aktives Forschungsgebiet und ermöglichen weitere fortgeschrittene
Anwendungen, z.B:

– Sogenannte Edwards-Kurven werden derzeit diskutiert, da
sie robuster gegen Seitenkanalangriffe zu sein scheinen (z.B.
,,BLR08”)

– Bilineare Paarungen ermöglichen

∗ Programme zu verifizieren, dass sie zur selben Gruppe
gehören, ohne ihre Identität preiszugeben (Secret
Handshakes, z.B. ,,SM09”)

∗ Öffentliche Schlüssel können strukturiert werden, z.B.
,,Alice” als öffentlicher Schlüssel für Alice verwenden
(Identitätsbasierte Verschlüsselung, Grundlagen in
,,BF03”)

• Bevor Sie elliptische Kurvenkryptographie in einem Produkt
einsetzen, stellen Sie sicher, dass Sie keine Patente verletzen, da
es noch viele gültige Patente in diesem Bereich gibt!

Schlussfolgerung
• Asymmetrische Kryptographie erlaubt es, zwei verschiedene

Schlüssel zu verwenden:

– Verschlüsselung / Entschlüsselung

– Signieren / Überprüfen

• Die praktischsten Algorithmen, die immer noch als sicher gelten,
sind:

– RSA, basierend auf der Schwierigkeit, diskrete Logarithmen
zu faktorisieren und zu lösen

– Diffie-Hellman (kein asymmetrischer Algorithmus, sondern
ein Schlüsselvereinbarungsprotokoll)

– ElGamal, wie DH basierend auf der Schwierigkeit, diskrete
Logarithmen zu berechnen

• Da ihre Sicherheit vollständig auf der Schwierigkeit bestimmter
mathematischer Probleme beruht, stellt der algorithmische
Fortschritt ihre größte Bedrohung dar.

• Praktische Überlegungen:

– Asymmetrische kryptografische Operationen sind um
Größenordnungen langsamer als symmetrische Operationen.

– Daher werden sie oft nicht für die
Verschlüsselung/Signierung von Massendaten verwendet.

– Symmetrische Verfahren werden zur Verschlüsselung /
Berechnung eines kryptografischen Hashwerts verwendet,
während die asymmetrische Kryptografie nur zur
Verschlüsselung eines Schlüssels / Hashwerts eingesetzt
wird.

Modifikationsprüfwerte
Motivation

• In der Datenkommunikation ist es üblich, eine Art
Fehlererkennungscode für Nachrichten zu berechnen, mit dem der
Empfänger überprüfen kann, ob eine Nachricht während der
Übertragung verändert wurde.

• Beispiele: Parität, Bit-Interleaved Parity, Cyclic Redundancy
Check (CRC)

• Dies führt zu dem Wunsch, einen ähnlichen Wert zu haben, der es
ermöglicht zu überprüfen, ob eine Nachricht während der
Übertragung verändert wurde.

• Es ist jedoch ein großer Unterschied, ob man davon ausgeht, dass
die Nachricht durch mehr oder weniger zufällige Fehler oder
absichtlich verändert wird:

• Wenn jemand eine Nachricht, die mit einem CRC-Wert geschützt
ist, absichtlich verändern will, kann er den CRC-Wert nach der
Veränderung neu berechnen oder die Nachricht so verändern, dass
sie den gleichen CRC-Wert ergibt.

• Ein Änderungsprüfwert muss also einige zusätzliche Eigenschaften
erfüllen, die es Angreifern unmöglich machen, ihn zu fälschen

• Zwei Hauptkategorien von Modifikationsprüfwerten:

– Modifikationserkennungscode (MDC)
– Nachrichten-Authentifizierungs-Code (MAC)

Kryptographische Hash-Funktionen
• Definition: Hash-Funktion

– Eine Hash-Funktion ist eine Funktion h, die die folgenden
zwei Eigenschaften hat:

∗ Komprimierung: h bildet eine Eingabe x mit
beliebiger endlicher Bitlänge auf eine Ausgabe h(x)
mit fester Bitlänge n ab.

∗ Einfachheit der Berechnung: Bei h und x ist es
einfach, h(x) zu berechnen.

• Definition: kryptografische Hash-Funktion

– Eine kryptografische Hash-Funktion h ist eine
Hash-Funktion, die zusätzlich unter anderem die folgenden
Eigenschaften erfüllt:

∗ Pre-Image-Resistenz: für im Wesentlichen alle
vorgegebenen Ausgaben y ist es rechnerisch nicht
möglich, ein x zu finden, so dass h(x) = y

∗ Vorabbild-Resistenz: Bei x ist es rechnerisch nicht
möglich, eine zweite Eingabe x′ mit x 6= x′ zu finden,
so dass h(x) = h(x′)

∗ Kollisionssicherheit: Es ist rechnerisch nicht möglich,
ein beliebiges Paar (x, x′) mit x 6= x′ zu finden, so
dass h(x) = h(x′)

– Kryptographische Hash-Funktionen werden zur Berechnung
von Modification Detection Codes (MDC) verwendet

Nachrichten-Authentifizierungs-Codes (MAC)
• Definition: Nachrichten-Authentifizierungs-Code

– Ein Message-Authentication-Code-Algorithmus ist eine
Familie von Funktionen hk, die durch einen geheimen
Schlüssel k parametrisiert sind und die folgenden
Eigenschaften aufweisen:

∗ Komprimierung: hk bildet eine Eingabe x beliebiger
endlicher Bitlänge auf eine Ausgabe hk(x) fester
Bitlänge ab, genannt MAC

∗ Einfache Berechnung: Bei k, x und einer bekannten
Funktionsfamilie hk ist der Wert hk(x) einfach zu
berechnen

∗ Berechnungsresistenz: für jeden festen, erlaubten, aber
unbekannten Wert von k ist es bei null oder mehr
Text-MAC-Paaren (xi, hk(xi)) rechnerisch nicht
möglich, ein Text-MAC-Paar (x, hk(x)) für jede neue
Eingabe x 6= xi zu berechnen

– Bitte beachten Sie, dass Rechenresistenz die Eigenschaft
der Nicht-Wiederherstellung des Schlüssels impliziert, d.h.
k kann nicht aus Paaren (xi, hk(xi)) wiederhergestellt
werden, aber Rechenresistenz kann nicht aus der
Nicht-Wiederherstellung des Schlüssels abgeleitet werden,
da der Schlüssel k nicht immer wiederhergestellt werden
muss, um neue MACs zu fälschen

Ein einfacher Angriff gegen einen unsicheren MAC
• Betrachten wir zur Veranschaulichung die folgende

MAC-Definition:

– Eingabe: Nachricht m = (x1, x2, ..., xn), wobei xi
64-Bit-Werte sind, und Schlüssel k

– Berechne δ(m) := x1 ⊕ x2 ⊕ ...⊕ xn, wobei ⊕ die bitweise
Exklusiv-Oder-Verknüpfung bezeichnet

– Ausgabe: MAC Ck(m) := Ek(δ(m)) mit Ek(x) für die
DES-Verschlüsselung

• Die Schlüssellänge beträgt 56 Bit und die MAC-Länge 64 Bit, so
dass wir einen Aufwand von etwa 255 Operationen erwarten
würden, um den Schlüssel k zu erhalten und den MAC zu knacken
(= Nachrichten fälschen zu können).

• Leider ist die MAC-Definition unsicher:

– Angenommen, ein Angreifer Eve, der die zwischen Alice
und Bob ausgetauschten Nachrichten fälschen will, erhält
eine Nachricht (m,Ck(m)), die von Alice mit dem mit Bob
geteilten geheimen Schlüssel k ,,geschützt” wurde

– Eve kann eine Nachricht m′ konstruieren, die denselben
MAC ergibt:

∗ Sei y1, y2, ..., yn−1 ein beliebiger 64-Bit-Wert
∗ Definiere yn := y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ δ(m), und
m′ := (y1, y2, ..., yn)

∗ Wenn Bob (m′, Ck(m)) von Eve erhält, die vorgibt,
Alice zu sein, wird er es als von Alice stammend
akzeptieren, da Ck(m) ein gültiger MAC für m′ ist

Anwendungen für kryptographische
Hash-Funktionen und MACs

• Wichtigste Anwendung, die zum ursprünglichen Entwurf führte:
Integrität von Nachrichten

– Ein MDC stellt einen digitalen Fingerabdruck dar, der mit
einem privaten Schlüssel signiert werden kann, z. B. mit
dem RSA- oder ElGamal-Algorithmus, und es ist nicht
möglich, zwei Nachrichten mit demselben Fingerabdruck zu
erstellen, so dass ein bestimmter signierter Fingerabdruck
von einem Angreifer nicht wiederverwendet werden kann

– Ein MAC über eine Nachricht m bescheinigt direkt, dass
der Absender der Nachricht im Besitz des geheimen
Schlüssels k ist und die Nachricht ohne Kenntnis dieses
Schlüssels nicht verändert worden sein kann.

• Andere Anwendungen, die eine gewisse Vorsicht erfordern:

– Bestätigung von Wissen
– Schlüsselableitung
– Pseudo-Zufallszahlengenerierung

• Je nach Anwendung müssen weitere Anforderungen erfüllt
werden:

– Partielle Vorabbild-Resistenz: auch wenn nur ein Teil der
Eingabe, z.B. t Bit, unbekannt ist, sollte es im Durchschnitt
2t−1 Operationen benötigen, um diese Bits zu finden

Angriffe basierend auf dem Geburtstagsphänomen
• Das Geburtstagsphänomen:

– Wie viele Personen müssen sich in einem Raum befinden,
damit die Wahrscheinlichkeit, dass es mindestens zwei
Personen mit demselben Geburtstag gibt, größer als 0,5 ist?

– Der Einfachheit halber lassen wir den 29. Februar beiseite
und nehmen an, dass jeder Geburtstag gleich
wahrscheinlich ist

• Definieren Sie P (n, k) := Pr,,mindestens ein Duplikat in k
Elementen, wobei jedes Element einen von n gleich
wahrscheinlichen Werten zwischen 1 und n annehmen kann ”

• Definieren Sie Q(n, k) := Pr,,kein Duplikat in k Artikeln, jeder
Artikel zwischen 1 und n ”

– Wir können das erste Element aus n möglichen Werten
wählen, das zweite Element aus n− 1 möglichen Werten,
usw.

– Die Anzahl der verschiedenen Möglichkeiten, k Elemente
aus n Werten ohne Duplikate auszuwählen, ist also:
N = n× (n− 1)× ...× (n− k + 1) = n!\(n− k)!

– Die Anzahl der verschiedenen Möglichkeiten, k Elemente

aus n Werten auszuwählen, mit oder ohne Duplikate, ist: nk

– Also, Q(n, k) = N\nk = n!\((n− k)!× nk)

9/41

Network Security

• Wir haben: P (n, k) = 1−Q(n, k) = 1− n!

(n−k)!×nk
=

1− n×(n−1)×...×(n−k+1)

nk
= 1−, , (1− 1

n)×(1− 2
n)×...×(1− k−1

n)′′

• Wir werden die folgende Ungleichung verwenden: (1− x) ≤ e−x
für alle x ≥ 0

• So: P (n, k) > 1−, , (e−1/n)× (e−2/n)× ...× (e−(k−1)/n)′′ =

1− e
−k×(k−1)

2n

• Im letzten Schritt haben wir die Gleichheit:
1 + 2 + ...+ (k − 1) = (k2 − k)\2

• Kehren wir zu unserer ursprünglichen Frage zurück: Wie viele
Personen k müssen sich in einem Raum befinden, damit
mindestens zwei Personen mit demselben Geburtstag (von
n = 365 möglichen) mit der Wahrscheinlichkeit ≥ 0, 5 vorhanden
sind?

– Wir wollen also lösen:
1
2 = 1− e

−k×(k−1)
2n ⇔ 2 = e

k×(k−1)
2n ⇔ ln(2) =

k×(k−1)
2n

– Für große k können wir k × (k − 1) durch k2

approximieren, und wir erhalten: k =
√

2ln(2)n ≈ 1, 18
√
n

– Für n = 365 erhalten wir k = 22, 54, was der richtigen
Antwort recht nahe kommt 23

• Was hat das mit MDCs zu tun?
• Wir haben gezeigt, dass bei n möglichen unterschiedlichen Werten

die Anzahl k der Werte, die man zufällig wählen muss, um
mindestens ein Paar identischer Werte zu erhalten, in der
Größenordnung von

√
n liegt.

• Betrachten wir nun den folgenden Angriff ,,Yuv79a”:

– Eve möchte, dass Alice eine Nachricht m1 signiert, die
Alice normalerweise nie signieren würde. Eve weiß, dass
Alice die Funktion MDC1(m) verwendet, um eine MDC von
m zu berechnen, die eine Länge von r Bit hat, bevor sie
diese MDC mit ihrem privaten Schlüssel signiert, was ihre
digitale Signatur ergibt.

– Zunächst erzeugt Eve ihre Nachricht m1. Würde sie nun
MDC1(m1) berechnen und dann versuchen, eine zweite
harmlose Nachricht m2 zu finden, die zu demselben MDC
führt, wäre ihr Suchaufwand im durchschnittlichen Fall in

der Größenordnung von 2(r−1).
– Stattdessen nimmt sie eine beliebige harmlose Nachricht

m2 und beginnt, Variationen m1’ und m2’ der beiden
Nachrichten zu produzieren, z.B. durch Hinzufügen von
-Kombinationen oder Variationen mit semantisch
identischen Wörtern.

• Wie wir aus dem Geburtstagsphänomen gelernt haben, muss sie

nur etwa
√

2r = 2r/2 Variationen von jeder der beiden
Nachrichten produzieren, so dass die Wahrscheinlichkeit, dass sie
zwei Nachrichten m1’ und m2’ mit demselben MDC erhält,
mindestens 0,5 beträgt

• Da sie die Nachrichten zusammen mit ihren MDCs speichern
muss, um eine Übereinstimmung zu finden, liegt der

Speicherbedarf ihres Angriffs in der Größenordnung von 2
r
2 und

der Rechenzeitbedarf in der gleichen Größenordnung
• Nachdem sie m1’ und m2’ mit MDC1(m1′) = MDC1(m2′)

gefunden hat, fordert sie Alice auf, m2′ zu signieren. Eve kann
dann diese Unterschrift nehmen und behaupten, dass Alice m1′

unterschrieben hat.
• Angriffe nach dieser Methode werden Geburtstagsangriffe

genannt.
• Nehmen wir nun an, dass Alice RSA mit Schlüsseln der Länge

2048 Bit und eine kryptographische Hashfunktion verwendet, die
MDCs der Länge 96 Bit erzeugt.

• Eves durchschnittlicher Aufwand, zwei Nachrichten m1’ und m2’
wie oben beschrieben zu erzeugen, liegt in der Größenordnung
von 248, was heute machbar ist. Das Knacken von RSA-Schlüsseln
der Länge 2048 Bit ist mit den heutigen Algorithmen und
Technologien bei weitem nicht möglich.

Übersicht über die gebräuchlichen MDCs
• Kryptografische Hash-Funktionen zur Erstellung von MDCs:

– Message Digest 5 (MD5):

∗ Erfunden von R. Rivest
∗ Nachfolger von MD

– Sicherer Hash-Algorithmus 1 (SHA-1):

∗ Erfunden von der National Security Agency (NSA)
∗ Der Entwurf wurde von MD inspiriert.

– Sicherer Hash-Algorithmus 2 (SHA-2, auch SHA-256 und
SHA-512)

∗ Ebenfalls von der National Security Agency (NSA)
entwickelt

∗ Auch Merkle-D̊amgard-Verfahren
∗ Größere Blockgröße & komplexere Rundenfunktion

– Sicherer Hash-Algorithmus 3 (SHA-3, Keccak)

∗ Gewinner eines offenen Wettbewerbs
∗ Sogenannte Sponge-Konstruktion
∗ Vielseitiger als frühere Hash-Funktionen

• Nachrichten-Authentifizierungs-Codes (MACs):

– DES-CBC-MAC:
∗ Verwendet den Data Encryption Standard im Cipher

Block Chaining Modus
∗ Im Allgemeinen kann die CBC-MAC-Konstruktion

mit jeder Blockchiffre verwendet werden.

– MACs, die aus MDCs aufgebaut sind:

∗ Dieser sehr verbreitete Ansatz wirft einige
kryptografische Bedenken auf, da er einige implizite,
aber nicht verifizierte Annahmen über die
Eigenschaften der MDCs trifft.

• Authentifizierte Verschlüsselung mit zugehörigen Daten (AEAD)

– Galois-Counter-Verfahren (GCM)

∗ Verwendet eine Blockchiffre zur Verschlüsselung und
Authentifizierung von Daten

∗ Schnell in Netzwerkanwendungen

– Sponge Wrap

∗ Verwendet eine SHA-3 ähnliche Hash-Funktion zur
Verschlüsselung und Authentifizierung von Daten

Gemeinsame Struktur von kryptografischen
Hash-Funktionen

• So wie viele der heutigen Blockchiffren der allgemeinen Struktur
eines Feistel-Netzwerks folgen, folgen auch viele der heute
verwendeten kryptografischen Hash-Funktionen einer
gemeinsamen Struktur, der sogenannten
Merkle-D̊amgard-Struktur:

– Sei y eine beliebige Nachricht. Normalerweise wird die
Länge der Nachricht an die Nachricht angehängt und auf
ein Vielfaches einer Blockgröße b aufgefüllt. Bezeichnen wir
(y0, y1, ..., yL−1) die resultierende Nachricht, die aus L
Blöcken der Größe b

– Die allgemeine Struktur ist wie folgt abgebildet:
– CV ist ein Verkettungswert, mit CV0 := IV und
MDC(y) := CVL

– f ist eine spezifische Kompressionsfunktion, die (n+ b) Bit
auf n Bit komprimiert

• Die Hash-Funktion H lässt sich wie folgt zusammenfassen:

– CV0 = IV = anfänglicher n-Bit-Wert
– CVi = f(CVi−1, yi−1) 1 ≤ i ≤ L
– H(y) = CVL

• Es wurde gezeigt ,,Mer89a”, dass, wenn die Kompressionsfunktion
f kollisionssicher ist, die resultierende iterierte Hash-Funktion H
ebenfalls kollisionssicher ist.

• Die Kryptoanalyse kryptographischer Hash-Funktionen
konzentriert sich daher auf die interne Struktur der Funktion f
und die Suche nach effizienten Techniken zur Erzeugung von
Kollisionen bei einer einzigen Ausführung von f

• In erster Linie durch Geburtstagsangriffe motiviert, ist ein
gängiger Mindestvorschlag für n , die Bitlänge des Hashwerts, 160
Bit, da dies einen Aufwand der Größenordnung 280 für einen
Angriff impliziert, der heute als undurchführbar gilt

Der Message Digest 5
• MD5 folgt der zuvor skizzierten allgemeinen Struktur (z. B.

,,Riv92a”):

– Die Nachricht y wird mit einer ,,1” aufgefüllt, gefolgt von 0
bis 511 ,,0” Bits, so dass die Länge der resultierenden
Nachricht kongruent 448 modulo 512 ist

– Die Länge der ursprünglichen Nachricht wird als
64-Bit-Wert hinzugefügt, so dass eine Nachricht entsteht,
deren Länge ein ganzzahliges Vielfaches von 512 Bit ist.

– Diese neue Nachricht wird in Blöcke der Länge b = 512 Bit
unterteilt.

– Die Länge des Verkettungswertes ist n = 128 Bit

∗ Der Verkettungswert ist ,,strukturiert” als vier
32-Bit-Register A, B, C, D

∗ Initialisierung:

· A := 0x 01 23 45 67
· B := 0x 89 AB CD EF
· C := 0x FE DC BA 98
· D := 0x 76 54 32 10

– Jeder Block der Nachricht yi wird mit dem
Verkettungswert CVi mit der Funktion f verarbeitet, die
intern durch 4 Runden zu je 16 Schritten realisiert ist

∗ Jede Runde ist ähnlich aufgebaut und verwendet eine
Tabelle T, die 64 konstante Werte von je 32 Bit
enthält,

∗ Jede der vier Runden verwendet eine bestimmte
logische Funktion g

– Die Funktion g ist eine von vier verschiedenen logischen
Funktionen

– yi, , k
′′ bezeichnet das k-te 32-Bit-Wort des

Nachrichtenblocks i
– T [j] ist der j-te Eintrag der Tabelle t, wobei j bei jedem

Schritt modulo 64 inkrementiert wird
– CLS s bezeichnet die zyklische Linksverschiebung um s

Bits, wobei s einem bestimmten Schema folgt.

• Der MD5-MDC über eine Nachricht ist der Inhalt des
Verkettungswertes CV nach Verarbeitung des letzten
Nachrichtenblocks.

• Sicherheit von MD5:

– Jedes Bit des 128-Bit-Hash-Codes ist eine Funktion eines
jeden Eingabebits

– 1996 veröffentlichte H. Dobbertin einen Angriff, der es
erlaubt, eine Kollision für die Funktion f zu erzeugen
(realisiert durch die oben beschriebenen 64 Schritte).

– Es dauerte bis 2004, bis eine erste Kollision gefunden
wurde ,,WLYF04”.

– Inzwischen ist es möglich, Kollisionen innerhalb von
Sekunden auf allgemeiner Hardware zu erzeugen ,,Kl06”.

– MD5 darf nicht in Betracht gezogen werden, wenn
Kollisionssicherheit erforderlich ist!

∗ Dies ist oft der Fall!
∗ Beispiele: Zwei Postskripte mit unterschiedlichen

Texten, aber gleichen Hashes ,,LD05”, Zertifikate,
eines für eine gesicherte Domain und eines für eine
eigene Zertifizierungsstelle ,,LWW05”, Jede Nachricht,
die erweiterbar ist ,,KK06”

– Die Resistenz gegen Preimage-Angriffe ist mit 2123.4
Berechnungen noch o.k,,SA09”

10/41

Network Security

Der sichere Hash-Algorithmus SHA-1
• Auch SHA-1 folgt der gleichen Struktur wie oben beschrieben:

– SHA-1 arbeitet mit 512-Bit-Blöcken und erzeugt einen
160-Bit-Hash-Wert.

– Da sein Design auch vom MD4-Algorithmus inspiriert
wurde, ist seine Initialisierung im Grunde dieselbe wie die
von MD5:

∗ Die Daten werden aufgefüllt, ein Längenfeld wird
hinzugefügt und die resultierende Nachricht wird als
Blöcke der Länge 512 Bit verarbeitet.

∗ Der Verkettungswert ist als fünf 32-Bit-Register A, B,
C, D, E strukturiert

∗ Initialisierung:

· A = 0x 67 45 23 01
· B = 0x EF CD AB 89
· C = 0x 98 BA DC FE
· D = 0x 10 32 54 76
· E = 0x C3 D2 E1 F

∗ Die Werte werden im Big-Endian-Format gespeichert.

– Jeder Block yi der Nachricht wird zusammen mit CVi in
einem Modul verarbeitet, das die Kompressionsfunktion f
in vier Runden zu je 20 Schritten realisiert.

∗ Die Runden haben eine ähnliche Struktur, aber jede
Runde verwendet eine andere primitive logische
Funktion f1, f2, f3, f4.

∗ Bei jedem Schritt wird eine feste additive Konstante
Kt verwendet, die während einer Runde unverändert
bleibt

– t ∈ 0, ..., 15⇒ Wt := yi, , t
′′

– t ∈ 16, ..., 79⇒ Wt :=
CLS1(Wt−16 ⊕Wt−14 ⊕Wt−8 ⊕Wt−3)

– Nach Schritt 79 wird jedes Register A, B, C, D, E modulo
232 mit dem Wert des entsprechenden Registers vor Schritt
0 addiert, um CVi+1 zu berechnen

• Der SHA-1-MDC über eine Nachricht ist der Inhalt des
Verkettungswertes CV nach Verarbeitung des letzten
Nachrichtenblocks.

• Vergleich zwischen SHA-1 und MD5:

– Geschwindigkeit: SHA-1 ist etwa 25% langsamer als MD5
(CV ist etwa 25% größer)

– Einfachheit und Kompaktheit: beide Algorithmen sind
einfach zu beschreiben und zu implementieren und
erfordern keine großen Programme oder Ersetzungstabellen

• Sicherheit von SHA-1:

– Da SHA-1 MDCs der Länge 160 Bit erzeugt, wird erwartet,
dass es eine bessere Sicherheit gegen Brute-Force- und
Geburtstagsangriffe bietet als MD5.

– Einige inhärente Schwächen von
Merkle-D̊amgard-Konstruktionen, z. B. ,,KK06”, sind
vorhanden

– Im Februar 2005 veröffentlichten X. Wang et. al. einen
Angriff, der es erlaubt, eine Kollision mit einem Aufwand
von 269 zu finden, der in den folgenden Monaten auf 263

verbessert und in ,,WYY05a” veröffentlicht wurde
– Die Forschung ging weiter (z.B. ,,Man11”), und im Februar

2017 wurde die erste tatsächliche Kollision gefunden
(demonstriert mit einem veränderten PDF-Dokument)

• SHA-2-Familie

– Im Jahr 2001 veröffentlichte das NIST einen neuen
Standard FIPS PUB 180-2, der neue Varianten mit den
Bezeichnungen SHA-256, SHA-384 und SHA-512 ,,NIST02”
mit 256, 384 und 512 Bits enthält.

– SHA-224 wurde im Jahr 2004 hinzugefügt
– SHA-224 und SHA-384 sind verkürzte Versionen von

SHA-256 und SHA-512 mit unterschiedlichen
Initialisierungswerten

– SHA-2 verwendet ebenfalls die
Merkle-D̊amgard-Konstruktion mit einer Blockgröße von
512 Bit (SHA-256) und 1024 Bit (SHA-512)

– Der interne Zustand ist in 8 Registern von 32 Bit
(SHA-256) und 64 Bit (SHA-512) organisiert

– 64 Runden (SHA-256) oder 80 Runden (SHA-512)

• Ein Schritt

– t ∈ 0, ..., 15⇒ Wt := yi, , t
′′

– t ∈ 16, ..., r ⇒ Wt := Wt−16⊕δ0(Wt−15)⊕Wt−7⊕δ1(Wt−2)
– Kt ist der gebrochene Teil der Kubikwurzel aus der t-ten

Primzahl
– Die ROTR- und Funktionen XOR-verknüpfen verschiedene

Verschiebungen des Eingangswertes
– Ch und Maj sind logische Kombinationen der Eingabewerte

• SHA-2-Familie

– Alles in allem sehr ähnlich zu SHA-1
– Aufgrund der Größe und der komplizierteren

Rundungsfunktionen etwa 30-50 Prozent langsamer als
SHA-1 (variiert für 64-Bit- und 32-Bit-Systeme!)

– Sicherheitsdiskussion:
∗ Bereits 2004 wurde entdeckt, dass eine vereinfachte

Version des Algorithmus (mit XOR statt Addition
und symmetrischen Konstanten) hochkorrelierte
Ausgaben erzeugt ,,GH04”

∗ Für rundenreduzierte Versionen von SHA-2 gibt es
Pre-Image-Angriffe, die schneller sind als Brute-Force,
aber sehr unpraktisch (z.B. ,,AGM09”)

∗ Auch wenn Größe und Komplexität derzeit keine
Angriffe zulassen, ist die Situation unangenehm

∗ Dies führte zur Notwendigkeit eines neuen
SHA-3-Standards

Der sichere Hash-Algorithmus SHA-3
• Sicherheitsbedenken bezüglich SHA-1 und SHA-2 führten zu

einem offenen Wettbewerb des NIST, der 2007 begann

– 5 Finalisten ohne nennenswerte Schwächen
– Oktober 2012: NIST gibt bekannt, dass Keccak zu SHA-3

wird
– 4 europäische Erfinder
– Einer davon ist Joan Daemen, der AES mitentwickelt hat
– SHA-3 ist sehr schnell, besonders in der Hardware
– Sehr gut dokumentiert und analysierbar

• Keccak basiert auf einer so genannten Schwammkonstruktion
anstelle der früheren Merkle-D̊amgard-Konstruktionen

– Vielseitiges Design, um fast alle symmetrischen
kryptographischen Funktionen zu implementieren
(allerdings ist nur das Hashing standardisiert)

• Arbeitet normalerweise in 2 Phasen

– ,,Absorbieren” von Informationen beliebiger Länge in 1600
Bit des internen Zustands

– ,,Auspressen” (d.h. Ausgeben) von Hash-Daten beliebiger
Länge (nur 224, 256, 384 und 512 Bit standardisiert)

• Der interne Zustand ist in 2 Registern organisiert

– Ein Register der Größe r ist ,,public”: Eingabedaten werden
in der Absorptionsphase mit XOR verknüpft, Ausgabedaten
werden in der Quetschungsphase daraus abgeleitet

– Das Register der Größe c ist ,,privat”; Ein- und Ausgabe
wirken sich nicht direkt auf es aus.

– In Keccak ist die Größe der Register 1600 Bits (d.h.
c+ r = 1600 Bits)

– Die Größe von c ist doppelt so groß wie die Länge des
Ausgangsblocks

– Beide Register werden mit ,,0” initialisiert

• Das Hashing erfolgt durch eine Funktion f, die die Register liest
und einen neuen Zustand ausgibt

• Sponge-Konstruktion

– Absorptionsphase: k + 1 Eingabeblöcke der Größe r werden
in den Zustand gemischt

– Quetschphase: l + 1 Ausgangsblöcke der Größe r werden
erzeugt (oft nur einer)

– Der letzte Eingabe- und Ausgabeblock kann aufgefüllt oder
abgeschnitten werden.

• Die Funktion f

– Offensichtlich hängt die Sicherheit einer
Sponge-Konstruktion von der Sicherheit von f

– Keccak verwendet 24 Runden von 5 verschiedenen
Unterfunktionen (Σ, ρ, π, χ, ι), um f zu implementieren.

– Die Unterfunktionen operieren auf einem
,,dreidimensionalen” Bit-Array a [5][5][w], wobei w
entsprechend der Größe r und c gewählt wird

– Alle Operationen werden über GF (2n) durchgeführt.
– Jede der Unterfunktionen gewährleistet bestimmte

Eigenschaften, z.B,

∗ Schnelle Diffusion der geänderten Bits im gesamten
Zustand (Σ)

∗ Langfristige Diffusion (π)
∗ Sicherstellung, dass f nichtlinear wird (χ)
∗ Rundenspezifische Substitution (ι)

• Σ wird zuerst ausgeführt, um sicherzustellen, dass sich der
geheime und der öffentliche Zustand schnell vermischen, bevor
andere Unterfunktionen angewendet werden.

• Sicherheit

– Derzeit gibt es keine nennenswerten Schwachstellen in
SHA-3

∗ Die bekanntesten Pre-Image-Angriffe funktionieren
nur mit einer Funktion f mit bis zu 8 Runden

∗ Zum Schutz vor internen Kollisionen sollten 11
Runden ausreichen.

– Im Vergleich zu SHA-1 und SHA-2 werden zusätzliche
Sicherheitseigenschaften garantiert, da der interne Zustand
nie öffentlich gemacht wird

∗ Verhindert Angriffe, bei denen beliebige
Informationen zu einer gültigen geheimen Nachricht
hinzugefügt werden

∗ Bietet Chosen Target Forced Prefix (CTFP)
Preimage-Resistenz ,,KK06”, d.h. es ist nicht möglich,
eine Nachricht m = P ||S zu konstruieren, wobei P fest
und S beliebig gewählt ist, s.t., H(m) = y

∗ Für Merkle-D̊amgard-Konstruktionen ist dies nur so
schwer wie die Kollisionssicherheit

∗ Keine schnelle Möglichkeit, Multikollisionen schnell zu
erzeugen ,,Jou04”

Cipher Block Chaining Message Authentication
Codes

• Ein CBC-MAC wird berechnet, indem eine Nachricht im
CBC-Modus verschlüsselt wird und der letzte Chiffretextblock
oder ein Teil davon als MAC verwendet wird:

• Dieser MAC muss nicht mehr signiert werden, da er bereits mit
einem gemeinsamen Geheimnis K erzeugt wurde.

– Es ist jedoch nicht möglich zu sagen, wer genau einen MAC
erstellt hat, da jeder (Sender, Empfänger), der den
geheimen Schlüssel K kennt, dies tun kann

• Dieses Verfahren funktioniert mit jeder Blockchiffre (DES, IDEA,
...)

• Sicherheit von CBC-MAC:

– Da ein Angreifer K nicht kennt, ist ein Geburtstagsangriff
sehr viel schwieriger (wenn nicht gar unmöglich) zu starten

– Ein Angriff auf einen CBC-MAC erfordert bekannte Paare
(Nachricht, MAC)

– Dies ermöglicht kürzere MACs
– Ein CBC-MAC kann optional verstärkt werden, indem man

sich auf einen zweiten Schlüssel K′ 6= K einigt und eine
dreifache Verschlüsselung des letzten Blocks durchführt:
MAC := E(K,D(K′, E(K,Cn−1)))

11/41

Network Security

– Dadurch verdoppelt sich der Schlüsselraum bei nur
geringem Rechenaufwand

– Die Konstruktion ist nicht sicher, wenn die
Nachrichtenlängen variieren!

• Es gibt auch einige Vorschläge, MDCs aus symmetrischen
Blockchiffren zu erzeugen, indem der Schlüssel auf einen festen
(bekannten) Wert gesetzt wird:

– Wegen der relativ kleinen Blockgröße von 64 Bit der
meisten gängigen Blockchiffren bieten diese Verfahren keine
ausreichende Sicherheit gegen Geburtstagsangriffe.

– Da symmetrische Blockchiffren mehr Rechenaufwand
erfordern als spezielle kryptografische Hash-Funktionen,
sind diese Verfahren relativ langsam.

Konstruktion eines MAC aus einem MDC
• Grund für die Konstruktion von MACs aus MDCs

Kryptografische Hash-Funktionen laufen im Allgemeinen schneller
ab als symmetrische Blockchiffren

• Grundidee: ,,mix” einen geheimen Schlüssel K mit der Eingabe
und berechne einen MDC

• Die Annahme, dass ein Angreifer K kennen muss, um einen
gültigen MAC zu erzeugen, wirft dennoch einige kryptografische
Probleme auf (zumindest für Merkle-D̊amgard-Hash-Funktionen):

– Die Konstruktion H(K||m) ist nicht sicher (siehe
Anmerkung 9.64 in ,,Men97a”)

– Die Konstruktion H(m||K) ist nicht sicher (siehe
Bemerkung 9.65 in ,,Men97a”)

– Die Konstruktion H(K||p||m||K), bei der p ein zusätzliches
Auffüllfeld bezeichnet, bietet keine ausreichende Sicherheit

• Die am häufigsten verwendete Konstruktion ist:
H(K ⊕ p1||H(K ⊕ p2||m))

– Der Schlüssel wird mit 0’s aufgefüllt, um den Schlüssel zu
einem Eingabeblock der kryptographischen Hashfunktion
aufzufüllen

– Zwei verschiedene konstante Muster p1 und p2 werden mit
dem aufgefüllten Schlüssel XOR-verknüpft

– Dieses Schema scheint sicher zu sein (siehe Anmerkung 9.67
in ,,Men97a”)

– Es wurde in RFC 2104 ,,Kra97a” standardisiert und wird
HMAC genannt.

Authentifizierte Verschlüsselung mit zugehörigen
Daten (AEAD) Modi

• Normalerweise sind die Daten nicht authentifiziert oder
verschlüsselt, sondern verschlüsselt UND authentifiziert (Blöcke
P0...Pn)

• Manchmal müssen zusätzliche Daten authentifiziert werden (z.B.
Paketköpfe), im Folgenden mit A0...Am bezeichnet

• führte zur Entwicklung von AEAD-Betriebsarten
• Beispiele hierfür sind

– Galois/Zähler-Modus (GCM)
– Zähler mit CBC-MAC (CCM)
– Offset-Codebuch-Modus (OCM)
– SpongeWrap - eine Methode zur Verwendung von Keccak

für den AEAD-Betrieb

Galois/Zähler-Modus (GCM) ,,MV04”
• Beliebter AEAD-Modus
• NIST-Standard, Teil von IEEE 802.1AE, IPsec, TLS, SSH usw.
• Frei von Patenten
• Wird wegen seiner hohen Geschwindigkeit hauptsächlich in

Netzwerkanwendungen eingesetzt

– Äußerst effizient in der Hardware
– Prozessorunterstützung auf neueren x86-CPUs
– Zeitintensive Aufgaben können vorberechnet und

parallelisiert werden

– Keine Notwendigkeit für Auffüllungen

• Verwendet konventionelle Blockchiffre mit 128-Bit-Blockgröße (z.
B. AES)

• Berechnet MAC durch Multiplikationen und Additionen in
GF (2128) über das irreduzible Polynom x128 + x7 + x2 + x+ 1

• Erfordert nur n+ 1 Blockchiffre-Aufrufe pro Paket (n = Länge
der verschlüsselten und authentifizierten Daten)

– I0 wird mit dem IV und einem Padding oder einem Hash
des IV initialisiert (wenn er nicht 96 Bit beträgt)

– ◦H ist GF (2128) Multiplikation mit H = E(K, 0128)
– Die Eingabeblöcke Am und Pn werden auf 128 Bit

aufgefüllt
– Am und Cn werden vor der Ausgabe auf die Originalgröße

gekürzt
– Die letzte Authentifizierung verwendet 64 Bit kodierte

Bitlängen von A und C

• Sicherheit

– Schneller Modus, erfordert aber einige Sorgfalt:
– Erwiesenermaßen sicher (unter bestimmten

Voraussetzungen, z. B. wenn die verwendete Blockchiffre
nicht von Zufallszahlen unterscheidbar ist), aber die
Konstruktion ist anfällig:

– IVs MÜSSEN NICHT wiederverwendet werden, da sonst
Datenströme XOR-verknüpft werden können und das XOR
der Datenströme wiederhergestellt werden kann, was zu
einer sofortigen Wiederherstellung des geheimen Werts ,,H”
führen kann

– H hat einen möglichen schwachen Wert 0128, in diesem Fall
wird die Authentifizierung nicht funktionieren, und wenn
IVs mit einer anderen Länge als 96 Bits verwendet werden,
wird C0 immer gleich sein!

– Einige andere Schlüssel erzeugen Hash-Schlüssel mit einer
niedrigen Ordnung, was vermieden werden muss... ,,Saa11”

– Erfolgreiche Fälschungsversuche können Informationen über
H durchsickern lassen, daher MÜSSEN kurze MAC-Längen
vermieden oder risikominimiert werden ,,Dwo07”

– Die erreichte Sicherheit ist nur 2t−k und nicht 2t (für

MAC-Länge t und Anzahl der Blöcke 2k), da Blöcke
modifiziert werden können, um nur Teile des MAC zu
ändern ,,Fer05”

Kleiner Exkurs: Rechenoperationen in GF (2n)

• Galoisfeld-Arithmetik definiert über Termen (z.B.

a3x
3 + a2x

2 + a1x+ a0)
• Koeffizienten sind Elemente des Feldes Z2, d.h. entweder 0 oder 1
• Oft werden nur die Koeffizienten gespeichert, so wird aus
x4 + x2 + x1 0x16

• Die Addition in GF (2n) ist einfach die Addition von Termen

– Da gleiche Koeffizienten auf 0 abbilden, einfach XOR der
Werte!

– Extrem schnell in Hard- und Software!

• Multiplikation in GF (2n) ist Polynommultiplikation und
anschließende Modulodivision durch ein irreduzibles Polynom
vom Grad n

– Irreduzible Polynome sind nicht ohne Rest durch irgendein
anderes Polynom teilbar, außer durch ,,1”, ähnlich wie
Primzahlen in GF

– Kann durch eine Reihe von Verschiebe- und
XOR-Operationen implementiert werden

– Sehr schnell in Hardware oder auf neueren Intel-CPUs (mit
CLMUL-Operationen)

– Modulo-Operation kann wie bei einer regulären
CRC-Berechnung durchgeführt werden

• Addition Beispiel: x3 + x+ 1x⊕ x2 + x = x3 + x2 + 1↔ 0x0B
XOR 0x06 = 0x0D

• Multiplikationsbeispiel (über x4 + x+ 1):

x3 + x+ 1 ◦ x2 + x = x5 + x3 + x2 ⊕ x4 + x2 + x mod x4 + x+ 1 =
x5 + x4 + x3 + x mod x4 + x+ 1 = x3 + x2 + x+ 1

• Elemente von GF (2n) (mit Ausnahme von 1 und dem
irreduziblen Polynom) können ein Generator für die Gruppe sein

• Beispiel für x und das Polynom
x4 + x+ 1 : x, x2, x3, x+ 1, x2 + x, x3 + x2, x3 + x+ 1, x2 + 1, x3 +
x, x2 +x+1, x3 +x2 +x, x3 +x2 +x+1, x3 +x2 +1, x3 +1, 1, x, ...

• Andere Konzepte endlicher Gruppen gelten ebenfalls, z. B. hat
jedes Element ein multiplikatives inverses Element

• Kann durch eine angepasste Version des Erweiterten Euklidischen
Algorithmus gefunden werden

SpongeWrap
• Durch Verwendung von SHA-3 ist es auch möglich, ein

AEAD-Konstrukt zu implementieren ,,BDP11a”
• Die Konstruktion ist sehr einfach und vergleichsweise leicht zu

verstehen
• Verwendet den sogenannten Duplex-Modus für

Sponge-Funktionen, bei dem Schreib- und Leseoperationen
verschachtelt werden

• Erfordert kein Auffüllen der Daten auf eine bestimmte Blockgröße
• Kann nicht parallelisiert werden
• Sicherheit

– Noch nicht weit verbreitet, aber mehrere Aspekte haben
sich als genauso sicher wie SHA-3 im standardisierten
Modus erwiesen

– Wenn die authentifizierten Daten A keine eindeutige IV
enthalten, wird derselbe Schlüsselstrom erzeugt (ermöglicht
die Wiederherstellung eines Blocks XOR-verschlüsselter
Daten)

– Vereinfachte Version, bei der die Länge von Schlüssel und
MAC kleiner sein muss als die Blockgröße

– Auffüllungen mit einem einzelnen ,,0”- oder ,,1”-Bit stellen
sicher, dass verschiedene Datenblocktypen gut voneinander
getrennt sind

Zufallszahlengenerierung
Aufgaben der Schlüsselverwaltung

• Erzeugung

– Für die Sicherheit ist es von entscheidender Bedeutung,
dass die Schlüssel mit einem wirklich zufälligen oder
zumindest pseudozufälligen Generierungsverfahren erzeugt
werden

– Andernfalls könnte ein Angreifer den
Schlüsselgenerierungsprozess reproduzieren und den zur
Sicherung einer bestimmten Kommunikation verwendeten
Schlüssel leicht finden

• Verteilung

– Die Verteilung einiger anfänglicher Schlüssel muss in der
Regel manuell / ,,out of band,, erfolgen

– Die Verteilung von Sitzungsschlüsseln wird in der Regel
während eines Authentifizierungsaustauschs durchgeführt

– Beispiele: Diffie-Hellman, Otway-Rees, Kerberos, X

• Speicherung

– Schlüssel, insbesondere Authentifizierungsschlüssel, sollten
sicher gespeichert werden

– entweder verschlüsselt mit einer schwer zu erratenden
Passphrase, oder besser

– in einem sicheren Gerät wie einer Smart-Card

• Entzug: Wenn ein Schlüssel kompromittiert wurde, sollte es
möglich sein, diesen Schlüssel zu widerrufen, damit er nicht mehr
missbraucht werden kann (vgl. X.509)

• Vernichtung: Schlüssel, die nicht mehr verwendet werden (z. B.
alte Sitzungsschlüssel), sollten sicher vernichtet werden

• Wiederherstellung:

12/41

Network Security

– Wenn ein Schlüssel verloren gegangen ist (z. B. defekte
Chipkarte, Diskette, versehentliches Löschen), sollte er
wiederhergestellt werden können, um Datenverluste zu
vermeiden

– Die Wiederherstellung von Schlüsseln ist nicht zu
verwechseln mit der Schlüsselhinterlegung

• Hinterlegung

– Mechanismen und Architekturen, die es staatlichen Stellen
(und nur diesen) ermöglichen sollen, Sitzungsschlüssel zu
erhalten, um zu Strafverfolgungszwecken die
Kommunikation abzuhören / gespeicherte Daten zu lesen

– Wenn ich meinen Schlüssel zurückbekomme, ist es
Schlüsselwiederherstellung, wenn du meinen Schlüssel
zurückbekommst, ist es Schlüsselhinterlegung...”)

Zufalls- und Pseudo-Zufallszahlengenerierung
• Definition: ,,Ein Zufallsbitgenerator ist ein Gerät oder ein

Algorithmus, der eine Folge statistisch unabhängiger und
unverfälschter Binärziffern ausgibt.”

• Bemerkung: Ein Zufallsbitgenerator kann zur Erzeugung
gleichmäßig verteilter Zufallszahlen verwendet werden, z. B. kann
eine zufällige ganze Zahl im Intervall , , 0, n′′ erhalten werden,
indem eine zufällige Bitfolge der Länge blgnc+ 1 erzeugt und in
eine Zahl umgewandelt wird. Ist die resultierende ganze Zahl
größer als n, so kann sie verworfen werden, und der Vorgang wird
so lange wiederholt, bis eine ganze Zahl im gewünschten Bereich
erzeugt worden ist

• Definition: Ein Pseudo-Zufallsbitgenerator (PRBG) ist ein
deterministischer Algorithmus, der bei einer wirklich zufälligen
Binärfolge der Länge k eine Binärfolge der Länge m >> k
ausgibt, die ,,zufällig” erscheint. Die Eingabe in den PRBG wird
als Seed bezeichnet, die Ausgabe als pseudozufällige Bitfolge.

• Bemerkungen

– Die Ausgabe eines PRBG ist nicht zufällig, tatsächlich ist
die Anzahl der möglichen Ausgabesequenzen der Länge m

höchstens ein kleiner Bruchteil 2k/2m, da der PRBG immer
dieselbe Ausgabesequenz für einen (festen) Seed erzeugt

– Die Motivation für die Verwendung einer PRBG ist, dass es
zu teuer sein könnte, echte Zufallszahlen der Länge m zu
erzeugen, z. B. durch Münzwurf, so dass nur eine kleinere
Menge von Zufallsbits erzeugt wird und dann aus den k
echten Zufallsbits eine pseudozufällige Bitfolge erzeugt wird

– Um Vertrauen in die ,,Zufälligkeit” einer
Pseudo-Zufallsfolge zu gewinnen, werden statistische Tests
mit den erzeugten Folgen durchgeführt

• Beispiel

– Ein linearer Kongruenzgenerator erzeugt eine
Pseudo-Zufallsfolge von Zahlen y1, y2, ... gemäß der
linearen Rekursion yi = a× yi−1 + b mod q, wobei a, b, q
Parameter sind, die den PRBG charakterisieren

– Leider ist dieser Generator auch dann vorhersehbar, wenn
a, b und q unbekannt sind, und sollte daher nicht für
kryptographische Zwecke verwendet werden

• Sicherheitsanforderungen an PRBGs für die Verwendung in der
Kryptographie:

– Als Mindestsicherheitsanforderung sollte die Länge k des
Seeds einer PRBG so groß sein, dass eine Brute-Force-Suche
über alle Seeds für einen Angreifer nicht durchführbar ist

– Die Ausgabe einer PRBG sollte statistisch nicht von echten
Zufallssequenzen unterscheidbar sein.

– Die Ausgabebits sollten für einen Angreifer mit begrenzten
Ressourcen unvorhersehbar sein, wenn er den Seed nicht
kennt.

• Definition: Ein PRBG besteht alle statistischen
Polynomialzeit-Tests, wenn kein deterministischer
olynomialzeit-Algorithmus zwischen einer Ausgangssequenz des
Generators und einer echten Zufallssequenz derselben Länge mit
einer Wahrscheinlichkeit deutlich größer als 0 unterscheiden kann

• Polynomialzeit-Algorithmus bedeutet, dass die Laufzeit des
Algorithmus durch ein Polynom in der Länge m der Sequenz
begrenzt ist

• Definition: Ein PRBG besteht den Next-Bit-Test, wenn es keinen
deterministischen Polynomialzeit-Algorithmus gibt, der bei
Eingabe der ersten m Bits einer Ausgangssequenz s das
(m+ 1)-te Bit sm+1 der Ausgangssequenz mit einer
Wahrscheinlichkeit deutlich größer als 0 vorhersagen kann

• Theorem (Universalität des Next-Bit-Tests): Wenn eine PRBG
den Next-Bit-Test ⇔ besteht, dann besteht sie alle statistischen
Polynomialzeittests

• Definition: Ein PRBG, der den Next-Bit-Test besteht -
möglicherweise unter einer plausiblen, aber unbewiesenen
mathematischen Annahme wie der Unlösbarkeit des
Faktorisierungsproblems für große ganze Zahlen - wird als
kryptographisch sicherer Pseudo-Zufallsgenerator (CSPRBG)
bezeichnet

Zufallszahlengenerierung
• Hardware-basierte Zufallsbit-Generatoren basieren auf

physikalischen Phänomenen, wie

– die verstrichene Zeit zwischen der Emission von Teilchen
beim radioaktiven Zerfall,

– thermisches Rauschen einer Halbleiterdiode oder eines
Widerstandes,

– Frequenzinstabilität eines frei laufenden Oszillators,
– der Betrag, um den ein

Metall-Isolator-Halbleiter-Kondensator während eines
bestimmten Zeitraums aufgeladen wird,

– Luftturbulenzen in einem versiegelten Festplattenlaufwerk,
die zufällige Schwankungen in den Sektor-Lese-Latenzen
des Festplattenlaufwerks verursachen, und

– Ton von einem Mikrofon oder Videoeingang von einer
Kamera

– der Zustand einer ungeraden Anzahl von kreisförmig
verbundenen NOT-Gattern

• Ein hardwarebasierter Zufallsbitgenerator sollte idealerweise in
einer manipulationssicheren Vorrichtung untergebracht und so vor
möglichen Angreifern geschützt sein

• Softwarebasierte Zufallsbit-Generatoren können auf Prozessen
basieren wie

– der Systemuhr,
– der verstrichenen Zeit zwischen Tastenanschlägen oder

Mausbewegungen,
– Inhalt von Eingabe-/Ausgabepuffern
– Benutzereingaben und
– Werte des Betriebssystems wie Systemauslastung und

Netzwerkstatistiken

• Idealerweise sollten mehrere Zufallsquellen ,,gemischt” werden, z.
B. durch Verkettung ihrer Werte und Berechnung eines
kryptografischen Hashwerts für den kombinierten Wert, um zu
verhindern, dass ein Angreifer den Zufallswert erraten kann

– Wird z. B. nur die Systemuhr als Zufallsquelle verwendet,
könnte ein Angreifer die aus dieser Zufallsquelle
gewonnenen Zufallszahlen erraten, wenn er weiß, wann sie
erzeugt wurden.

• Verzerrung

– Betrachten wir einen Zufallsgenerator, der verzerrte, aber
unkorrelierte Bits erzeugt, z. B. 1en mit der
Wahrscheinlichkeit p 6= 0, 5 und 0en mit der
Wahrscheinlichkeit 1− p, wobei p unbekannt, aber fest ist

• Die folgende Technik kann verwendet werden, um eine
Zufallsfolge zu erhalten, die unkorreliert und unverzerrt ist:

– Die Ausgangssequenz des Generators wird in Bitpaare
gruppiert

– Alle Paare 00 und 11 werden verworfen.
– Für jedes Paar 10 erzeugt der unvoreingenommene

Generator eine 1 und für jedes Paar 01 eine 0.

• Ein weiteres praktisches (wenn auch nicht beweisbares) Verfahren
zur Entzerrung ist die Weiterleitung von Sequenzen, deren Bits
korreliert oder verzerrt sind, durch eine kryptografische
Hash-Funktion wie MD5 oder SHA-1

Statistische Tests für Zufallszahlen
• Mit den folgenden Tests lässt sich überprüfen, ob eine generierte

Zufalls- oder Pseudozufallsfolge bestimmte statistische
Eigenschaften nicht erfüllt

– Monobit-Test: Gibt es gleich viele 1en wie 0en?
– Serieller Test (Zwei-Bit-Test): Gibt es gleich viele 00-, 01-,

10-, 11-Paare?
– Poker-Test: Gibt es gleich viele Sequenzen ni der Länge q,

die mit q den gleichen Wert haben, so dass
bm/qc ≥ 5× (2q)

– Test auf Durchläufe: Entspricht die Anzahl der Läufe
(Sequenzen, die nur entweder 0 oder 1 enthalten)
unterschiedlicher Länge den Erwartungen für Zufallszahlen?

– Autokorrelationstest: Gibt es Korrelationen zwischen der
Sequenz und (nicht-zyklischen) verschobenen Versionen
davon?

– Maurer’s Universal Test: Kann die Sequenz komprimiert
werden?

– NIST SP 800-22: Standardisierte Testsuite, umfasst die
oben genannten und weitere fortgeschrittene Tests

Sichere Pseudo-Zufallszahlengenerierung
• Es gibt eine Reihe von Algorithmen, die kryptografische

Hash-Funktionen oder Verschlüsselungsalgorithmen zur
Erzeugung von kryptografisch sicheren Pseudozufallszahlen
verwenden

• Obwohl diese Verfahren nicht als sicher bewiesen werden können,
scheinen sie für die meisten praktischen Situationen ausreichend

• Ein solcher Ansatz ist der Generator ANSI X9.17

– Eingabe: ein zufälliger und geheimer 64-Bit-Seed s, eine
ganze Zahl m und ein 3-DES-Schlüssel K

– Ausgabe: m pseudo-zufällige 64-Bit-Strings y1, y2, ...Ym
1. q = E(K,DateT ime)
2. For i von 1 bis m do

(a) xi = E(K, (q ⊕ s)
(b) s = E(K, (xi ⊕ q)

3. Return(x1, x2, ...xm)

– Diese Methode ist eine vom U.S. Federal Information
Processing Standard (FIPS) zugelassene Methode zur
pseudozufälligen Erzeugung von Schlüsseln und
Initialisierungsvektoren zur Verwendung mit DES

• Das RSA-PRBG ist ein CSPRBG unter der Annahme, dass das
RSA-Problem unlösbar ist

– Ausgabe: eine pseudo-zufällige Bitfolge z1, z2, ..., zk der
Länge k

1. Setup-Prozedur: Erzeuge zwei geheime Primzahlen p, q, die
für die Verwendung mit RSA geeignet sind. Berechne
n = p× q und φ = (p− 1)× (q − 1). Wähle eine zufällige
ganze Zahl e so, dass 1 < e < φ und gcd(e, φ) = 1

2. Wähle eine zufällige ganze Zahl y0 (den Keim) so, dass
y0 ∈, , 1, n′′

3. Für i von 1 bis k tun
(a) yi = (yi−1)e mod n
(b) zi = das niedrigstwertige Bit von yi

– Die Effizienz des Generators kann leicht verbessert werden,
indem man die letzten j Bits von jedem yi nimmt, wobei
j = c× lg(lg(n)) und c eine Konstante ist

– Für eine gegebene Bitlänge m von n wurde jedoch noch
kein Wertebereich für die Konstante c ermittelt, in dem der
Algorithmus noch einen CSPRBG ergibt

• Der Blum-Blum-Shub-PRBG ist ein CSPRBG unter der
Annahme, dass das Problem der ganzzahligen Faktorisierung
unlösbar ist:

13/41

Network Security

– Ausgabe: eine pseudo-zufällige Bitfolge z1, z2, ..., zk der
Länge k

1. Setup-Prozedur: Erzeuge zwei große geheime und
unterschiedliche Primzahlen p, q, so dass p, q jeweils
kongruent 3 modulo 4 sind, und lass n = p× q

2. Wähle eine zufällige ganze Zahl s (den Keim) so, dass
s ∈, , 1, n− 1′′ liegt, so dass gcd(s, n) = 1 und

y0 = s2 mod n
3. Für i von 1 bis k tun

(a) yi = (yi−1)2 mod n
(b) zi = das niedrigstwertige Bit von yi

– Die Effizienz des Generators kann mit der gleichen Methode
wie beim RSA-Generator verbessert werden, wobei ähnliche
Einschränkungen für die Konstante c gelten

• Dualer deterministischer Zufallsbitgenerator mit elliptischer
Kurve:

– Basierend auf der Unlösbarkeit des Problems des diskreten
Logarithmus elliptischer Kurven

– Vereinfachte Version:
– Der Zustand t wird mit einem Generator P multipliziert,

der x-Wert des neuen Punktes wird zu t’
– Multiplikation mit einem anderen Punkt Q r Bits der

Ausgabe können erzeugt werden, die Anzahl der Bits hängt
von der Kurve ab (zwischen 240 und 504 Bits)

– Teil der Norm NIST 800-90A
– Sicherheit:

∗ Es wurde gezeigt, dass Angreifer den Zustand t
ableiten können, wenn P für eine Konstante e gleich
eQ gewählt wird.

∗ Wir wissen nicht, wie die vordefinierten Punkte P und
Q in NIST 800-90A abgeleitet werden, also Vorsicht

CSPRNG-Sicherheit ist eine große Sache!
• Im September 2006 wurde Debian versehentlich so verändert, dass

nur die Prozess-ID verwendet wurde, um den OpenSSL CSPRNG
zu füttern

– Nur 32.768 mögliche Werte!
– Wurde bis Mai 2008 nicht entdeckt

• Ein Scan von etwa 23 Millionen TLS- und SSH-Hosts zeigte, dass

– Mindestens 0,34% der Hosts teilten Schlüssel aufgrund
fehlerhafter RNGs

– 0,50% der gescannten TLS-Schlüssel aufgrund einer
geringen Zufälligkeit kompromittiert werden konnten

– und 1,06% der SSH-Hosts...

• Überwachen Sie Ihren CSPRNG!

– Generieren Sie keine Zufallszahlen direkt nach dem Booten
Ihres Systems

– Verwenden Sie blockierende RNGs, d.h. solche, die nicht
fortfahren, bis sie genügend Entropie haben

Kryptographische Protokolle
• Definition: Ein kryptographisches Protokoll ist definiert als eine

Reihe von Schritten und der Austausch von Nachrichten zwischen
mehreren Einheiten, um ein bestimmtes Sicherheitsziel zu
erreichen.

• Eigenschaften eines Protokolls (im Allgemeinen):

– Jeder, der an dem Protokoll beteiligt ist, muss das Protokoll
und alle zu befolgenden Schritte im Voraus kennen

– Jeder, der an dem Protokoll beteiligt ist, muss zustimmen,
es zu befolgen.

– Das Protokoll muss eindeutig sein, d.h. jeder Schritt ist
genau definiert, und es gibt keine Möglichkeit für
Missverständnisse

– Das Protokoll muss vollständig sein, d. h. es gibt für jede
mögliche Situation eine bestimmte Aktion.

• Zusätzliche Eigenschaft eines kryptographischen Protokolls:

– Es sollte nicht möglich sein, mehr zu tun oder zu erfahren
als das, was im Protokoll angegeben ist.

Anwendungen von kryptographischen Protokollen
• Schlüsselaustausch
• Authentifizierung

– Authentifizierung der Datenherkunft
– Authentifizierung von Entitäten

• Kombinierte Authentifizierung und Schlüsselaustausch
• Aufteilung des Geheimnisses (alle Teile werden für die

Rekonstruktion benötigt)
• Gemeinsame Nutzung des Geheimnisses (m von n Teilen werden

für die Rekonstruktion benötigt)
• Zeitstempelung
• Schlüsselhinterlegung (Sicherstellung, dass nur eine befugte Stelle

Schlüssel wiederherstellen kann)
• Zero-Knowledge-Beweise (Nachweis der Kenntnis einer

Information ohne Offenlegung der Information)
• Blindsignaturen (nützlich für die Wahrung der Privatsphäre bei

Zeitstempeldiensten)
• Sichere Wahlen
• Elektronisches Geld

Schlüsselaustausch
• Das vorgestellte Diffie-Hellman-Protokoll ist unser erstes Beispiel

für ein kryptographisches Protokoll zum Schlüsselaustausch
• Bitte beachten Sie, dass es keine Authentifizierung realisiert

– Weder Alice noch Bob wissen nach einem
Protokolldurchlauf, mit wem sie einen Schlüssel
ausgetauscht haben

– Da dieser reine Schlüsselaustausch ohne Authentifizierung
nicht einmal die Vertraulichkeit der Kommunikation nach
dem Austausch garantieren kann, muss er mit
Authentifizierung kombiniert werden

• Diese Trennung von Schlüsselaustausch und Authentifizierung des
Austauschs hat jedoch einen großen Vorteil, da sie es ermöglicht,
die Eigenschaft des perfekten Vorwärtsgeheimnisses (Perfect
Forward Secrecy, PFS) zu gewährleisten

– Wenn ein Schlüsselaustausch PFS gewährleistet, kann die
Kompromittierung eines Schlüssels in der Zukunft keine
Daten kompromittieren, die mit anderen Schlüsseln
geschützt wurden, die vor dieser Kompromittierung
ausgetauscht wurden

– Beispiel: Stellen Sie sich vor, Alice und Bob signieren beide
die zur Berechnung von sk ausgetauschten Daten mit ihren
privaten Schlüsseln. Selbst die Kompromittierung eines
privaten Schlüssels in der Zukunft wird es nicht
ermöglichen, aufgezeichnete Daten zu entschlüsseln, die mit
sk geschützt wurden

Authentifizierung der Datenherkunft
Definition: Die Datenursprungsauthentifizierung ist der Sicherheitsdienst,
der es Entitäten ermöglicht, zu überprüfen, ob eine Nachricht von einer
bestimmten Entität stammt und nicht nachträglich verändert wurde. Ein
Synonym für diesen Dienst ist Datenintegrität.

• Die Beziehung zwischen Datenintegrität und kryptografischen
Protokollen ist zweifach

– Es gibt kryptografische Protokolle zur Sicherstellung der
Datenintegrität. Sie umfassen in der Regel nur einen
Protokollschritt und sind daher nicht sehr ,,spannend”:

∗ Beispiel 1: Angenommen, jeder kennt den öffentlichen
RSA-Schlüssel von Alice und kann sicher sein, dass er
den Schlüssel von Alice wirklich kennt, dann kann
Alice die Datenintegrität ihrer Nachrichten
sicherstellen, indem sie sie mit ihrem privaten
Schlüssel verschlüsselt.

∗ Beispiel 2: Alice kann auch einen MDC über ihre
Nachricht berechnen und den mit ihrem privaten
Schlüssel verschlüsselten MDC an die Nachricht
anhängen

– Die Datenintegrität der ausgetauschten Nachrichten ist oft
eine wichtige Eigenschaft in kryptografischen Protokollen,
daher ist die Datenintegrität ein Baustein für
kryptografische Protokolle

Authentifizierung von Entitäten
Definition: Entitätsauthentifizierung ist der Sicherheitsdienst, der es
Kommunikationspartnern ermöglicht, die Identität ihrer Peer-Entitäten
zu überprüfen.

• Die Entitätsauthentifizierung ist der grundlegendste
Sicherheitsdienst, da alle anderen Sicherheitsdienste auf ihr
aufbauen.

• Im Allgemeinen kann sie durch verschiedene Mittel erreicht
werden

– Wissen: z. B. Passwörter
– Besitz: z. B. physische Schlüssel oder Karten
– Unveränderliches Merkmal: z. B. biometrische

Eigenschaften wie Fingerabdruck usw
– Ort: Es wird der Nachweis erbracht, dass sich eine Entität

an einem bestimmten Ort befindet (Beispiel: Menschen
überprüfen selten die Authentizität von Agenten in einer
Bank)

– Delegation der Authentizität: Die überprüfende Stelle
akzeptiert, dass eine vertrauenswürdige Person die
Authentifizierung bereits vorgenommen hat

• In Kommunikationsnetzen ist die direkte Überprüfung der oben
genannten Mittel schwierig oder unsicher, weshalb
kryptographische Protokolle erforderlich sind.

• Der Hauptgrund, warum die Authentifizierung von Entitäten
mehr ist als ein Austausch von (datenherkunfts-) authentischen
Nachrichten, ist die Aktualität:

– Selbst wenn Bob während einer Kommunikation
authentische Nachrichten von Alice erhält, kann er nicht
sicher sein, ob:

∗ Alice zu diesem Zeitpunkt tatsächlich an der
Kommunikation teilnimmt, oder ob

∗ Eve alte Nachrichten von Alice abspielt

– Dies ist von besonderer Bedeutung, wenn die
Authentifizierung nur zum Zeitpunkt des
Verbindungsaufbaus erfolgt:

∗ Beispiel: Übermittlung einer (möglicherweise
verschlüsselten) PIN beim Einloggen

– Zwei grundsätzliche Mittel zur Sicherstellung der
Aktualität in kryptographischen Protokollen:

∗ Zeitstempel (erfordern mehr oder weniger
synchronisierte Uhren)

∗ Zufallszahlen (Challenge-Response-Austausch)

• Die meisten Authentifizierungsprotokolle erstellen auch einen
geheimen Sitzungsschlüssel zur Sicherung der Sitzung nach dem
Authentifizierungsaustausch

• Zwei Hauptkategorien von Protokollen für die Authentifizierung
von Entitäten

– Arbitrierte Authentifizierung: ein Arbiter, auch
vertrauenswürdige dritte Partei (TTP) genannt, ist direkt
an jedem Authentifizierungsaustausch beteiligt

∗ Vorteile:
· Dies ermöglicht es zwei Parteien A und B, sich

gegenseitig zu authentifizieren, ohne ein vorher
festgelegtes Geheimnis zu kennen.

· Selbst wenn sich A und B nicht kennen, kann die
symmetrische Kryptographie verwendet werden.

∗ Nachteilig:

· Das TTP kann zu einem Engpass werden, die
Verfügbarkeit des TTP ist entscheidend

· Der TTP kann alle Authentifizierungsaktivitäten
überwachen.

14/41

Network Security

– Direkte Authentifizierung: A und B authentifizieren sich
direkt gegenseitig

∗ Vorteile: keine Online-Teilnahme einer dritten Partei
erforderlich und kein möglicher Leistungsengpass wird
eingeführt

∗ Nachteile: erfordert asymmetrische Kryptographie
oder im Voraus festgelegte geheime Schlüssel

Notation kryptographischer Protokolle
Das Needham-Schroeder-Protokoll

• Erfunden im Jahr 1978 von Roger Needham und Michael
Schroeder ,,Nee78a”

• Das Protokoll basiert auf symmetrischer Verschlüsselung und
nutzt eine vertrauenswürdige dritte Partei (TTP)

• Angenommen, TTP teilt die geheimen Schlüssel KA,TTP und
KB,TTP mit Alice bzw. Bob:

– A erzeugt eine Zufallszahl rA und sendet die folgende
Nachricht:

1. A→ TTP : (A,B, rA)

– TTP erzeugt einen Sitzungsschlüssel KA,B für die sichere
Kommunikation zwischen A und B und antwortet A: 2.
TTP → A : rA, B,KA,B , KA,B , AKB,TTPKA,TTP

– A entschlüsselt die Nachricht und extrahiert KA,B . Sie
bestätigt, dass rA mit der von ihr im ersten Schritt
generierten Zahl identisch ist, so dass sie weiß, dass die
Antwort eine neue Antwort von TTP ist. Dann sendet sie
an B: 3.) A→ B : KA,B , AKB,TTP

– Bob entschlüsselt die Nachricht und erhält KA,B . Er
erzeugt dann eine Zufallszahl rB und antwortet Alice: 4.)
B → A : rBKA,B

– Alice entschlüsselt die Nachricht, errechnet rB − 1 und
antwortet mit: 5.) A→ B : rB − 1KA,B

– Bob entschlüsselt die Nachricht und prüft, ob sie rB − 1
enthält.

• Diskussion:

– Der Austausch von rB und rB−1 soll sicherstellen, dass ein
Angreifer, der versucht, sich als Alice auszugeben, keinen
vollständigen Protokolldurchlauf mit nachgespielten
Nachrichten durchführen kann

– Da jedoch alte Sitzungsschlüssel KA,B gültig bleiben, kann
ein Angreifer, Eve, der es schafft, einen Sitzungsschlüssel
KA,B in Erfahrung zu bringen, diesen später dazu
verwenden, sich als Alice auszugeben:

1. E → B : KA,B , AKB,TTP
2. B → A : rBKA,B Eve muss diese Nachricht abfangen
3. E → B : rB − 1KA,B

∗ Eve gibt sich also als Alice aus, obwohl sie weder
KA,TTP noch KB,TTP kennt!

Das Otway-Rees-Protokoll
• Das oben beschriebene Sicherheitsproblem sowie einige andere

wurden von Needham und Schroeder behandelt. Ihre Lösung
,,Nee87a” ist im Wesentlichen die gleiche wie die von Otway und
Rees in der gleichen Zeitschrift ,,Otw87a” vorgeschlagene:

– Alice generiert eine Nachricht, die eine Indexzahl iA, ihren
Namen A, Bobs Namen B und die gleichen Informationen
plus eine zusätzliche Zufallszahl rA enthält, die mit dem
Schlüssel KA,TTP verschlüsselt ist, den sie mit TTP teilt,
und sendet diese Nachricht an Bob:

1. A→ B : (iA, A,B, rA, iA, A,BKA,TTP)

– Bob erzeugt eine Zufallszahl rB , verschlüsselt sie zusammen
mit iA, A und B mit dem Schlüssel KB,TTP , den er mit
TTP teilt, und sendet die Nachricht an TTP: 2. B →
TTP : (iA, A,B, rA, iA, A,BKA,TTP , rB , iA, A,BKB,TTP)

– TTP erzeugt einen neuen Sitzungsschlüssel KA,B und
erstellt zwei verschlüsselte Nachrichten, eine für Alice und
eine für Bob, und sendet sie an Bob: 3.
TTP → B : (iA, rA, KA,BKA,TTP , rB , KA,BKB,TTP)

– Bob entschlüsselt seinen Teil der Nachricht, verifiziert rB
und sendet Alices Teil der Nachricht an sie: 4.
B → A : (iA, rA, KA,BKA,TTP)

– Alice entschlüsselt die Nachricht und überprüft, ob sich iA
und rA während des Austauschs nicht geändert haben.
Wenn nicht, kann sie sicher sein, dass TTP ihr einen neuen
Sitzungsschlüssel KA,B für die Kommunikation mit Bob
geschickt hat. Wenn sie nun diesen Schlüssel in einer
verschlüsselten Kommunikation mit Bob verwendet, kann
sie sich seiner Authentizität sicher sein.

• Diskussion:

– Die Indexzahl iA schützt vor Replay-Attacken. Dies
erfordert jedoch, dass TTP überprüft, ob iA größer ist als
das letzte iA, das er von Alice erhalten hat.

– Da TTP nur dann zwei Nachrichten generiert, wenn beide
Teile der Nachricht, die er erhält, die gleiche Indexnummer
iA und die Namen A,B, enthalten, können Alice und Bob
sicher sein, dass sie sich beide während des Protokolllaufs
gegenüber TTP authentifiziert haben.

Kerberos
• Kerberos ist ein Authentifizierungs- und Zugangskontrolldienst

für Workstation-Cluster, der in den späten 1980er Jahren am
MIT entwickelt wurde.

• Entwurfsziele:

– Sicherheit: Abhörer oder aktive Angreifer sollten nicht in
der Lage sein, die notwendigen Informationen zu erhalten,
um sich beim Zugriff auf einen Dienst als ein Benutzer
auszugeben

– Zuverlässigkeit: Da jede Nutzung eines Dienstes eine
vorherige Authentifizierung erfordert, sollte Kerberos
höchst zuverlässig und verfügbar sein.

– Transparenz: Der Authentifizierungsprozess sollte für den
Benutzer transparent sein und nicht nur die Eingabe eines
Passworts erfordern.

– Skalierbarkeit: Das System sollte in der Lage sein, eine
große Anzahl von Clients und Servern zu unterstützen.

• Das Kerberos zugrunde liegende kryptografische Verfahren ist die
symmetrische Verschlüsselung (Kerberos V. 4 verwendet DES, V.
5 erlaubt andere Algorithmen)

• Eine gute Anleitung zu den Überlegungen hinter dem
Kerberos-Design findet sich in ,,Bry88a”, wo das Protokoll in
einer Reihe von fiktiven Dialogen entwickelt wird

• Das grundlegende Anwendungsszenario von Kerberos ist ein
Benutzer, Alice, der auf einen oder mehrere verschiedene Dienste
zugreifen möchte, die von verschiedenen Servern S1, S2, ...
bereitgestellt werden, die über ein unsicheres Netzwerk verbunden
sind

• Kerberos befasst sich mit den folgenden Sicherheitsaspekten in
diesem Szenario

– Authentifizierung: Alice authentifiziert sich bei einem
Authentifizierungsserver (AS), der eine zeitlich begrenzte
Genehmigung für den Zugang zu Diensten erteilt. Diese
Erlaubnis wird Ticket-granting ticket (TicketTGS) genannt
und ist vergleichbar mit einem zeitlich begrenzten
Reisepass.

– Zugangskontrolle: Durch Vorlage ihres TicketTGS kann
Alice einen Ticket-gewährenden Server (TGS) anfordern,
um Zugang zu einem Dienst zu erhalten, der von einem
bestimmten Server S1 bereitgestellt wird. Der TGS
entscheidet, ob der Zugang erlaubt wird und antwortet mit
einem TicketS1 für den Server S.

– Schlüsselaustausch: Der Authentifizierungsserver stellt
einen Sitzungsschlüssel für die Kommunikation zwischen
Alice und TGS bereit, und der TGS stellt einen
Sitzungsschlüssel für die Kommunikation zwischen Alice

und S1 bereit. Die Verwendung dieser Sitzungsschlüssel
dient auch der Authentifizierung.

Zugriff auf einen Dienst mit Kerberos - Protokollübersicht

• Der Benutzer meldet sich an seiner Arbeitsstation an und fordert
den Zugriff auf einen Dienst an:

– Die Workstation repräsentiert ihn im Kerberos-Protokoll
und sendet die erste Nachricht an den
Authentifizierungsserver AS, die seinen Namen, den Namen
eines geeigneten Ticket-Granting-Servers TGS und einen
Zeitstempel tA enthält:

1. A→ AS : (A, TGS, tA)

• Der AS prüft, ob A sich für den Zugang zu den Diensten
authentifizieren darf, generiert aus A’s Passwort (das ihm
bekannt ist) den Schlüssel KA, extrahiert die Arbeitsplatzadresse
AddrA der Anfrage, erstellt ein Ticket TicketTGS und einen
Sitzungsschlüssel KA,TGS und sendet die folgende Nachricht an
A: 2. AS → A :
KA,TGS , TGS, tAS , LifetimeTicketTGS , T icketTGSKA

mit

TicketTGS =
KA,TGS , A,AddrA, TGS, tAS , LifetimeTicketTGSKAS,TGS

• Nach Erhalt dieser Nachricht fordert die Workstation Alice auf,
ihr Passwort einzugeben, berechnet daraus den Schlüssel KA und
entschlüsselt die Nachricht mit diesem Schlüssel. Wenn Alice
nicht ihr ,,authentisches” Passwort angibt, sind die extrahierten
Werte ,,Müll” und der Rest des Protokolls schlägt fehl.

• Alice erstellt einen sogenannten Authenticator und sendet ihn
zusammen mit dem Ticket und dem Namen des Servers S1 an
TGS: 3. A→ TGS : (S1, T icketTGS , AuthenticatorA,TGS) mit

Authenticator A, TGS = A,AddrA, t
′
AKA,TGS

• Nach Erhalt entschlüsselt TGS TicketTGS , extrahiert daraus den
Schlüssel KA,TGS und verwendet diesen Schlüssel zur
Entschlüsselung von AuthenticatorA,TGS . Wenn Name und
Adresse des Authentifikators und des Tickets übereinstimmen und
der Zeitstempel t′A noch frisch ist, wird geprüft, ob A auf den
Dienst S1 zugreifen darf, und die folgende Nachricht erstellt: 4.
TGS → A : KA,S1, S1, tTGS , T icketS1KA,TGS mit TicketS1 =
KA,S1, A,AddrA, S1, tTGS , LifetimeTicketS1KTGS,S

• Alice entschlüsselt die Nachricht und verfügt nun über einen
Sitzungsschlüssel für die sichere Kommunikation mit S1. Sie
sendet nun eine Nachricht an S1, um ihm ihr Ticket und einen
neuen Authentifikator zu zeigen: 5.
A→ S1 : (TicketS1, AuthenticatorA,S1) mit

AuthenticatorA,S1 = A,AddrA, t
′′
AKA,S1

• Nach Erhalt entschlüsselt S1 das Ticket mit dem Schlüssel
KTGS,S1, den er mit TGS teilt, und erhält den Sitzungsschlüssel
KA,S1 für die sichere Kommunikation mit A. Mit diesem
Schlüssel überprüft er den Authentifikator und antwortet A: 6.
S1→ A : t′ ′A+1KA,S

• Durch Entschlüsselung dieser Nachricht und Überprüfung des
enthaltenen Wertes kann Alice nachweisen, dass sie wirklich mit
S1 kommuniziert, da nur er (neben TGS) den Schlüssel KTGS,S1

zur Entschlüsselung von TicketS1 kennt, der den
Sitzungsschlüssel KA,S1 enthält, und somit nur er in der Lage ist,

AuthenticatorA,S1 zu entschlüsseln und mit t′′A+1 verschlüsselt
mit KA,S zu antworten

• Das oben beschriebene Protokoll ist der Kerberos-Dialog der
Version 4.

– In diesem Protokoll wurden eine Reihe von Mängeln
festgestellt, so dass eine neue Version 5 des Protokolls
definiert wurde, auf die wir später eingehen werden...

– Wo liegt eigentlich das Problem?

Kerberos für mehrere Domänen
• Stellen Sie sich eine Organisation mit Workstation-Clustern an

zwei verschiedenen Standorten vor, und stellen Sie sich vor, dass
Benutzer A von Standort 1 einen Server von Standort 2 benutzen
möchte:

15/41

Network Security

– Wenn beide Standorte ihre eigenen Kerberos-Server und
Benutzerdatenbanken (mit Passwörtern) verwenden, gibt es
in der Tat zwei verschiedene Domänen, in der
Kerberos-Terminologie auch Realms genannt.

– Um zu vermeiden, dass der Benutzer A in beiden Realms
registriert sein muss, ermöglicht Kerberos eine
Inter-Realm-Authentifizierung.

• Die Inter-Realm-Authentifizierung erfordert, dass die
Ticket-erteilenden Server beider Domänen einen geheimen
Schlüssel KTGS1,TGS2 teilen.

– Die Grundidee ist, dass der TGS eines anderen Realms als
normaler Server angesehen wird, für den der TGS des
lokalen Realms ein Ticket ausstellen kann.

– Nachdem Alice das Ticket für den entfernten Realm
erhalten hat, fordert sie ein Ticket für den Dienst beim
entfernten TGS an.

– Dies bedeutet jedoch, dass der entfernte Realm dem
Kerberos-Authentifizierungsdienst der Heimatdomäne eines
,,besuchenden” Benutzers vertrauen muss!

– Skalierbarkeitsproblem: n Realms benötigen n× (n− 1)/2
geheime Schlüssel!

• Nachrichten, die während eines Protokolllaufs mit mehreren
Domänen ausgetauscht werden

1. A→ AS1 : (A, TGS1, tA)
2. AS1→ A :

KA,TGS1, TGS1, tAS , LifetimeTicketTGS1, T icketTGS1KA
mit TicketTGS1 =
KA,TGS1, A,AddrA, TGS1, tAS , LifetimeTicketTGS1KAS,TGS1

3. A→ TGS1 : (TGS2, T icketTGS1, AuthenticatorA,TGS1)

mit AuthenticatorA,TGS1 = A,AddrA, t
′
AKA,TGS1

4. TGS1 : KA,TGS2, TGS2, tTGS1, T icketTGS2KA,TGS1 mit

TicketTGS2 =
KA,TGS2, A,AddrA, TGS2, tTGS1, LifetimeTicketTGS2KTGS1,TGS2

5. A→ TGS2 : (S2, T icketTGS2, AuthenticatorA,TGS2) mit

AuthenticatorA,TGS2 = A,AddrA, t
′′
AKA,TGS2

6. TGS2→ A : KA,S2, S2, tTGS2, T icketS2KA,TGS2 with

TicketS2 =
KA,S2, A,AddrA, S2, tTGS2, LifetimeTicketS2KTGS2,S2

7. S2 : (TicketS2, AuthentifikatorA,S2) mit

AuthentifikatorA,S2 = A,AddrA, t
′′′
AKA,S2

8. S2→ A : t′ ′ ′A+1KA,S2

Kerberos Version 5
• Letzter Standard von 2005 (RFC 4120)
• Entwickelt als Reaktion auf Schwachstellen, die bei Kerberos v4

bekannt wurden

– Enthält explizite Prüfsummen, um zu verifizieren, dass die
Nachrichten nicht verändert wurden

– Unterstützt mehrere Chiffren (andere als das unsichere
DES)

• Einheitliches Nachrichtenformat - Nachrichten an den
Authentifizierungsserver und den Ticketvergabeserver sind sehr
ähnlich

• Flexible ASN.1-Kodierung der Nachrichten, ermöglicht spätere
Erweiterungen

• Im Folgenden wird nur eine vereinfachte Version gezeigt, weit
mehr Funktionen sind standardisiert, z.B:

– Client-zu-Client gegenseitige Authentifizierung
– Vorauthentifizierte Tickets
– Erneuerung von Tickets
– Multidomain Kerberos

• Der Authentifizierungsdialog in Kerberos Version 5 ist ähnlich wie
in Version 4

• Der Austausch des Authentifizierungsdienstes: Bei der ersten
Kontaktaufnahme sendet der Client A nicht nur Namen und
Zeitstempel, sondern auch eine Nonce n , die hilft,

Wiederholungen zu vermeiden, wenn sich die Zeit geändert hat; es
ist auch möglich, mehrere Adressen anzugeben

1. A→ AS : (A, TGS, tstart, tend, n, AddrA, ...)

• Die Antwort enthält ein Klartext-Ticket und verschlüsselte
Informationen: 2. AS → A :
(A, TicketTGS , KA,TGS , LastRequest, n, texpire, tAS , tstart, tend, trenew, TGS,AddrAKA

)

mit TicketTGS =
(TGS,KA,TGS , A, transited, tAS , tstart, tend, trenew, AddrA, restrictionsKAS,TGS)

– LastRequest gibt den letzten Login des Benutzers an
transited enthält die Vertrauenskette Multidomain
Kerberos Restriktionen für den Benutzer können dem TGS
und den Servern übergeben werden texpire und tend
enthalten verschiedene Zeiten, um die Erneuerung von
Tickets zu ermöglichen (wobei die Start- und Endzeit
einfach aktualisiert werden können)

• Der Dialog zum TGS ist mit dem Ausgangsdialog harmonisiert:
Er enthält zusätzlich Tickets und einen Authentifikator, der
beweist, dass A KA,TGS kennt 3. AufrechtesTGS :

(A,S1, tstart, tend, n
′, AddrA, AuthenticatorA,TGS , T ickets, ...)

mit AuthenticatorA,TGS =
A,CheckSum, tA′ , KA,TGS′ , Seq#, ...KA,TGS Hinweis: Der

Authentifikator enthält jetzt eine kryptographische Prüfsumme!
• Die Antwort an A ist völlig analog zu Nachricht 2: 4. TGS → A :

(A, TicketS1, KA,S1, LastRequest, n
′, texpire, tTGS , tstart, tend, trenew, S1, AddrAKA,TGS)

• Der Austausch mit dem Server ist ebenfalls ähnlich wie bei
Version 4, aber mit dem Authentifikator ist eine explizite
Prüfsumme möglich: 5. A→ S1 : (TicketS1, AuthenticatorA,S1)
mit
AuthenticatorA,S1 = A,CheckSum, tA′′ , K

′
A,S1, Seq#, ...KA,S1

• Nach Erhalt entschlüsselt S1 das Ticket mit dem Schlüssel
KTGS,S1, den er mit TGS teilt, und erhält den Sitzungsschlüssel
KA,S1 für die sichere Kommunikation mit A. Mit diesem
Schlüssel überprüft er den Authentifikator und antwortet A: 6.
S1→ A : tS1, K

′
A,S1, Seq#, ...KA,S1

• Alles in allem behebt der Dialog mehrere potenzielle
Schwachstellen, während andere bestehen bleiben:

– Sequenznummern und Nonces ermöglichen eine zusätzliche
Replay-Prüfung, wenn sich die Zeitbasis ändert

– Explizite Prüfsummen verhindern die Änderung von Daten
innerhalb von Tickets

– Zentrale Server sind immer noch potentielle
Single-Points-of-Failure

– Für den ersten Austausch ist immer noch eine gewisse
Zeitsynchronisierung erforderlich.

Fortgeschrittene Methoden zur
Passwortauthentifizierung

• Alle gezeigten Protokolle haben eine gemeinsame Schwäche:

– Passwörter müssen leicht zu merken und leicht einzugeben
sein → Geringe Entropie

– Angreifer können schnell alle möglichen Kombinationen
ausprobieren

– Offline, über Grafikkarten, Cloud-Computer, spezielle
Hardware...

– Asymmetrische Situation

• Mögliche Lösungen:

– Schlüsselableitungsfunktionen

∗ Erschweren Brute-Force-Angriffe durch extrem
häufiges Hashing

∗ Erfordert auch Aufwand durch legitime Geräte
∗ Nur linearer Sicherheitsgewinn
∗ Bessere Funktionen verbrauchen viel Speicher, um

Angriffe mit Grafikkarten und spezieller Hardware
undurchführbar zu machen

– Passwort-authentifizierter Schlüsselaustausch (PAKE)

• Passwortauthentifizierter Schlüsselaustausch (PAKE) -
Grundlegende Idee

– Durchführen eines Schlüsselaustauschs mit asymmetrischer
Kryptographie

– Authentifizierung von Peers mit einem Passwort unter
Verwendung eines Zero Knowledge Proofs

– Die Peers können nur feststellen, ob die Passwörter
übereinstimmen oder nicht

– Keine weiteren Informationen, um effiziente
Bruteforce-Suchen durchzuführen

∗ Würde das Lösen schwieriger Probleme erfordern, z.
B. eine Art DH-Problem

∗ Macht Offline-Angriffe undurchführbar

– Online-Angriffe möglich, können aber entdeckt werden

PAKE-Schemata: EKE
• Ein einfaches erstes Protokoll ist Encrypted Key Exchange (EKE)

,,BM92”
• Der Dialog beginnt damit, dass A ein privates/öffentliches

Schlüsselpaar zur einmaligen Verwendung erzeugt und den
öffentlichen Schlüssel +Kar verschlüsselt mit dem Passwort KA,B
an B sendet

1. A→ B : A,+KarKA,B

• B wählt einen symmetrischen Sitzungsschlüssel Kr und sendet
ihn verschlüsselt mit dem öffentlichen Schlüssel und dem
Passwort zurück an A

1. B → A : Kr+KarKA,B

• A und B teilen sich nun einen gemeinsamen Sitzungsschlüssel und
beweisen ihr Wissen darüber durch den Austausch von Nonces

1. A→ B : rAKr
2. B → A : rA, rBKr
3. A→ B : rBKr

• Nach diesem Schritt ist sichergestellt, dass beide KA,B gekannt
haben müssen und es keinen Man-in-the-Middle-Angriff gegeben
hat

Sicherheitsdiskussion
• Resistenz gegen Offline-Angriffe hängt davon ab, dass +Kar nicht

von Zufallszahlen zu unterscheiden ist

– Was bedeutet das für ECC?
– Für RSA schlagen die Autoren vor, e zu verschlüsseln und

n im Klartext zu senden
∗ n hat keine kleinen Primfaktoren und ist daher von

Zufallszahlen unterscheidbar
∗ Immer noch unsicher gegen

Man-in-the-Middle-Angriffe, da Angreifer n mit
besonderen Eigenschaften wählen können (z.B. p− 1
und q − 1 teilbar durch 3)

∗ Antwort von B ist von Zufallszahlen unterscheidbar
∗ Details sind in ,,Par97” oder ,,SR14” zu finden.

• Bietet keine perfekte Vorwärtsverschwiegenheit...
• Aber es gibt ein anderes Protokoll von den Autoren namens

DH-EKE

DH-EKE
• DH-EKE ist im Grunde ein DH-Austausch mit cleverer

Authentifizierung
• A sendet DH-Austausch verschlüsselt mit dem Passwort KA,B

1. A→ B : gra mod pKA,B

• B antwortet mit seinem Teil des DH-Austauschs (verschlüsselt
mit dem Passwort KA,B) und verwendet den Sitzungsschlüssel

KS = gra∗rb mod p, um eine verschlüsselte Nonce cb zu senden 2.

B → A : grb mod pKA,BcbKs
• Beide Parteien beweisen ihre Kenntnis von KS 3.
A→ B : ca||cbKs 4. B → A : caKs

16/41

Network Security

Sicherheitsdiskussion 2
• Wiederum müssen verschlüsselte Daten von Zufallsdaten

ununterscheidbar sein

– Der Wert p muss klug gewählt werden, d.h. p− 1 muss nahe
bei 28∗n für ausreichend große natürliche Zahlen n liegen

– Um Angriffe auf kleine Gruppen leicht zu verhindern, sollte
(p− 1)/2 ebenfalls eine Primzahl sein.

– ECC ist immer noch schwierig zu realisieren

• Bietet perfektes Vorwärtsgeheimnis
• Alles in allem ein nettes Verfahren, das jedoch patentiert werden

musste

– Keine breite Anpassung
– Führte zur Entwicklung zahlreicher anderer Verfahren

SRP
• Das heute am weitesten verbreitete Protokoll: Sicheres

Fernkennwort (SRP)
• Mehrere Versionen: Hier SRP-6a ,,Wu02”
• Initialisierung:

– Server B wählt eine Zufallszahl sA,B
– berechnet x = H(sA,B ||Benutzername||Passwort) und
v = gx mod p

– Benutzer werden durch (Benutzername, sA,B , v)
authentifiziert

– Der Server braucht das Passwort nicht zu speichern →
kann nicht leicht erlangt werden, wenn der Server
kompromittiert wird!

– Server kann diese Werte auch nicht verwenden, um sich als
Benutzer auf anderen Servern auszugeben

– Die Eigenschaft wird als erweitertes PAKE-Schema
bezeichnet

SRP - Dialog
• A initiiert die Verbindung durch Senden seines Benutzernamens

1. A→ B : A

• B antwortet mit ausgewählten kryptographischen Parametern und
einem Verifizierer v, der durch einen DH-Austausch ,,geblendet”

ist 2. B → A : p, g, sA,B , (H(g||p) ∗ v + grb) mod p
• A berechnet den gemeinsamen Sitzungsschlüssel durch
KS = (YB −H(g||p)gx)ra+ux mod p, mit u = H(YA||YB), und

sendet seinen Teil des DH-Austauschs und eine Bestätigung
zurück, dass er KS kennt 3. A→ B : gra mod p,H(YA, YB , KS)

• B berechnet K′S = (YAv
u)rb mod p und beweist seine Kenntnis 4.

B → A : H(YA, H(YA, YB , KS), K′S)

• K′S und KS stimmen überein, wenn es keinen
Man-in-the-Middle-Angriff gegeben hat

SRP - Diskussion
• Sicheres Schema

– Gegenseitige Authentifizierung zwischen Server und Client
– Erweiterung erhöht die Sicherheit in

Client/Server-Szenarien
– Keine Unterstützung für ECC, da es Feldarithmetik

erfordert

• Patentiert, aber frei zu verwenden
• Unterstützung für TLS, IPsec, ...

X.509 - Einführung
• X.509 ist eine internationale Empfehlung der ITU-T und gehört

zur X.500-Reihe, die Verzeichnisdienste definiert:

– Die erste Version von X.509 wurde 1988 standardisiert.
– Eine zweite Version, die 1993 standardisiert wurde, löste

einige Sicherheitsbedenken
– Eine dritte Version von X.509 wird derzeit von der IETF in

RFC 4211 gepflegt.

• X.509 definiert einen Rahmen für die Bereitstellung von
Authentifizierungsdiensten, der Folgendes umfasst:

– Zertifizierung von öffentlichen Schlüsseln und Handhabung
von Zertifikaten:

∗ Zertifikatsformat
∗ Zertifikats-Hierarchie
∗ Zertifikatswiderrufslisten

– Drei verschiedene Dialoge für die direkte Authentifizierung:

∗ Einseitige Authentifizierung, erfordert synchronisierte
Uhren

∗ Gegenseitige Zwei-Wege-Authentifizierung, erfordert
immer noch synchronisierte Uhren

∗ Gegenseitige Drei-Wege-Authentifizierung, die
vollständig auf Zufallszahlen basiert

X.509 - Zertifikate mit öffentlichem Schlüssel
• Ein Public-Key-Zertifikat ist eine Art Reisepass, der bescheinigt,

dass ein öffentlicher Schlüssel zu einem bestimmten Namen gehört
• Zertifikate werden von Zertifizierungsstellen (CA) ausgestellt.
• Wenn alle Nutzer den öffentlichen Schlüssel der CA kennen, kann

jeder Nutzer jedes von dieser CA ausgestellte Zertifikat
überprüfen.

• Zertifikate können die Online-Teilnahme eines TTP verhindern
• Die Sicherheit des privaten Schlüssels der CA ist entscheidend für

die Sicherheit aller Nutzer!
• Notation eines Zertifikats, das einen öffentlichen Schlüssel +KA

an Benutzer A bindet, ausgestellt von der Zertifizierungsstelle CA
unter Verwendung ihres privaten Schlüssels −CKCA:

– Cert−CKCA (+KA) = CA, , V, SN,AI, CA, TCA, A,+K
′′
A

mit:
∗ V = Versionsnummer
∗ SN = Seriennummer
∗ AI = Algorithmus-Bezeichner des verwendeten

Signatur-Algorithmus
∗ CA = Name der Zertifizierungsstelle
∗ TCA = Gültigkeitsdauer dieses Zertifikats
∗ A = Name, an den der öffentliche Schlüssel in diesem

Zertifikat gebunden ist
∗ +KA = öffentlicher Schlüssel, der an einen Namen

gebunden wird

– Die Kurzschreibweise CA, ,m′′ steht für (m,H(m)−CKCA)

– Eine andere Kurzschreibweise für Cert−CKCA (+KA) ist
CA <>

X.509 - Zertifikatsketten & Zertifikatshierarchie
• Betrachten wir nun zwei Benutzer Alice und Bob, die in

verschiedenen Ländern leben und sicher kommunizieren wollen:

– Die Wahrscheinlichkeit ist recht hoch, dass ihre öffentlichen
Schlüssel von verschiedenen CAs zertifiziert sind

– Nennen wir die Zertifizierungsstelle von Alice CA und die
von Bob CB

– Wenn Alice CB nicht vertraut oder gar kennt, dann ist
Bobs Zertifikat CB <> für sie nutzlos, dasselbe gilt in der
anderen Richtung

• Eine Lösung für dieses Problem ist die Konstruktion von
Zertifikatsketten

– Stellen Sie sich einmal vor, dass CA und CB einander
kennen und einander vertrauen.

∗ Ein Beispiel aus der realen Welt für dieses Konzept ist
das gegenseitige Vertrauen zwischen Ländern
hinsichtlich ihrer Passausgabestellen

– Wenn CA den öffentlichen Schlüssel von CB mit einem
Zertifikat CA <> und CB den öffentlichen Schlüssel von
CA mit einem Zertifikat CB <> beglaubigt, können A und
B ihre Zertifikate anhand einer Zertifikatskette überprüfen:

∗ Nachdem ihr CB <> vorgelegt wurde, versucht Alice
herauszufinden, ob es ein Zertifikat CA <> gibt.

∗ Sie überprüft dann die Kette: CA <>,CB <>

• Zertifikatsketten müssen nicht auf eine Länge von zwei
Zertifikaten beschränkt sein

– CA <>,CC <>,CD <>,CE <>,CG < würde es Alice
erlauben, das von CG ausgestellte Zertifikat des Benutzers
G zu überprüfen, auch wenn sie nur ihre eigene
Zertifizierungsstelle CA kennt und ihr vertraut.

– Tatsächlich wird das Vertrauen von A in den Schlüssel
+KG durch eine Vertrauenskette zwischen
Zertifizierungsstellen hergestellt.

– Wenn Alice jedoch CG <> vorgelegt wird, ist es nicht
offensichtlich, welche Zertifikate sie zur Überprüfung
benötigt

• X.509 schlägt daher vor, dass die Zertifizierungsstellen in einer
Zertifizierungshierarchie angeordnet werden, so dass die
Navigation einfach ist:

• Verbleibendes Problem:

– Zertifizierungspfade können ziemlich lang werden
– Die Kompromittierung eines einzigen Zwischenzertifikats

reicht aus, um die Sicherheit zu brechen

• Führt zu zwei Entwicklungen

– Kreuzzertifizierung:

∗ Ermöglicht das Signieren von Stammzertifikaten
untereinander

∗ Erlaubt aber auch ,,Abkürzungen” im Zertifikatswald
∗ Macht die Navigation komplexer, aber potenziell

mehrwegfähig

– Anheften von Zertifikaten:

∗ Ermöglicht Anwendungen, z. B. Webbrowsern, zu
lernen, dass Peers nur Zertifikate von einer
bestimmten CA verwenden

∗ Wird z. B. von Google Chrome verwendet, nachdem
Man-in-the-Middle-Angriffe auf google.com bekannt
wurden

X.509 - Zertifikatssperrung

• Nehmen wir nun an, dass der private Schlüssel von Alice
kompromittiert wurde, z.B. weil Eve in ihren Computer
eingebrochen ist, ihren privaten Schlüssel aus einer Datei gelesen
und das Passwort geknackt hat, das sie zum Schutz des privaten
Schlüssels verwendet hat:

– Wenn Alice feststellt, dass ihr privater Schlüssel
kompromittiert wurde, möchte sie unbedingt den Widerruf
des entsprechenden Zertifikats für den öffentlichen Schlüssel
beantragen.

– Wenn das Zertifikat nicht widerrufen wird, könnte sich Eve
bis zum Ende der Gültigkeitsdauer des Zertifikats weiterhin
als Alice ausgeben.

• Eine noch schlimmere Situation tritt ein, wenn der private
Schlüssel einer Zertifizierungsstelle kompromittiert wird:

– Dies bedeutet, dass alle mit diesem Schlüssel signierten
Zertifikate widerrufen werden müssen!

• Der Widerruf von Zertifikaten wird durch das Führen von
Zertifikatswiderrufslisten (CRL) realisiert:

– CRLs werden im X.500-Verzeichnis gespeichert, oder
Erweiterungen können auf eine URL verweisen

– Bei der Überprüfung eines Zertifikats muss auch geprüft
werden, ob das Zertifikat noch nicht widerrufen wurde
(Suche nach dem Zertifikat in der CRL)

– Der Widerruf von Zertifikaten ist ein relativ langsamer und
teurer Vorgang

17/41

Network Security

X.509 - Authentifizierungsprotokolle
• Einweg-Authentifizierung

– Wenn nur Alice sich gegenüber Bob authentifizieren will,
sendet sie folgende Nachricht an Bob:

1. (A, , tA, rA, B, sgnDataA, KA,B
′′
+KB , CA <>), wobei

sgnDataA optionale Daten darstellt, die von A signiert
werden sollen, K{A,B}+KB ein optionaler
Sitzungsschlüssel ist, der mit Bobs öffentlichem Schlüssel
verschlüsselt wird, und CA <> ebenfalls optional ist

– Beim Empfang dieser Nachricht verifiziert Bob mit +KCA
das enthaltene Zertifikat, extrahiert Alices öffentlichen
Schlüssel, überprüft Alices Signatur der Nachricht und die
Aktualität der Nachricht (tA) und entschlüsselt optional
den enthaltenen Sitzungsschlüssel KA,B , den Alice
vorgeschlagen hat

• Zwei-Wege-Authentifizierung:

– Wenn eine gegenseitige Authentifizierung erwünscht ist,
dann erstellt Bob eine ähnliche Nachricht:

2. (B, , tB , rB , A, rA, sgnDataB , KB,A
′′
+KA

, CA <>) der

enthaltene Zeitstempel tB ist nicht wirklich erforderlich, da
Alice überprüfen kann, ob die signierte Nachricht die
Zufallszahl rA enthält

• Drei-Wege-Authentifizierung:

– Wenn Alice und Bob nicht sicher sind, ob sie synchrone
Uhren haben, sendet Alice die folgende Nachricht an Bob:

3. A, , r′′B

– Die Rechtzeitigkeit der Teilnahme von Alice am
Authentifizierungsdialog wird also durch die
Unterzeichnung der ,,frischen” Zufallszahl rB nachgewiesen.

• Anmerkung zum Signaturalgorithmus:

– Wie aus der Verwendung von Zertifikaten ersichtlich,
schlägt X.509 vor, die Authentifizierungsnachrichten mit
asymmetrischer Kryptographie zu signieren.

– Das Authentifizierungsprotokoll selbst kann jedoch auch
mit symmetrischer Kryptographie eingesetzt werden:

∗ In diesem Fall müssen sich A und B vor jedem
Protokolldurchlauf auf einen geheimen
Authentifizierungsschlüssel AKA,B geeinigt haben,
und

∗ die Nachrichten werden durch Anhängen eines mit
diesem Schlüssel berechneten MAC signiert.

Formale Validierung von kryptographischen
Protokollen

• Wie wir am Beispiel des Needham-Schroeder-Protokolls gesehen
haben, ist die Sicherheit eines kryptografischen Protokolls nicht
einfach zu beurteilen:

– Es gibt viele weitere Beispiele für Protokollfehler in
kryptografischen Protokollen, die manchmal erst Jahre
nach der Veröffentlichung des Protokolls entdeckt wurden

∗ Eine frühe Version des X.509-Standards enthielt einen
Fehler, der dem Fehler im
Needham-Schroeder-Protokoll ähnlich war.

– Daraus ergibt sich der Bedarf an formalen Methoden zur
Analyse der Eigenschaften von kryptographischen
Protokollen

• Kategorien von formalen Validierungsmethoden für
kryptografische Protokolle:

– Allgemeine Ansätze zur Analyse spezifischer
Protokolleigenschaften:

∗ Beispiele: Finite-State-Machine-basierte Ansätze,
Prädikatenkalkül erster Ordnung,
Allzweck-Spezifikationssprachen

∗ Hauptnachteil: Sicherheit unterscheidet sich
wesentlich von Korrektheit, da für letztere keine
böswillige Manipulation angenommen werden muss

• Kategorien von formalen Validierungsmethoden für
kryptographische Protokolle:

– Expertensystembasierte Ansätze:

∗ Das Wissen menschlicher Experten wird in deduktive
Regeln formalisiert, die von einem Protokolldesigner
zur Untersuchung verschiedener Szenarien verwendet
werden können.

∗ Hauptnachteil: nicht gut geeignet, um Schwachstellen
in kryptografischen Protokollen zu finden, die auf
unbekannten Angriffstechniken beruhen

– Algebraische Ansätze:

∗ Kryptografische Protokolle werden als algebraische
Systeme spezifiziert

∗ Die Analyse wird durchgeführt, indem algebraische
Termumschreibungseigenschaften des Modells
untersucht werden und geprüft wird, ob das Modell
bestimmte erwünschte oder unerwünschte Zustände
erreichen kann

– Spezifische logikbasierte Ansätze:

∗ Ansätze dieser Klasse definieren einen Satz von
Prädikaten und eine Abbildung der während eines
Protokolllaufs ausgetauschten Nachrichten auf einen
Satz von Formeln

∗ Ein generischer Satz von Regeln erlaubt es dann, das
Wissen und den Glauben zu analysieren, der von den
Peer-Entitäten eines kryptographischen Protokolls
während eines Protokolllaufs erlangt wird (recht
erfolgreicher Ansatz: GNY-Logik ,,GNY90a”)

Sichere Gruppenkommunikation
Zugriffskontrolle
Was ist Zugangskontrolle?

• Definition: Die Zugriffskontrolle umfasst die Mechanismen, die die
Vermittlung von Subjektanfragen für den Zugriff auf Objekte, wie
sie in einer bestimmten Sicherheitspolitik definiert sind,
erzwingen.

• Ein wichtiges konzeptuelles Modell in diesem Zusammenhang ist
der Referenzmonitor:

Sicherheitspolitik
• Um Entscheidungen über die Zugriffskontrolle treffen zu können,

muss der Referenzmonitor die Sicherheitspolitik des Systems
kennen

• Definition: Die Sicherheitspolitik eines Systems definiert die
Bedingungen, unter denen Subjektzugriffe auf Objekte durch die
Funktionalität des Systemreferenzmonitors vermittelt werden

• Bemerkungen

– Die obige Definition wird gewöhnlich im Zusammenhang
mit der Sicherheit von Computern und Betriebssystemen
gegeben.

– Der Referenzmonitor ist nur eine konzeptionelle Einheit, er
muss nicht unbedingt ein physisches oder logisches
Gegenstück in einem bestimmten System haben.

– Der Begriff Sicherheitspolitik wird oft auch in einem
weiteren Sinne verwendet, um eine Spezifikation aller
Sicherheitsaspekte eines Systems einschließlich
Bedrohungen, Risiken, Sicherheitsziele, Gegenmaßnahmen
usw. zu beschreiben.

Klassische Computersubjekte, Objekte und
Zugriffsarten

• Definition: Ein Subjekt ist eine aktive Entität, die eine Anfrage
nach Ressourcen initiieren und diese Ressourcen nutzen kann, um
eine Aufgabe zu erfüllen.

• Definition: Ein Objekt ist ein passives Repository, das zur
Speicherung von Informationen dient

• Die beiden obigen Definitionen stammen aus der klassischen
Computerwissenschaft:

– Subjekte sind Prozesse, und Dateien, Verzeichnisse usw.
sind Objekte.

• Es ist jedoch nicht immer offensichtlich, Subjekte und Objekte im
Zusammenhang mit der Kommunikation zu identifizieren:

– Stellen Sie sich vor, eine Einheit sendet eine Nachricht an
eine andere Einheit: Ist die empfangende Einheit als Objekt
zu betrachten?

• Außerdem müssen wir wissen, was ein Zugriff ist und welche
Arten von Zugriffen es gibt:

– Beispiele aus der klassischen Informatik für Zugriffsarten:
Lesen, Schreiben, Ausführen

– Objektorientierte Sichtweise: Jede Methode eines Objekts
definiert eine Art des Zugriffs

Sicherheitskennzeichen
• Definition: Eine Sicherheitsstufe wird als hierarchisches Attribut

zu Entitäten eines Systems definiert, um deren Sensibilitätsgrad
zu kennzeichnen

– Beispiele:

∗ Militär: unklassifiziert ¡ vertraulich ¡ geheim ¡ streng
geheim

∗ Kommerziell: öffentlich ¡ sensibel ¡ proprietär ¡
eingeschränkt

• Definition: Eine Sicherheitskategorie ist definiert als eine
nicht-hierarchische Gruppierung von Entitäten, um den Grad
ihrer Sensibilität zu kennzeichnen.

– Beispiel (Wirtschaft): Abteilung A, Abteilung B,
Verwaltung usw.

• Definition: Eine Sicherheitskennzeichnung ist definiert als ein
Attribut, das mit Systemeinheiten verbunden ist, um deren
hierarchische Sensibilitätsstufe und Sicherheitskategorien zu
kennzeichnen.

– In Form von mathematischen Mengen:
Labels = Levels× Powerset(Categories)

• Sicherheitslabels, die die Sicherheitsempfindlichkeit von:

– Subjekte werden Freigaben genannt
– Objekte werden Klassifizierungen genannt

• Ein wichtiges Konzept für die Spezifikation von
Sicherheitspolitiken sind binäre Relationen auf der Menge der
Kennzeichnungen:

– Eine binäre Relation auf einer Menge S ist eine Teilmenge
des Kreuzprodukts S × S

– Beispiel:

∗ Dominiert: Labels× Labels
∗ Dominiert =

(b1, b2)|b1, b2 ∈ Labels ∧ level(b1) ≥ level(b2) ∧ categories(b2) ⊆ categories(b1)
∗ Wenn (b1, b2) ∈ Dominates, schreiben wir auch b1

dominates b

Spezifikation der Sicherheitspolitik
• Formale Ausdrücke für Regeln der Sicherheitspolitik:
• Betrachten Sie die folgenden Zuordnungen:

– allow : Subjects× Accesses×Objects→ boolean
– own : Subjects×Objects→ boolean
– admin : Subjects→ boolean
– dominates : Labels× Labels→ boolean

• Die oben genannten Zuordnungen können verwendet werden, um
bekannte Sicherheitsrichtlinien zu spezifizieren:

– ownership : ∀s ∈ Subjects, o ∈ Objects, a ∈ Accesses :
allow(s, o, a)⇔ own(s, o)

18/41

Network Security

– ownadmin : ∀s ∈ Subjects, o ∈ Objects, a ∈ Accesses :
allow(s, o, a)⇔ own(s, o) ∧ admin(s)

– dom : ∀s ∈ Subjects, o ∈ Objects, a ∈ Accesses :
allow(s, o, a)⇔ dominates(label(s), label(o))

• Die dom-Policy erfordert ein System zur Speicherung und
Verarbeitung von Sicherheitskennzeichnungen für jede Entität,
erlaubt aber komplexere Zugriffskontrollschemata als die
ownership- und own admin-Policy

Arten von Zugriffskontrollmechanismen
• Ein Zugriffskontrollmechanismus ist eine konkrete Umsetzung des

Referenzmonitor-Konzepts
• Es gibt zwei Haupttypen von Zugriffskontrollmechanismen:

– Diskretionäre Zugriffskontrolle umfasst diejenigen
Verfahren und Mechanismen, die die spezifizierte
Vermittlung nach dem Ermessen der einzelnen Benutzer
durchsetzen

∗ Beispiel: Das Unix-Betriebssystem ermöglicht es den
Benutzern, die Zugriffsrechte für Dateien, die ihnen
gehören, zu erteilen oder zu entziehen (Lesen,
Schreiben, Ausführen).

– Die obligatorische Zugriffskontrolle umfasst die Verfahren
und Mechanismen, die die angegebene Vermittlung nach
dem Ermessen einer zentralen Systemverwaltung
durchsetzen.

• Beide Arten können kombiniert werden, wobei die obligatorischen
Zugriffskontrollentscheidungen in den meisten Fällen Vorrang vor
den diskretionären Entscheidungen haben

– Beispiel:
– Verwendung einer diskretionären Zugangskontrolle auf

Personalcomputern kombiniert mit einer obligatorischen
Zugangskontrolle für die Kommunikation (→ Firewalls)

Zugriffsmatrizen
• Ein nützliches Konzept für die Beschreibung von

Zugangskontrollmechanismen ist die Zugangsmatrix:

– In einer Zugriffsmatrix für zwei Mengen von Subjekten und
Objekten entspricht jede Zeile einem Subjekt und jede
Spalte einem Objekt

– Jede Zelle der Matrix definiert die Zugriffsrechte des
entsprechenden Subjekts auf das entsprechende Objekt

Gemeinsame Zugriffskontrollschemata
• Zugriffskontroll-Listen (ACL)

– ACLs sind die Grundlage für ein Zugriffskontrollschema,
bei dem für jedes Objekt eine Liste gültiger Subjekte
gespeichert wird, die Zugriff auf dieses Objekt haben
könnten (möglicherweise zusammen mit der Art des
erlaubten Zugriffs).

– ACLs werden in der Regel bei der diskretionären
Zugriffskontrolle verwendet, da es zu viele ACLs gibt, als
dass sie von einer zentralen Verwaltungseinrichtung
verwaltet werden könnten.

• Fähigkeiten

– Capabilities sind gewissermaßen das Gegenkonzept zu
ACLs, da bei Capabilities jedes Subjekt eine Liste von
Zugriffsrechten auf Objekte besitzt

– Der Vorteil (und die Gefahr) von Capabilities ist, dass ein
Subjekt einige seiner Capabilities an andere Subjekte
weitergeben kann

• Label-basierte Zugriffskontrolle

– Wenn Sicherheitslabels mit den Entitäten eines Systems
gespeichert und verarbeitet werden, können sie zur
Durchführung einer label-basierten Zugriffskontrolle
verwendet werden

– Dieses Verfahren wird in der Regel als obligatorischer
Zugriffskontrollmechanismus verwendet.

• → Die Datenintegrität von Zugriffskontrolldatenstrukturen ist
entscheidend!

Integration von Sicherheitsdiensten in
Kommunikationsarchitekturen
Motivation: Was ist wo zu tun?

• Analog zur Methodik der Sicherheitsanalyse gibt es zwei
Dimensionen, die bei der Integration von Sicherheitsdiensten in
Kommunikationsarchitekturen zu beachten sind:

• Dimension 1: Welcher Sicherheitsdienst soll in welchem Knoten
realisiert werden?

• Dimension 2: Welcher Sicherheitsdienst sollte in welcher Schicht
realisiert werden?

Ein pragmatisches Modell für sicheres und
vernetztes Rechnen

• Anwendung: Ein Stück Software, das eine bestimmte Aufgabe
erfüllt, z. B. elektronische E-Mail, Webdienst, Textverarbeitung,
Datenspeicherung usw.

• Endsystem:

– Ein Gerät, das vom Personal Computer über den Server bis
zum Großrechner reicht.

– Für Sicherheitszwecke hat ein Endsystem in der Regel eine
einzige Richtlinienautorität.

• Teilnetz:

– Eine Sammlung von Kommunikationseinrichtungen, die
unter der Kontrolle einer Verwaltungsorganisation stehen,
z. B. ein LAN, ein Campusnetz, ein WAN usw.

– Für Sicherheitszwecke hat ein Teilnetz in der Regel eine
Richtlinienkompetenz.

• Internet:

– Eine Sammlung von miteinander verbundenen Teilnetzen
– Im Allgemeinen haben die Teilnetze, die in einem

Inter-Netzwerk verbunden sind, unterschiedliche
Richtlinienautoritäten

• Es gibt vier Ebenen, auf denen unterschiedliche Anforderungen an
Sicherheitsprotokollelemente gestellt werden:

– Anwendungsebene: Sicherheitsprotokollelemente, die
anwendungsabhängig sind

– Endsystem-Ebene: Bereitstellung von Schutz auf einer
Endsystem-zu-Endsystem-Basis

– Teilnetzebene: Bereitstellung von Schutz über ein Teilnetz
oder ein Zwischennetz, das als weniger sicher gilt als andere
Teile der Netzumgebung

– Verbindungsebene: Bereitstellung von Schutz innerhalb
eines Teilnetzes, z. B. über eine Verbindung, die als weniger
vertrauenswürdig gilt als andere Teile der
Teilnetzumgebung

Beziehungen zwischen Schichten und
Anforderungsniveaus

• Die Beziehungen zwischen den Protokollschichten und den Stufen
der Sicherheitsanforderungen für die Protokollelemente sind nicht
eins-zu-eins

– Sicherheitsmechanismen, die sowohl die Anforderungen der
Endsystem- als auch der Teilnetzebene erfüllen, können
entweder in der Transport- und/oder in der
Netzwerkschicht realisiert werden.

– Die Anforderungen der Verbindungsebene können durch die
Integration von Sicherheitsmechanismen oder durch die
Verwendung von ,,speziellen Funktionen” der
Verbindungsschicht und/oder der physikalischen Schicht
erfüllt werden.

Allgemeine Überlegungen zur architektonischen
Platzierung

• Verkehrsvermischung:

– Infolge des Multiplexing besteht auf niedrigeren Ebenen
eine größere Tendenz, Datenelemente von verschiedenen
Quell-/Ziel-Benutzern und/oder Anwendungen in einem
Datenstrom zu vermischen

– Ein Sicherheitsdienst, der auf einer Schicht/Ebene realisiert
wird, behandelt den Verkehr dieser Schicht/Ebene gleich,
was zu einer unzureichenden Kontrolle der
Sicherheitsmechanismen für Benutzer und Anwendungen
führt.

– Wenn eine Sicherheitspolitik eine differenziertere
Behandlung erfordert, sollte sie besser auf einer höheren
Ebene realisiert werden

• Wissen über die Route:

– Auf niedrigeren Ebenen ist in der Regel mehr Wissen über
die Sicherheitseigenschaften der verschiedenen Routen und
Verbindungen vorhanden.

– In Umgebungen, in denen diese Merkmale stark variieren,
kann die Platzierung von Sicherheit auf niedrigeren Ebenen
Vorteile in Bezug auf Effektivität und Effizienz haben

– Geeignete Sicherheitsdienste können auf der Basis von
Teilnetzen oder Verbindungen ausgewählt werden, so dass
keine Kosten für Sicherheit anfallen, wenn der Schutz
unnötig ist.

• Anzahl der Schutzpunkte:

– Wenn die Sicherheit auf der Anwendungsebene angesiedelt
wird, muss die Sicherheit in jeder sensiblen Anwendung
und jedem Endsystem implementiert werden.

– Sicherheit auf der Verbindungsebene bedeutet, dass am
Ende jeder Netzverbindung, die als weniger
vertrauenswürdig gilt, Sicherheit implementiert werden
muss.

– Wenn die Sicherheit in der Mitte der Architektur
angesiedelt wird, müssen die Sicherheitsmerkmale an
weniger Stellen installiert werden.

• Schutz der Protokoll-Header:

– Der Sicherheitsschutz auf höheren Ebenen kann die
Protokollköpfe der unteren Protokollschichten nicht
schützen.

– Die Netzwerkinfrastruktur muss möglicherweise ebenfalls
geschützt werden.

• Quelle/Senke-Bindung:

– Sicherheitsdienste wie die Authentifizierung der
Datenherkunft und die Unleugbarkeit hängen von der
Zuordnung der Daten zu ihrer Quelle oder Senke ab.

– Dies wird am effizientesten auf höheren Ebenen erreicht,
insbesondere auf der Anwendungsebene.

Überlegungen zu bestimmten Ebenen
• Anwendungsebene:

– Diese Stufe kann die einzige geeignete Stufe sein, zum
Beispiel weil:

∗ Ein Sicherheitsdienst ist anwendungsspezifisch, z.B.
die Zugriffskontrolle für einen vernetzten
Dateispeicher

∗ Ein Sicherheitsdienst muss Anwendungs-Gateways
durchqueren, z.B. Integrität und/oder Vertraulichkeit
von elektronischer Post

∗ Die Semantik der Daten ist wichtig, z.B. für
Nichtabstreitbarkeitsdienste - Es liegt außerhalb der
Reichweite eines
Benutzers/Anwendungsprogrammierers, Sicherheit auf
einer niedrigeren Ebene zu integrieren

• Endsystem-Ebene:

19/41

Network Security

– Diese Ebene ist geeignet, wenn davon ausgegangen wird,
dass die Endsysteme vertrauenswürdig sind und das
Kommunikationsnetz als nicht vertrauenswürdig angesehen
wird.

– Weitere Vorteile der Sicherheit auf Endsystemebene:

∗ Die Sicherheitsdienste sind für die Anwendungen
transparent.

∗ Die Verwaltung von Sicherheitsdiensten kann leichter
in die Hände eines Systemadministrators gelegt
werden.

• Teilnetzebene:

– Auch wenn die auf dieser Ebene implementierte Sicherheit
in der gleichen Protokollschicht wie auf der
Endsystemebene implementiert werden kann, sollten diese
nicht verwechselt werden:

∗ Mit der auf der Subnetzebene implementierten
Sicherheit wird in der Regel der gleiche Schutz für alle
Endsysteme dieses Subnetzes realisiert

– Es ist sehr üblich, dass ein Teilnetz in der Nähe eines
Endsystems als ebenso vertrauenswürdig angesehen wird,
da es sich in denselben Räumlichkeiten befindet und von
denselben Behörden verwaltet wird.

– In den meisten Fällen gibt es weit weniger zu sichernde
Teilnetz-Gateways als Endsysteme.

• Verbindungsebene:

– Wenn es relativ wenige nicht vertrauenswürdige
Verbindungen gibt, kann es ausreichend und zudem
einfacher und kostengünstiger sein, das Netz auf der
Verbindungsebene zu schützen.

– Darüber hinaus können auf der Verbindungsebene spezielle
Schutztechniken eingesetzt werden, z. B. Spreizspektrum
oder Frequenzsprungverfahren.

– Die Vertraulichkeit des Verkehrsflusses erfordert in der
Regel einen Schutz auf Verbindungsebene.

Interaktionen zwischen menschlichen Nutzern
• Einige Netzsicherheitsdienste beinhalten eine direkte Interaktion

mit einem menschlichen Benutzer, der wichtigste davon ist die
Authentifizierung.

• Solche Interaktionen passen in keine der bisher vorgestellten
Architekturoptionen, da der Benutzer außerhalb der
Kommunikationseinrichtungen steht.

• Die Kommunikation zur Unterstützung der Authentifizierung
kann auf eine der folgenden Weisen erfolgen:

– Örtlich:
∗ Der menschliche Benutzer authentifiziert sich

gegenüber dem lokalen Endsystem
∗ Das Endsystem authentifiziert sich gegenüber dem

entfernten Endsystem und teilt die Identität des
Benutzers mit

∗ Das entfernte System muss dem lokalen Endsystem
vertrauen

– Unter Einbeziehung von Protokollelementen auf der
Anwendungsschicht:

∗ Der Benutzer gibt einige
Authentifizierungsinformationen an das lokale System
weiter, die sicher an das entfernte System
weitergeleitet werden

– Kombination der oben genannten Mittel:

∗ Beispiel: Kerberos

Integration in untere Protokollschichten vs.
Anwendungen

• Vorteile der Integration von Sicherheitsdiensten in niedrigere
Netzwerkschichten:

– Sicherheit:
∗ Auch das Netz selbst muss geschützt werden

∗ Sicherheitsmechanismen, die in den Netzelementen
(insbesondere in der Hardware) realisiert sind, sind
für die Netznutzer oft schwerer angreifbar

– Anwendungsunabhängigkeit:

∗ Grundlegende Netzsicherheitsdienste müssen nicht in
jede einzelne Anwendung integriert werden

– Dienstgüte (QoS):

∗ Die QoS-erhaltende Planung des
Kommunikationssubsystems kann auch die
Verschlüsselung nebeneinander bestehender
Datenströme planen.

∗ Beispiel: gleichzeitiger Sprachanruf und
FTP-Übertragung

– Effizienz:
∗ Hardware-Unterstützung für rechenintensive

Ver-/Entschlüsselung kann leichter in die
Protokollverarbeitung integriert werden

Integration in Endsysteme vs. Zwischensysteme
• Integration in Endsysteme:

– Kann im Allgemeinen entweder auf der Anwendungs- oder
der Endsystemebene erfolgen

– In einigen speziellen Fällen kann auch ein Schutz auf
Verbindungsebene angebracht sein, z. B. bei der
Verwendung eines Modems zur Verbindung mit einem
bestimmten Gerät

• Integration in Zwischensysteme

– Kann auf allen vier Ebenen erfolgen:

∗ Anwendungs-/,,Endsystem,,-Ebene: zur Sicherung der
Verwaltungsschnittstellen von Zwischenknoten, nicht
zur Sicherung des Nutzdatenverkehrs

∗ Teilnetz-/Link-Ebene: zur Sicherung des
Nutzdatenverkehrs

• Je nach den Sicherheitszielen kann eine Integration sowohl in
Endsystemen als auch in Zwischensystemen sinnvoll sein

Beispiel: Authentifizierungsbeziehungen in
Inter-Netzwerken
Schlussfolgerung

• Die Integration von Sicherheitsdiensten in
Kommunikationsarchitekturen wird von zwei Hauptfragen
geleitet:

– Welcher Sicherheitsdienst in welchem Knoten?
– Welcher Sicherheitsdienst in welcher Schicht?

• Diese Design-Entscheidungen können auch durch einen Blick auf
ein pragmatisches Modell der vernetzten Datenverarbeitung
geleitet werden, das vier verschiedene Ebenen unterscheidet, auf
denen Sicherheitsdienste realisiert werden können:

– Anwendungs-/Endsystem-/Subnetz-/Link-Ebene

• Da es verschiedene Gründe für und gegen jede Option gibt, gibt
es keine einheitliche Lösung für dieses Designproblem.

• In diesem Kurs werden wir daher einige Beispiele für die
Integration von Sicherheitsdiensten in Netzarchitekturen
untersuchen, um die Auswirkungen der getroffenen
Designentscheidungen besser zu verstehen

Sicherheitsprotokolle der
Datenübertragungsschicht

• IEEE 802.1Q, IEEE 802.1X & IEEE 802.1AE
• Point-to-Point Protocol (PPP)
• Point-to-Point Tunneling Protocol (PPTP)
• Layer 2 Tunneling Protocol (L2TP)
• Virtual Private Networks (VPN)

Anwendungsbereich von Sicherheitsprotokollen
der Verbindungsschicht

• Nach dem klassischen Verständnis des OSI-Modells stellt die
Verbindungsschicht einen gesicherten Datenübertragungsdienst
zwischen zwei gleichrangigen Einheiten bereit, die direkt über ein
Kommunikationsmedium miteinander verbunden sind.

• Ihre Hauptaufgaben sind:

– Fehlererkennung und -korrektur
– Medium Access Control (MAC, nicht zu verwechseln mit

Message Authentication Code) für gemeinsam genutzte
Medien, z. B. Ethernet usw.

• Nicht alle heutigen Netzwerktechnologien passen in dieses Modell:

– Einwahlverbindungen zu einem Internetdienstanbieter
– Lösungen für virtuelle private Netzwerke (VPN)

• In diesem Kurs geben wir uns mit der folgenden Definition
zufrieden:

– Der Zweck eines Link-Layer-Sicherheitsprotokolls besteht
darin, bestimmte Sicherheitseigenschaften der
Link-Layer-PDUs zu gewährleisten, d. h. der PDUs der
Protokollschicht, die die PDUs der Netzwerkschicht (z. B.
IP) tragen.

IEEE 802.1
Die IEEE 802.1 Standardfamilie: Hintergrund und
Ziele

• Das Institute of Electrical and Electronics Engineers (IEEE) 802
LAN/MAN Standards Committee entwickelt Standards für lokale
Netzwerke und Metropolitan Area Networks.

• Die am weitesten verbreiteten Standards sind:

– Ethernet-Familie (802.3, allgemein als CSMA/CD
bezeichnet),

– Drahtloses LAN (802.11)
– WIMAX (802.16)

• Die IEEE 802.1-Standards:

– Können mit verschiedenen IEEE 802.x Technologien
verwendet werden

– Definieren unter anderem verschiedene explizite
Sicherheitsdienste oder Dienste, die zur Erreichung von
Sicherheitszielen verwendet werden können

IEEE 802.1Q
Ziele und Dienste

• Der Standard IEEE 802.1Q:

– Ermöglicht die Schaffung von ,,miteinander verbundenen
IEEE-802-Standard-LANs mit unterschiedlichen oder
identischen Methoden der Medienzugriffskontrolle”, d. h.
die Schaffung separater virtueller lokaler Netzwerke
(VLANs) über eine physische Infrastruktur

– Obwohl es sich nicht um einen echten Sicherheitsstandard
handelt, wird er häufig verwendet, um verschiedene
Benutzer und Dienste voneinander zu trennen, z. B. nicht
vertrauenswürdige Gastcomputer von
Unternehmensservern, ohne eine neue Infrastruktur
einzurichten

– Wird verwendet, um Zugangskontrolle auf
Verbindungsebene zu realisieren

Grundlegende Funktionsweise

• Jedes Netzwerkpaket wird mit einem VLAN-Tag versehen, der
eine 12-Bit-VLAN-ID enthält, die ein virtuelles Netzwerk
identifiziert

• Switches stellen sicher, dass Pakete mit bestimmten VLAN-IDs
nur an bestimmte Netzwerk-Ports zugestellt werden, z.B. wird ein
VLAN mit internen Firmeninformationen nicht an einen öffentlich
zugänglichen Port zugestellt

• Die VLAN-ID ist nicht kryptografisch geschützt!

20/41

Network Security

– VLAN IDs müssen auf andere Weise, d.h. physikalisch,
gesichert werden!

– Normalerweise werden VLAN-IDs am ersten
vertrauenswürdigen Switch eingefügt und am letzten
vertrauenswürdigen Switch auf dem Weg durch das
Netzwerk entfernt

Typisches Einführungsszenario

• Normalerweise wird das vertrauenswürdige innere Netzwerk durch
physische Mittel geschützt

• Verschiedene Ports zum vertrauenswürdigen Kern werden VLANs
zugeordnet

• VLANs sind virtuell verbunden, dürfen aber nicht auf andere
VLANs zugreifen

• VLANs werden normalerweise gekoppelt durch

– Router, die mehrere Schnittstellen in den verschiedenen
VLANs haben

– Router, die selbst zum vertrauenswürdigen Netzwerk
gehören und selbst getaggte Frames empfangen und senden
können (kann gefährlich sein, Wechselwirkung zwischen
Routing und VLANs, siehe unten)

Weitere Diskussion

• 802.1Q ermöglicht eine einfache Trennung verschiedener
Sicherheitsdomänen innerhalb eines vertrauenswürdigen
Netzwerks

– Ermöglicht auch die Priorisierung bestimmter VLANs (z.
B. um die Verwaltung von Geräten zu ermöglichen, wenn
der Rest des Netzes von einem Angreifer überflutet wird)

– VLAN-Tags können gestapelt werden, z. B. um
verschiedene Kunden zu trennen, die eigene VLANs
einrichten

• Diskussion über die Sicherheit:

– Die Sicherheit hängt davon ab, dass kein einziges Gerät in
der vertrauenswürdigen Domäne kompromittiert wird!

– Alle Switches müssen korrekt konfiguriert sein, d.h. kein
einziger Switch darf eingehenden Verkehr aus einem nicht
vertrauenswürdigen Netz zulassen, der bereits getaggt ist

– Paketfluten in einem VLAN können sich auch auf andere
VLANs auswirken

– Router, die an mehreren VLANs teilnehmen, können auf
einer Schnittstelle Pakete aus verschiedenen VLANs
empfangen, aber

– Anstatt ein striktes Routing zu einer anderen Schnittstelle
(z. B. dem Internet) durchzuführen, könnte ein Angreifer
diesen Router nutzen, um über dieselbe Schnittstelle zurück
in ein anderes VLAN zu routen (sogenannter
Layer-2-Proxy-Angriff)

– Kann sogar funktionieren, wenn VLAN 1 und VLAN 2 das
gleiche IP-Subnetz nutzen!

IEEE 802.1X
Ziele

• Der Standard IEEE 802.1X:

– Ziel ist es, ,,den Zugang zu den von einem LAN
angebotenen Diensten auf diejenigen Benutzer und Geräte
zu beschränken, die diese Dienste nutzen dürfen”

• Definiert eine portbasierte Netzwerkzugriffskontrolle, um ein
Mittel zur ,,Authentifizierung und Autorisierung von Geräten
bereitzustellen, die an einen LAN-Port mit
Punkt-zu-Punkt-Verbindungseigenschaften angeschlossen sind”.

Kontrollierte und unkontrollierte Ports

• IEEE 802.1X führt den Begriff der zwei logischen Ports ein:

– Der unkontrollierte Port ermöglicht die Authentifizierung
eines Geräts

– Der kontrollierte Port ermöglicht es einem authentifizierten
Gerät, auf LAN-Dienste zuzugreifen

Rollen

• Es werden drei Hauptrollen unterschieden:

– Ein Gerät, das den von einem IEEE 802.1X LAN
angebotenen Dienst nutzen möchte, agiert als Supplicant,
der den Zugriff auf den kontrollierten Port anfordert

– Der Anschlusspunkt an die LAN-Infrastruktur (z. B. eine
MAC-Brücke) fungiert als Authentifikator, der den
Supplicant auffordert, sich zu authentifizieren.

– Der Authentifikator prüft die vom Antragsteller vorgelegten
Anmeldeinformationen nicht selbst, sondern leitet sie zur
Überprüfung an seinen Authentifizierungsserver weiter.

• Zugriff auf ein LAN mit IEEE 802.1X Sicherheitsmaßnahmen:

– Vor einer erfolgreichen Authentifizierung kann der
Antragsteller auf den unkontrollierten Port zugreifen:

∗ Der Port ist unkontrolliert in dem Sinne, dass er den
Zugriff vor der Authentifizierung erlaubt.

∗ Dieser Port erlaubt jedoch nur einen eingeschränkten
Zugriff

– Die Authentifizierung kann durch den Supplicant oder den
Authenticator initiiert werden.

– Nach erfolgreicher Authentifizierung wird der kontrollierte
Port geöffnet.

Sicherheitsprotokolle und Nachrichtenaustausch

• IEEE 802.1X definiert keine eigenen Sicherheitsprotokolle,
sondern befürwortet die Verwendung bestehender Protokolle:

– Das Extensible Authentication Protocol (EAP) kann eine
grundlegende Geräteauthentifizierung realisieren ,,RFC
3748”.

– Wenn die Aushandlung eines Sitzungsschlüssels während
der Authentifizierung erforderlich ist, wird die Verwendung
des EAP TLS Authentication Protocol empfohlen ,,RFC
5216”.

– Außerdem wird empfohlen, den Authentifizierungsserver
mit dem Remote Authentication Dial In User Service
(RADIUS) ,,RFC 2865” zu realisieren.

• Der Austausch von EAP Nachrichten zwischen Supplicant und
Authenticator wird mit dem EAP over LANs (EAPOL) Protokoll
realisiert:

– EAPOL definiert die Verkapselungstechniken, die
verwendet werden sollen, um EAP-Pakete zwischen
Supplicant Port Access Entities (PAE) und Authenticator
PAEs in einer LAN-Umgebung zu übertragen.

– EAPOL-Rahmenformate wurden für verschiedene
Mitglieder der 802.x-Protokollfamilie definiert, z. B.
EAPOL für Ethernet, ...

– Zwischen Supplicant und Authenticator können
RADIUS-Nachrichten verwendet werden

Beispiel für eine 802.1X-Authentifizierung”(Assets/NetworkSecurity-
ieee802.1X-example.png)

IEEE 802.1AE
Ziele

• Der Standard IEEE 802.1AE wird auch als MAC-Sicherheit
(MACsec) bezeichnet:

– Ermöglicht autorisierten Systemen, die sich an LANs in
einem Netzwerk anschließen und diese miteinander
verbinden, die Vertraulichkeit der übertragenen Daten zu
wahren und Maßnahmen gegen Frames zu ergreifen, die von
nicht autorisierten Geräten übertragen oder verändert
werden. ”

– Schützt Pakete durch kryptografische Mittel zwischen
Geräten, z. B. zwischen Switches oder einem Computer und
einem Switch

– Setzt eine gültige Authentifizierung voraus und ist somit
eine Erweiterung von 802.1X

– Kryptografische Schlüssel werden auch während der
802.1X-Authentifizierungsphase abgeleitet

– Kann Datenursprungsauthentifizierung und optional
Vertraulichkeit durchführen

– Unterstützt AES-128 und AES-256 in GCM, wobei die
Unterstützung von AES-128-GCM obligatorisch ist!

Frame-Format

• Quell- und Zieladressen werden im Klartext gesendet
• VLAN-Tag, Typfeld und Nutzdaten werden ebenfalls verschlüsselt
• Ein neuer 8-16 Byte langer SecTAG wird eingefügt

– Beginnt mit 0x88e5, um ein Protokoll für ältere Geräte zu
emulieren

– Enthält einen 4-Byte-Paketzähler (wird als IV verwendet,
auch um Replay-Angriffe abzuwehren)

• FCS wird durch einen kryptografischen MAC von 8-16 Byte
ersetzt und von MACsec berechnet, optional kann ein zusätzlicher
CRC-FCS für ältere Geräte hinzugefügt werden

Diskussion über Sicherheit

• MACsec erlaubt es, Verbindungen zu sichern, z.B. zwischen
Gebäuden auf einem Campus

• Es bietet keinen Schutz gegen kompromittierte Geräte!

– Wenn es in Kombination mit 802.1Q verwendet wird, kann
die vertrauenswürdige Computerbasis immer noch ziemlich
groß sein...

– Die Verwendung des GCM unterliegt den in Kapitel 5
beschriebenen potenziellen Problemen

– Derzeit unterstützen nur hochwertige Switches MACsec!

Punkt-zu-Punkt-Protokoll
Zweck und Aufgaben

• Große Teile des Internets beruhen auf
Punkt-zu-Punkt-Verbindungen:

– Wide Area Network (WAN)-Verbindungen zwischen
Routern

– Einwahlverbindungen von Hosts über Modems und
Telefonleitungen

• Protokolle für diesen Zweck:

– Serial Line IP (SLIP): keine Fehlererkennung, unterstützt
nur IP, keine dynamische Adressvergabe, keine
Authentifizierung ,,RFC 1055”

– Point-to-Point Protocol (PPP): Nachfolger von SLIP,
unterstützt IP, IPX, ...

• PPP ,,RFC 1661/1662”

– Schicht-2-Rahmenformat mit Rahmenbegrenzung und
Fehlererkennung

– Kontrollprotokoll (Link Control Protocol, LCP) für
Verbindungsaufbau, -test, -aushandlung und -abbau

– Separate Netzwerkkontrollprotokolle (NCP) für
unterstützte Schicht-3-Protokolle

Packet Format

• Zeichenorientierte (statt bitorientierte) ⇒ byteausgerichtete
Rahmen

• Code-Transparenz wird durch Zeichenstuffing erreicht
• Normalerweise werden nur unnummerierte Frames übertragen, in

Szenarien mit hoher Fehlerwahrscheinlichkeit (drahtlose
Kommunikation) kann jedoch ein zuverlässigerer Modus mit

Sequenznummern und erneuten Übertragungen ausgehandelt
werden

21/41

Network Security

• Unterstützte Protokolle für das Nutzdatenfeld sind u.a.: IP, IPX,
Appletalk

• Wenn nicht anders ausgehandelt, beträgt die maximale
Nutzdatengröße 1500 Byte.

• Zusätzliche Aushandlung unterstützt kleinere Paketköpfe

Eine typische PPP-Verbindung

• Nutzungsszenario ,,Internetzugang eines PCs über Modem”:

– Der Benutzer ruft den Internet Service Provider (ISP) über
ein Modem an und stellt eine ,,physikalische” Verbindung
über den ,,Plain Old Telephone Service” (POTS) her.

– Anrufer sendet mehrere LCP-Pakete in PPP-Frames, um
die gewünschten PPP-Parameter auszuwählen

– Sicherheitsspezifische Aushandlung (siehe unten)
– Austausch von NCP-Paketen zur Konfiguration der

Netzwerkschicht:
∗ z.B. Konfiguration von IP einschließlich dynamischer

Zuweisung einer IP-Adresse über Dynamic Host
Configuration Protocol (DHCP)

– Der Anrufer kann wie jeder andere Host mit einer festen
Verbindung zum Internet beliebige Internetdienste nutzen

– Beim Verbindungsabbau werden die zugewiesene
IP-Adresse und die Netzschichtverbindung freigegeben

– Die Schicht-2-Verbindung wird über LCP freigegeben und
das Modem baut die ,,physikalische” Verbindung ab

Link Control Protocol

• Rahmenformat des Link Control Protocol (LCP):

– Code: configure-request, configure-ack, configure-nack,
configure-reject, terminate-request, terminate-ack,
code-reject, protocol-reject, echo-request, echo-reply,
discard-request

– Länge: gibt die Länge des LCP-Pakets einschließlich des
Codefelds usw. an

– Daten: null oder mehr Oktette befehlsspezifischer Daten

• Die Konfigurationsprimitive von LCP ermöglichen die
Konfiguration der Verbindungsschicht:

– Es gibt verschiedene Optionen für dieses Primitiv zur
Konfiguration verschiedener Aspekte (max.
Empfangseinheit, Protokollkompression, Authentifizierung,
...)

Sicherheitsdienste

• Die ursprüngliche Version von PPP ,,RFC 1661” schlägt die
optionale Ausführung eines Authentifizierungsprotokolls nach der
Verbindungsaufbauphase vor:

– Falls erforderlich, wird die Authentifizierung von einer
Peer-Entität über einen LCP Configuration-Request am
Ende der Verbindungsaufbauphase gefordert

– Ursprünglich sind zwei Authentifizierungsprotokolle
definiert worden:

∗ Passwort-Authentifizierungsprotokoll (PAP)
∗ Challenge-Handshake-Authentifizierungsprotokoll

(CHAP)

– Inzwischen ist ein erweiterbares Protokoll definiert worden:
∗ Erweiterbares Authentifizierungsprotokoll (EAP)
∗ PPP EAP Transport Level Security Protocol

(PPP-EAP-TLS)

• Außerdem kann nach der Authentifizierung eine Verschlüsselung
ausgehandelt werden:

– Protokolle:
∗ Encryption Control Protocol (ECP) zur Aushandlung
∗ PPP DES-Verschlüsselungsprotokoll (DESE)
∗ PPP-Dreifach-DES-Verschlüsselungsprotokoll

(3DESE)

Authentifizierungsprotokolle

• Passwort-Authentifizierungs-Protokoll (PAP):

– PAP wurde 1992 in RFC 1334 definiert.
– Das Protokoll ist sehr einfach:

∗ Voraussetzung: der Authentifikator kennt das
Passwort der Peer-Entität

∗ Am Ende der Verbindungsaufbauphase fordert eine
Entität, Authenticator genannt, die Peer-Entität auf,
sich mit PAP zu authentifizieren

∗ Die Peer-Entität sendet eine
Authenticate-Request-Nachricht mit ihrer Peer-ID
und ihrem Passwort

∗ Der Authentifikator prüft, ob die bereitgestellten
Informationen korrekt sind und antwortet entweder
mit einem Authenticate-ack oder einem
Authenticate-nack

– Da das Protokoll keinen kryptographischen Schutz bietet,
ist es unsicher

– PAP wird in den aktualisierten RFCs für die
PPP-Authentifizierung nicht erwähnt ,,RFC1994”

• Challenge Handshake Authentication Protocol (CHAP):

– CHAP ist ebenfalls in RFC 1334 und RFC 1994 definiert.
– Es verwirklicht ein einfaches Challenge-Response-Protokoll:

∗ Voraussetzung: Authentifikator und Peer-Entität
teilen ein Geheimnis

∗ Nach der Verbindungsaufbauphase sendet der
Authentifikator (A) eine Challenge-Nachricht, die
einen Identifikator für diese Challenge, eine
Zufallszahl rA und seinen Namen enthält, an die
Peer-Entität (B): A→ B : (1, Identifikator, rA, A)

∗ Die Peer-Entität berechnet eine kryptografische
Hash-Funktion über ihren Namen, das gemeinsame
Geheimnis KA,B und die Zufallszahl rA und sendet
die folgende Nachricht:
B → A : (2, Kennung,H(B,KA,B , rA), B)

∗ Beim Empfang dieser Nachricht berechnet der
Authentifikator den Hashwert neu und vergleicht ihn
mit dem empfangenen Wert; wenn beide Werte
übereinstimmen, antwortet er mit einer
Erfolgsmeldung

∗ RFC 1994 legt fest, dass MD5 als Hash-Funktion
unterstützt werden muss, aber die Verwendung
anderer Hash-Funktionen kann ausgehandelt werden

• CHAP-Nachrichtenformat:

– Code: 1 ˜ Herausforderung / 2 ˜ Antwort / 3 ˜ Erfolg / 4 ˜
Fehler

– Identifier: ein Oktett, das bei jeder gesendeten Challenge
geändert werden muss

– Länge: die Gesamtlänge der CHAP-Nachricht in Oktetten
– Value Size: ein Oktett, das die Länge des Wertes angibt
– Wert: enthält die zufällige Herausforderung / die Antwort

auf die Herausforderung
– Name: ein oder mehrere Oktette, die das System

identifizieren, das das Paket erstellt hat; die Größe des
Namens wird anhand des Längenfeldes berechnet

– Nachricht:
∗ Null oder mehr Oktette mit

implementierungsabhängigem Inhalt
∗ Der Inhalt soll für den Menschen lesbar sein und hat

keinen Einfluss auf die Funktionsweise des Protokolls

• Erweiterbares Authentifizierungsprotokoll (EAP):

– EAP ist ein allgemeines Protokoll für die
PPP-Authentifizierung, das mehrere
Authentifizierungsmethoden unterstützt ,,RFC2284”.

– Die Hauptidee hinter EAP ist es, ein gemeinsames Protokoll
bereitzustellen, um komplexere Authentifizierungsmethoden
als ,,1 Frage + 1 Antwort” durchzuführen.

– Das Protokoll bietet grundlegende Primitive:

∗ Anfrage, Antwort: weiter verfeinert durch Typfeld +
typspezifische Daten

∗ Success, Failure: zur Angabe des Ergebnisses eines
Authentifizierungsaustauschs

– Typ-Felder:

∗ Identität
∗ Benachrichtigung
∗ Nak (nur Antwort, zur Beantwortung inakzeptabler

Anfragetypen)
∗ MD5 Challenge (dies entspricht CHAP)
∗ One-Time Password (OTP): definiert in ,,RFC2289”
∗ Generische Token-Karte
∗ EAP-TLS

• Einmaliges Kennwort (One-Time Password, OTP):

– Die Grundidee von OTP besteht darin, ein ,,Passwort” zu
übermitteln, das nur für einen Durchlauf eines
Authentifizierungsdialogs verwendet werden kann

– Erstmalige Einrichtung:

∗ Der Authentifikator A sendet einen Seed-Wert rA und
die Peer-Entität B verkettet diesen mit seinem
Passwort und berechnet einen Hash-Wert:
PWN = HN (rA, passwordB)

∗ Das Paar (N,PWN) wird ,,sicher” an den
Authentifikator übertragen und beim Authentifikator
gespeichert.

– Dialog zur Authentifizierung:

∗ A→ B : N − 1
∗ B → A : PWN−1 := HN−1(rA, PasswortB)
∗ A prüft, ob H(PWN−1) = PWN , und speichert

(N − 1, PWN−1) als neue
Authentifizierungsinformation für B

– Sicherheit: Um dieses Verfahren zu brechen, müsste ein
Angreifer ein PWN abhören und H−1(PWN) berechnen,
was unpraktisch ist.

• Generische Token-Karte:

– Im Grunde ein Challenge-Response-Dialog
– Eine Token-Karte wird verwendet, um eine Antwort auf

eine Herausforderung zu berechnen:

∗ Die Herausforderung wird dem Benutzer präsentiert,
der sie in sein Token-Card-Gerät eintippen muss.

∗ Die Token-Karte berechnet die Antwort und zeigt sie
an.

∗ Der Benutzer gibt die Antwort in das System ein, das
sie als Antwort auf die Aufforderungsnachricht sendet.

• PPP-EAP-TLS:

– TLS steht für Transport Layer Security ,,RFC 2246”.
– Es wird also der Authentifizierungsdialog von TLS

ausgeführt
– Dieser Dialog wird in Kapitel 12 über die Sicherheit der

Transportschicht im Detail erläutert.

Verschlüsselungsprotokolle

• Nach dem Verbindungsaufbau und der Authentifizierungsphase
kann die Verschlüsselung für eine PPP-Verbindung ausgehandelt
werden:

– Das Encryption Control Protocol (ECP) ,,RFC1968” ist für
die Konfiguration und Aktivierung von
Datenverschlüsselungsalgorithmen an beiden Enden der
PPP-Verbindung zuständig:

∗ ECP verwendet das gleiche Rahmenformat wie LCP
und führt zwei neue Primitive ein: Reset-Request und
Reset-Ack zur Anzeige von Entschlüsselungsfehlern
unabhängig für jede Richtung (nützlich für die
kryptographische Resynchronisation)

∗ Eine bestimmte Verschlüsselungsmethode wird mit
dem configure-Primitiv ausgehandelt, das eine Option
zur Angabe von DESE, 3DESE, Proprietär usw.
enthält.

22/41

Network Security

∗ Proprietäre Verschlüsselungsprotokolle werden durch
einen registrierten OUI (Organizational Unit
Identifier) + einen herstellerspezifischen Wert
identifiziert.

∗ Genau ein ECP-Paket wird im PPP-Informationsfeld
eines Link-Layer-Pakets transportiert

∗ ECP-Pakete werden durch das PPP-Protokollfeld
identifiziert:

· 0x8053 für ,,Standard” Betrieb
· 0x8055 für die Verschlüsselung einzelner

Verbindungsdaten auf mehreren Verbindungen
zum selben Ziel

• Das PPP DES Encryption Protocol (DESE):

– In diesem Kurs wird nur die aktualisierte Version DESEv2
,,RFC2419” behandelt

– DESEv2 wird mit einer
ECP-Konfigurationsanforderungsnachricht ausgehandelt:

∗ Code: 1 ˜ configure request
∗ Identifier: ändert sich mit jeder neuen Anfrage
∗ Länge: Gesamtlänge der Configure-Request-Nachricht
∗ Type: 3 ˜ DESEv2
∗ Länge’: 10 (die Länge dieser Konfigurationsoption)
∗ Initial Nonce: ein Initialisierungsvektor für DES im

CBC-Modus (8 Oktette)

• PPP DESE v2 Nachrichtenformat:

– Adresse: 0x11111111 (bei HDLC-ähnlichem Framing)
– Steuerung: 0x00000011 (bei HDLC-ähnlicher Rahmung)
– Protokoll-ID: 0x0053 ˜ DESE (Standard) / 0x0055 ˜ DESE

(individuelle Verbindung)
– Sequenznummer: anfänglich 0, diese Nummer wird von der

verschlüsselnden Stelle bei jedem gesendeten Paket erhöht
– Chiffriertext: die verschlüsselten Protokoll- und

Informationsfelder eines PPP-Pakets
∗ Nachrichten werden vor der Verschlüsselung auf ein

Vielfaches von 8 Oktetten aufgefüllt
∗ die Verschlüsselung erfolgt mit DES im CBC-Modus

• PPP 3DES Encryption Protocol (3DESE):

– PPP 3DESE ,,RFC2420” ist dem PPP DESE sehr ähnlich
– PPP 3DESE wird mit einer Configure-Request-Nachricht

ausgehandelt, wobei das Type-Feld der Option auf 2
gesetzt ist (˜ 3DESE)

– Die Verschlüsselung der PPP-Nutzdaten erfolgt wie bei
DESE, mit dem Unterschied, dass 3DES mit 3
verschiedenen Schlüsseln verwendet wird

• Alle PPP-Verschlüsselungsprotokolle gehen davon aus, dass vor
der Verschlüsselungsphase ein Sitzungsschlüssel für die
Verschlüsselung/Entschlüsselung von PPP-Paketen vereinbart
wurde:

– Diese Annahme ist sinnvoll, da die Festlegung des
Sitzungsschlüssels eine Aufgabe ist, die während der
Authentifizierungsphase erfüllt werden sollte.

– Allerdings unterstützt nur das
PPP-EAP-TLS-Authentifizierungsprotokoll den Aufbau
von Sitzungsschlüsseln.

Punkt-zu-Punkt-Tunneling-Protokoll (PPTP)

• PPP wurde ursprünglich für den Betrieb zwischen ,,direkt”
verbundenen Einheiten entwickelt, d.h. Einheiten, die eine
gemeinsame Schicht-2-Verbindung haben

– Beispiel: ein PC und ein Einwahlrouter eines
Internetanbieters, die über das Telefonnetz mittels Modem
verbunden sind

• Die Grundidee von PPTP besteht darin, die Reichweite des
Protokolls auf das gesamte Internet auszudehnen, indem der
Transport von PPP-PDUs in IP-Paketen definiert wird

– Die Nutzlast von PPTP-PDUs sind also PPP-Pakete (ohne
schicht-2-spezifische Felder wie HDLC-Flags,
Bit-Einfügungen, Steuerzeichen, CRC-Fehlerprüfwerte
usw.)

– PPP-Pakete werden in GRE-Pakete (generische
Routing-Kapselung) eingekapselt, die wiederum in
IP-Pakete eingekapselt werden:

PPTP: Freiwilliges vs. obligatorisches Tunneling
• PPTP realisiert einen ,,Tunnel” über das Internet, der

PPP-Pakete überträgt.
• Ein solcher Tunnel kann zwischen verschiedenen Einheiten

realisiert werden:

– Einem Client-PC und einem PPTP Remote Access Server
(RAS):

∗ Dies wird auch als freiwilliges Tunneling bezeichnet,
da der Client-PC aktiv an der PPTP-Verarbeitung
beteiligt ist.

∗ Diese Variante ermöglicht die sichere Kommunikation
zwischen einem Client-PC und einem bestimmten
Subnetz unter Verwendung beliebiger Zugangs- und
Zwischennetze

– Ein Point of Presence (POP) eines ISP und ein
PPTP-Fernzugangsserver:

∗ Dies wird auch als obligatorisches Tunneling
bezeichnet, da der Client-PC nicht an der
Entscheidung beteiligt ist, ob PPTP verwendet wird
oder nicht.

∗ Auf diese Weise lässt sich Sicherheit auf Subnetzebene
realisieren, aber keine echte End-to-End-Sicherheit
zwischen dem Client-PC und dem RAS

∗ Beim obligatorischen Tunneling fungiert der ISP POP
als Proxy-Client für den RAS

Obligatorische Tunneling-Protokollschichten

PPTP / PPP Proprietäre Erweiterungen und einige
,,Geschichte”

• PPTP hat sich vor allem aufgrund der Unterstützung durch
Microsoft durchgesetzt:

– Es wurde unter aktiver Beteiligung von Microsoft
entwickelt und ist in ,,RFC2637” dokumentiert.

– Microsoft implementierte es als Teil seines Remote Access
Service (RAS)

• Microsoft hat weitere ,,proprietäre” Erweiterungen für PPP
spezifiziert:

– Microsoft PPP CHAP-Erweiterungen ,,RFC2433”
– Microsoft Point to Point Encryption Protocol ,,RFC3078”

• Allerdings wurde eine Reihe von Schwachstellen in PPTP Version
1 und auch in einer verbesserten Version 2 entdeckt ,,SM98a,
SMW99a”:

– Ein allgemeiner Konsens, PPTP als Standardprotokoll zu
übernehmen, konnte in den in den IETF-Arbeitsgruppen
nicht erreicht werden.

– Außerdem wurde ein ähnliches Protokoll (Layer 2
Forwarding, L2F) von Cisco als konkurrierender Ansatz
vorgeschlagen

– Infolgedessen wurde ein Kompromiss gefunden, der die
Vorteile beider Vorschläge in einem einzigen Protokoll
zusammenfasst: Layer 2 Tunneling Protocol (L2TP)

Vergleich von PPTP und L2TP
• Beide Protokolle:

– verwenden PPP, um eine anfängliche Umhüllung für
Benutzerpakete bereitzustellen

– erweitern das PPP-Modell, indem sie erlauben, dass die
Layer-2- und PPP-Endpunkte sich auf verschiedenen
Geräten befinden

– unterstützen freiwilliges und obligatorisches Tunneling

• Zugrundeliegendes Netzwerk:

– PPTP benötigt ein IP-Netzwerk für den Transport seiner
PDUs

– L2TP unterstützt verschiedene Technologien: IP (unter
Verwendung von UDP), permanente virtuelle Schaltungen
(PVCs) von Frame Relay, virtuelle Schaltungen (VCs) von
X.25 oder ATM VCs

• PPTP kann nur einen einzigen Tunnel zwischen Endpunkten
unterstützen, L2TP ermöglicht die Verwendung mehrerer Tunnel
zwischen Endpunkten

– L2TP ermöglicht z. B. die Erstellung verschiedener Tunnel
für unterschiedliche Dienstqualitäten

• Beide Protokolle bieten eine Header-Kompression:

– Mit Header-Kompression kommt L2TP mit 4 Byte
Overhead aus, im Vergleich zu 6 Byte bei PPTP.

• L2TP ermöglicht eine Tunnelauthentifizierung, während PPTP
dies nicht tut.

Virtuelle private Netzwerke
• Verschiedene Definitionen des Begriffs virtuelles privates

Netzwerk (VPN):

– Ein privates Netz, das innerhalb einer öffentlichen
Netzinfrastruktur, wie dem globalen Internet, aufgebaut ist.

– Eine Kommunikationsumgebung, in der der Zugang
kontrolliert wird, um Peer-Verbindungen nur innerhalb
einer definierten Interessengemeinschaft zuzulassen, und die
durch eine Form der Partitionierung eines gemeinsamen
zugrundeliegenden Kommunikationsmediums aufgebaut ist,
wobei dieses zugrundeliegende Kommunikationsmedium
dem Netz Dienste auf nicht-exklusiver Basis bereitstellt

– Ein logisches Computernetzwerk mit eingeschränkter
Nutzung, das aus den Systemressourcen eines relativ
öffentlichen, physischen Netzwerks (z. B. dem Internet)
aufgebaut ist, oft unter Verwendung von Verschlüsselung
und oft durch Tunneln von Verbindungen des virtuellen
Netzwerks über das reale Netzwerk ,,RFC2828”.

– Anmerkung: Die beiden letzteren Definitionen beinhalten
explizit Sicherheitseigenschaften (kontrollierter Zugriff,
Verschlüsselung), die erste hingegen nicht.

,,Sicher, es ist viel billiger als eigene
Frame-Relay-Verbindungen, aber es funktioniert ungefähr
so gut, wie wenn man sich auf dem Times Square Watte in
die Ohren steckt und so tut, als wäre sonst niemand da.”
(Wired Magazine Feb. 1998)

Techniken zum Aufbau virtueller privater Netze

• Nutzung dedizierter Verbindungen (Cut-Through-Mechanismen):

– Virtuelle Verbindungen über ATM oder Frame Relay
– Multi-Protokoll über ATM (MPOA)
– Multiprotokoll-Etiketten-Vermittlung (MPLS)
– Sicherheitsdienste für Link Layer VPNs können effizient im

Link Layer Protokoll realisiert werden; ein Beispiel ist die
ATM Security Specification ,,ATM99a”

• Kontrolliertes Routenleck / Routenfilterung:

– Grundidee: Kontrolle der Routenausbreitung dahingehend,
dass nur bestimmte Netze Routen für andere Netze erhalten

– Damit soll ,,security by obscurity” realisiert werden (also
kein wirklicher Schutz!)

• Tunneln:

– Generische Routing-Kapselung (GRE)
– PPP / PPTP / L2TP
– IPSec-Sicherheitsarchitektur für das Internet-Protokoll

23/41

Network Security

Die IPsec-Architektur für das
Internet-Protokoll
Überblick

• Kurze Einführung in das Internet-Protokoll (IP)
• Sicherheitsprobleme von IP und Ziele von IPsec
• Die IPsec-Architektur:

– Modi des IPsec-Sicherheitsprotokolls:

∗ Transportmodus
∗ Tunnel-Modus

– Alternativen zur Implementierung
– IP-Sicherheitsrichtlinien-Datenbank (SPD)
– Sicherheitsvereinigungen (SA) und die SA-Datenbank

(SADB)

• IPsec Sicherheitsprotokolle:

– Authentifizierungs-Header (AH)
– Encapsulating Security Payload (ESP)

• Entitätsauthentifizierung und der Internet-Schlüsselaustausch
(IKE)

Die TCP/IP-Protokollsuite
• IP (Internet Protocol): unzuverlässiges, verbindungsloses

Netzwerkprotokoll
• TCP (Transmission Control Protocol): zuverlässiges,

verbindungsorientiertes Transportprotokoll, realisiert über IP
• UDP (User Datagram Protocol): unzuverlässiges,

verbindungsloses Transportprotokoll, bietet eine
Anwendungsschnittstelle zu IP

• Beispiele für Anwendungsprotokolle :

– HTTP: Hypertext-Übertragungsprotokoll
– SMTP: Einfaches Mail-Übertragungsprotokoll

Das IPv4-Paketformat
• Version (Ver.): 4 bit

– Derzeit ist Version 4 weit verbreitet
– Version 6 ist bereits spezifiziert, aber es ist noch nicht klar,

ob sie jemals zum Einsatz kommen wird

• IP-Header-Länge (IHL): 4 Bit

– Länge des IP-Headers in 32-Bit-Wörtern

• Art des Dienstes (TOS): 8 Bit

– Dieses Feld könnte verwendet werden, um die
Verkehrsanforderungen eines Pakets anzugeben.

– Jetzt: DCSP und Explicit Congestion (EC) Indication

• Länge: 16 Bit

– Die Länge des Pakets einschließlich des Headers in Oktetten
– Dieses Feld ist, wie alle anderen Felder in der IP-Suite, in

,,big endian” Darstellung

• Kennung: 16 Bit

– Dient der ,,eindeutigen” Identifizierung eines
IP-Datagramms

– Wichtig für das Wiederzusammensetzen von fragmentierten
IP-Datagrammen

• Flaggen: 3 Bit

– Bit 1: nicht fragmentieren
– Bit 2: Datagramm fragmentiert
– Bit 3: reserviert für zukünftige Verwendung

• Fragmentierungs-Offset: 13 Bit

– Die Position dieses Pakets im entsprechenden
IP-Datagramm

• Lebenszeit (TTL): 8 Bit

– An jedem verarbeitenden Netzknoten wird dieses Feld um
eins dekrementiert

– Wenn die TTL 0 erreicht, wird das Paket verworfen, um
Paketschleifen zu vermeiden.

• Protokoll: 8 Bit

– Gibt das (Transport-)Protokoll der Nutzlast an
– Wird vom empfangenden Endsystem verwendet, um Pakete

zwischen verschiedenen Transportprotokollen wie TCP,
UDP, ... zu entmultiplexen.

• Prüfsumme: 16 Bit

– Schutz vor Übertragungsfehlern
– Da es sich nicht um eine kryptografische Prüfsumme

handelt, kann sie leicht gefälscht werden.

• Quelladresse: 32 Bit

– Die IP-Adresse des Absenders dieses Pakets

• Zieladresse: 32 Bit

– Die IP-Adresse des vorgesehenen Empfängers dieses Pakets

• IP-Optionen: variable Länge

– Ein IP-Header kann optional zusätzliche Informationen
enthalten.

– Da sie nicht Bestandteil von IPsec sind, werden sie in
diesem Kurs nicht behandelt.

Sicherheitsprobleme des Internet-Protokolls
• Wenn eine Einheit ein IP-Paket empfängt, hat sie keine Garantie

für:

– Authentifizierung der Datenherkunft / Datenintegrität:

∗ Das Paket wurde tatsächlich von der Einrichtung
gesendet, auf die die Quelladresse des Pakets verweist.

∗ Das Paket enthält den ursprünglichen Inhalt des
Absenders, so dass es während des Transports nicht
verändert worden ist.

∗ Die empfangende Einrichtung ist tatsächlich die
Einrichtung, an die der Absender das Paket senden
wollte.

– Vertraulichkeit:
∗ Die ursprünglichen Daten wurden auf dem Weg vom

Absender zum Empfänger nicht von Dritten
eingesehen.

Sicherheitsziele von IPsec
• IPsec zielt darauf ab, die folgenden Sicherheitsziele zu

gewährleisten:

– Authentifizierung der Datenherkunft / Verbindungslose
Datenintegrität:

∗ Es ist nicht möglich, ein IP-Datagramm mit einer
maskierten IP-Quell- oder Zieladresse zu senden, ohne
dass der Empfänger dies erkennen kann.

∗ Es ist nicht möglich, ein IP-Datagramm während der
Übertragung zu verändern, ohne dass der Empfänger
diese Veränderung feststellen kann.

∗ Wiedergabeschutz: Es ist nicht möglich, ein
aufgezeichnetes IP-Paket zu einem späteren Zeitpunkt
erneut abzuspielen, ohne dass der Empfänger dies
erkennen kann.

– Vertraulichkeit:
∗ Es ist nicht möglich, den Inhalt von IP-Datagrammen

zu belauschen
∗ Begrenzte Vertraulichkeit des Verkehrsflusses

• Sicherheitspolitik:

– Sender, Empfänger und Zwischenknoten können den
erforderlichen Schutz für ein IP-Paket gemäß einer lokalen
Sicherheitsrichtlinie festlegen

– Zwischenknoten und der Empfänger verwerfen IP-Pakete,
die diese Anforderungen nicht erfüllen

Überblick über die IPsec-Standardisierung

Überblick über die IPsec-Architektur
• RFC 4301 definiert die grundlegende Architektur von IPsec:

– Konzepte:

∗ Sicherheitsvereinigung (SA),
Sicherheitsvereinigungsdatenbank (SADB)

∗ Sicherheitsrichtlinien,
Sicherheitsrichtlinien-Datenbank (SPD)

– Grundlegende IPsec-Protokolle:

∗ Authentifizierungs-Header (AH)
∗ Encapsulating Security Payload (ESP)

– Protokoll-Modi:
∗ Transport-Modus
∗ Tunnel-Modus

– Schlüsselmanagement-Verfahren:

∗ IKE & IKEv

• RFC 4301 definiert die grundlegende Architektur von IPsec:

– Verwendung von verschiedenen kryptographischen
Primitiven mit AH und ESP:

∗ Verschlüsselung: 3DES-CBC, AES und andere
CBC-Verschlüsselungsalgorithmen, AES-Zählermodus

∗ Integrität: HMAC-MD5, HMAC-SHA-1,
HMAC-SHA-2, HMAC- RIPEMD-160, AES-GMAC,
AES-CMAC, AES-XCBC...

∗ Authentifizierte Verschlüsselung: GCM und ,,Zähler
mit CBC-MAC,, (CCM), beide für AES definiert

• Eine Sicherheitsassoziation (SA) ist eine Simplex- ,,Verbindung”,
die Sicherheitsdienste für den von ihr beförderten Verkehr
bereitstellt.

– Sicherheitsdienste werden für eine SA entweder mit AH
oder ESP bereitgestellt, jedoch nicht mit beiden.

– Für bidirektionale Kommunikation sind zwei
Sicherheitsverbindungen erforderlich.

– Eine SA wird eindeutig durch ein Tripel identifiziert, das
aus einem Sicherheitsparameterindex (SPI), einer
IP-Zieladresse und einer Sicherheitsprotokollkennung (AH /
ESP) besteht.

– Eine SA kann zwischen den folgenden Gegenstellen
eingerichtet werden:

∗ Host ↔ Host
∗ Host ↔ Gateway (oder andersherum)
∗ Gateway ↔ Gateway

– Es gibt zwei konzeptionelle Datenbanken, die mit SAs
verbunden sind:

∗ Die Sicherheitsrichtliniendatenbank (SPD) legt fest,
welche Sicherheitsdienste für welche IP-Pakete auf
welche Weise bereitgestellt werden sollen.

∗ Die Sicherheitsassoziationsdatenbank (SADB)

• Protokollmodi - Eine SA ist immer von einem der folgenden
Typen:

– Der Transportmodus kann nur zwischen den Endpunkten
einer Kommunikation verwendet werden:

∗ host ↔ host, oder
∗ Host ↔-Gateway, wenn das Gateway ein

Kommunikationsendpunkt ist (z. B. für die
Netzverwaltung)

– Der Tunnelmodus kann für beliebige Peers verwendet
werden.

Der Unterschied zwischen den beiden Modi ist, dass:
Im Transportmodus wird lediglich ein sicherheitsspezifischer Header (+
eventueller Trailer) hinzugefügt:

24/41

Network Security

• Der Tunnelmodus kapselt IP-Pakete ein: Die Verkapselung von
IP-Paketen ermöglicht es einem Gateway, den Verkehr im Namen
anderer Entitäten zu schützen (z. B. Hosts eines Subnetzes usw.)

• Der Authentifizierungs-Header (AH):

– Bietet Authentifizierung der Datenherkunft und Schutz vor
Wiederholung

– Wird als Header realisiert, der zwischen dem IP-Header
und den zu schützenden Daten eingefügt wird

• Die einkapselnde Sicherheitsnutzlast (ESP):

– Bietet Authentifizierung der Datenherkunft, Vertraulichkeit
und Schutz vor Wiederholung

– Wird mit einem Header und einem Trailer realisiert, der die
zu schützenden Daten einkapselt

• Die Einrichtung von Sicherheitsvereinigungen wird mit:

– Internet Security Association Key Management Protocol
(ISAKMP):

∗ Definiert einen generischen Rahmen für die
Schlüsselauthentifizierung, den Schlüsselaustausch
und die Aushandlung von
Sicherheitsassoziationsparametern ,,RFC2408”.

∗ Definiert kein spezifisches Authentifizierungsprotokoll,
aber spezifiziert: Paketformate, Zeitgeber für die
Weiterleitung, Anforderungen an den
Nachrichtenaufbau

∗ Die Verwendung von ISAKMP für IPsec wird in
,,RFC2407” näher beschrieben.

– Internet-Schlüsselaustausch (IKE):

∗ Definiert ein Authentifizierungs- und
Schlüsselaustauschprotokoll ,,RFC2409”.

∗ Ist konform zu ISAKMP und kann für verschiedene
Anwendungen verwendet werden

∗ Der Aufbau von IPsec SAs zwischen zwei Entitäten
wird in zwei Phasen realisiert:

∗ Einrichtung einer IKE SA (definiert, wie man IPsec
SAs einrichtet)

∗ Einrichtung von IPsec SAs

IPsec-Wiedergabeschutz (Replay protection)
• Sowohl AH- als auch ESP-geschützte IP-Pakete tragen eine

Sequenznummer, die einen Wiedergabeschutz realisiert:

– Beim Einrichten einer SA wird diese Sequenznummer auf
Null initialisiert.

– Die Sequenznummer wird mit jedem gesendeten IP-Paket
erhöht

– Die Sequenznummer ist 32 Bit lang, es wird ein neuer
Sitzungsschlüssel benötigt, bevor ein Wrap-around erfolgt

– Der Empfänger eines IP-Pakets prüft, ob die
Sequenznummer in einem Fenster zulässiger Nummern
enthalten ist

∗ (Paket mit Sequenznummer N kann noch akzeptiert
werden)

• Wenn ein empfangenes Paket eine Sequenznummer hat, die:

– links vom aktuellen Fenster ⇒ liegt, lehnt der Empfänger
das Paket ab

– innerhalb des aktuellen Fensters ⇒ liegt, nimmt der
Empfänger das Paket an

– liegt rechts vom aktuellen Fenster ⇒ der Empfänger nimmt
das Paket an und schiebt das Fenster weiter

– Natürlich werden IP-Pakete nur akzeptiert, wenn sie die
Authentifizierungsprüfung bestehen und das Fenster wird
niemals vor dieser Prüfung weitergeschaltet

• Die minimale Fenstergröße beträgt 32 Pakete (64 Pakete werden
empfohlen)

– Paket mit Sequenznummer N kann nicht mehr akzeptiert
werden

IPsec-Implementierungsalternativen:
Host-Implementierung

• Vorteile der IPsec-Implementierung in Endsystemen:

– Bereitstellung von End-to-End-Sicherheitsdiensten
– Bereitstellung von Sicherheitsdiensten auf einer

Per-Flow-Basis
– Fähigkeit, alle IPsec-Modi zu implementieren

• Zwei Hauptalternativen zur Integration:

Integriertes Betriebssystem ,,Bump” im Stack
Anwendung Anwendung
Transport Transport

Netzwerk + IPsec Netzwerk
IPsec

Data Link Data Link
Echte Betriebssystemintegration ist die Methode der Wahl, da sie die Duplizierung von Funktionalität vermeidet Wenn das Betriebssystem nicht geändert werden kann, wird IPsec über den Datenverbindungstreiber eingefügt

IPsec-Implementierungsalternativen:
Router-Implementierung

• Vorteile der IPsec-Implementierung in Routern:

– Möglichkeit, IP-Pakete zu sichern, die zwischen zwei Netzen
über ein öffentliches Netz wie das Internet fließen:

∗ Ermöglicht die Einrichtung virtueller privater
Netzwerke (VPNs)

∗ Keine Notwendigkeit, IPsec in jedes Endsystem zu
integrieren

– Fähigkeit zur Authentifizierung und Autorisierung des
IP-Verkehrs, der von entfernten Benutzern eingeht

• Zwei Hauptalternativen für die Implementierung:

Wann sollte welcher IPsec-Modus verwendet
werden?

• In den meisten Fällen handelt es sich bei den
Kommunikationsendpunkten um Hosts (Workstations, Server),
aber das ist nicht unbedingt der Fall:

– Beispiel: ein Gateway wird über SNMP von einer
Workstation verwaltet

• Der Transportmodus wird verwendet, wenn die ,,kryptografischen
Endpunkte” auch die ,,Kommunikationsendpunkte” der
gesicherten IP-Pakete sind

– Kryptografische Endpunkte: die Entitäten, die einen
IPsec-Header (AH oder ESP) erzeugen/verarbeiten

– Kommunikationsendpunkte: Quelle und Ziel eines IP-Pakets

• Der Tunnelmodus wird verwendet, wenn mindestens ein
,,kryptographischer Endpunkt” nicht ein
,,Kommunikationsendpunkt” der gesicherten IP-Pakete ist

– Dies ermöglicht Gateways, die den IP-Verkehr im Namen
anderer Stellen sichern

• Die obige Beschreibung der Anwendungsszenarien für den
Tunnelmodus umfasst auch den Fall, dass nur ein kryptografischer
Endpunkt kein Kommunikationsendpunkt ist:

– Beispiel: ein Sicherheitsgateway, das die Authentifizierung
und/oder die Vertraulichkeit des IP-Verkehrs zwischen
einem lokalen Teilnetz und einem über das Internet
verbundenen Host sicherstellt (,,Road Warrior Szenario”)

Verschachtelung von Sicherheitsassoziationen
• Sicherheitsassoziationen können verschachtelt werden:

– Beispiel: Host A und Gateway RB führen eine
Authentifizierung der Datenherkunft durch und die
Gateways RA und RB führen eine Vertraulichkeit von
Subnetz zu Subnetz durch

• Bei der Verschachtelung von SAs muss jedoch darauf geachtet
werden, dass keine ,,falsche Klammerung” von SAs erfolgt

– Ein Beispiel für eine gültige SA-Schachtelung:
– Da das Paket von RB nach RD getunnelt wird, kann das

Gateway RC den inneren IPsec-Header nicht verarbeiten
– Ein mögliches Ergebnis dieser fehlerhaften Konfiguration

könnte sein, dass das Paket zurück nach RC geroutet wird

Grundschema der IPsec-Verarbeitung:
Ausgehende Pakete

• Nehmen wir an, die IP-Schicht eines Knotens (Host/Gateway)
wird angewiesen, ein IP-Paket an einen anderen Knoten
(Host/Gateway) zu senden

• Um IPsec zu unterstützen, muss sie die folgenden Schritte
durchführen

– Feststellen, ob und wie das ausgehende Paket gesichert
werden muss

∗ Dies wird durch einen Lookup im SPD realisiert
∗ Wenn die Richtlinie ,,verwerfen” vorschreibt, wird das

Paket verworfen ⇒ done
∗ Wenn das Paket nicht gesichert werden muss, dann

sende es ⇒ done

– Ermitteln, welche SA auf das Paket angewendet werden soll

∗ Wenn es noch keine passende SA mit dem
entsprechenden Knoten gibt, dann fordere den Key
Management Demon auf, einen IKE durchzuführen

– Die ermittelte (und eventuell neu erstellte) SA in der
SADB nachschlagen

– Führen Sie die von der SA festgelegte
Sicherheitstransformation durch, indem Sie den
Algorithmus, seine Parameter und den Schlüssel, wie in der
SA angegeben, verwenden.

∗ Dies resultiert in der Konstruktion eines AH- oder
ESP-Headers

∗ Eventuell wird auch ein neuer (äußerer) IP-Header
erstellt (Tunnelmodus)

– Senden Sie das resultierende IP-Paket ⇒ done

Grundschema der IPsec-Verarbeitung: Eingehende
Pakete

• Nehmen wir an, die IP-Schicht eines Knotens (Host/Gateway)
empfängt ein IP-Paket von einem anderen Knoten
(Host/Gateway)

• Um IPsec zu unterstützen, muss sie die folgenden Schritte
durchführen:

– Feststellen, ob das Paket einen IPsec-Header enthält, den
diese Einheit verarbeiten soll:

∗ Wenn es einen solchen IPsec-Header gibt, dann suchen
Sie die SA in der SADB, die durch den SPI des
IPsec-Headers spezifiziert ist, und führen Sie die
entsprechende IPsec-Verarbeitung durch

∗ Wenn die SA, auf die der SPI verweist, (noch) nicht
existiert, verwerfen Sie das Paket

– Ermitteln, ob und wie das Paket hätte geschützt werden
sollen:

∗ Dies wird wiederum durch einen Lookup im SPD
realisiert, wobei der Lookup im Falle von getunnelten
Paketen durch Auswertung des inneren IP-Headers
durchgeführt wird

∗ Wenn die Richtlinie ,,Verwerfen” vorschreibt, wird das
Paket verworfen.

∗ Wenn der Schutz des Pakets nicht mit der Richtlinie
übereinstimmt, wird das Paket verworfen.

∗ Wenn das Paket ordnungsgemäß gesichert wurde,
dann übergebe es an die entsprechende
Protokollinstanz (Netzwerk-/Transportschicht)

25/41

Network Security

Auswahl der IPsec-Sicherheitspolitik
Die folgenden Selektoren, die aus den Headern der Netzwerk- und
Transportschicht extrahiert werden, ermöglichen die Auswahl einer
bestimmten Richtlinie im SPD:

• IP-Quelladresse:

– Bestimmter Host, Netzwerkpräfix, Adressbereich oder
Platzhalter

• IP-Zieladresse:

– Bestimmter Host, Netzwerk-Präfix, Adressbereich oder
Platzhalter

– Im Falle eingehender getunnelter Pakete wird der innere
Header ausgewertet

• Protokoll:

– Der Protokoll-Identifikator des Transportprotokolls für
dieses Paket

– Dies ist möglicherweise nicht zugänglich, wenn ein Paket
mit ESP gesichert ist.

• Ports der oberen Schicht:

– Falls zugänglich, die Ports der oberen Schicht für die
sitzungsorientierte Policy-Auswahl

IPsec Security Policy Definition
• Policy Selectors werden verwendet, um spezifische

Policy-Definitionen auszuwählen, spezifiziert:

– Wie die Einrichtung einer IKE SA zwischen zwei Knoten
durchgeführt werden soll:

∗ Identifizierung: DNS-Name oder andere Namenstypen,
wie in der IPsec-Domäne der Interpretation eines
Protokolls zur Einrichtung von SAs definiert

∗ Phase I-Modus: Hauptmodus oder aggressiver Modus
(siehe unten)

∗ Schutzsuite(n): Angabe, wie die
IKE-Authentifizierung durchgeführt wird

– Welche und wie Sicherheitsdienste für IP-Pakete
bereitgestellt werden sollen:

∗ Selektoren, die bestimmte Flüsse identifizieren
∗ Sicherheitsattribute für jeden Fluss:
∗ Sicherheitsprotokoll: AH oder ESP
∗ Protokollmodus: Transport- oder Tunnelmodus
∗ Sicherheitstransformationen: kryptografische

Algorithmen und Parameter
∗ Andere Parameter: SA-Lebensdauer, Replay-Fenster
∗ Aktion: Verwerfen, Sichern, Umgehen

• Wenn bereits eine SA mit einem entsprechenden
Sicherheitsendpunkt eingerichtet ist, wird im SPD auf diese
verwiesen.

Die Encapsulating Security Payload
• ESP ist ein allgemeines Sicherheitsprotokoll, das IP-Paketen einen

Wiederholungsschutz und einen oder beide der folgenden
Sicherheitsdienste bietet:

– Vertraulichkeit durch Verschlüsselung der eingekapselten
Pakete oder nur ihrer Nutzlast

– Authentifizierung der Datenherkunft durch Erstellung und
Hinzufügung von MACs zu Paketen

• Die ESP-Definition gliedert sich in zwei Teile:

– Die Definition des Basisprotokolls ,,RFC4303”:

∗ Definition des Header- und Trailer-Formats
∗ Verarbeitung des Basisprotokolls
∗ Tunnel- und Transportmodusbetrieb

– Die Verwendung spezifischer kryptographischer
Algorithmen mit ESP:

∗ Verschlüsselung: 3DES-CBC, AES-CBC,
AES-Zählmodus, Verwendung anderer Chiffren im
CBC-Modus

∗ Authentifizierung: HMAC-MD5-96, HMAC-SHA-96,...

– Der ESP-Header folgt unmittelbar auf einen IP-Header
oder einen AH-Header

– Das Next-Header-Feld des vorangehenden Headers zeigt
,,50” für ESP an

– Das SPI-Feld gibt die SA an, die für dieses Paket
verwendet werden soll:

∗ Der SPI-Wert wird immer von der empfangenden
Seite während der SA-Aushandlung bestimmt, da der
Empfänger das Paket verarbeiten muss.

– Die Sequenznummer bietet, wie bereits erläutert, Schutz
vor Wiederholung.

– Wenn der verwendete kryptographische Algorithmus einen
Initialisierungsvektor benötigt, wird dieser in jedem Paket
am Anfang der Nutzlast im Klartext übertragen

– Das Pad-Feld dient der Sicherstellung:

∗ Auffüllen der Nutzlast bis zur erforderlichen
Blocklänge der verwendeten Chiffre

∗ Auffüllen der Nutzlast, um die Felder pad-length und
next-header rechtsbündig in die höherwertigen 16 Bit
eines 32-Bit-Wortes einzupassen

– Die Auffülllänge gibt die Anzahl der hinzugefügten
Auffüllbytes an.

– Das next-header-Feld des ESP-Headers gibt die
eingekapselte Nutzlast an:

∗ Im Falle des Tunnelmodus: IP
∗ Im Falle des Transportmodus: ein beliebiges Protokoll

der höheren Schicht wie TCP, UDP, ...

– Das optionale Feld authentication-data enthält eine MAC,
falls vorhanden

• Beachten Sie, dass das entkapselte IP-Paket ein fragmentiertes
Paket sein kann:

– Dies kann vorkommen, wenn ESP von einem Router im
Tunnelmodus angewendet wurde.

– Um die Konformität mit der SA-Policy korrekt zu prüfen,
müssen alle zu diesem Paket gehörenden Fragmente vom
Router empfangen werden, bevor die Prüfung durchgeführt
werden kann

– Beispiel: In einer SA sind nur Pakete an einen bestimmten
Port erlaubt

∗ Die erforderliche Port-Information ist nur im ersten
Fragment des IP-Pakets vorhanden

• Paketzustellung bedeutet Zustellung an die entsprechende
Verarbeitungseinheit:

– Wenn ein anderer IPsec-Header für diese Entität vorhanden
ist ⇒ IPsec-Verarbeitung

– Im Tunnelmodus ⇒ Übermittlung des Pakets
– Im Transportmodus ⇒ Aufruf des entsprechenden

Protokoll-Headers (TCP, UDP, etc.)

• Wenn ESP sowohl Vertraulichkeit als auch Authentifizierung
bietet, können für beide Dienste unterschiedliche Schlüssel
verwendet werden.

– Dies muss während der Einrichtung der ESP-SA
ausgehandelt werden.

• Beachten Sie, dass die Verwendung von ESP ohne
Authentifizierung unsicher ist...

– Kein zuverlässiger Schutz vor Wiederholungen
– Zumindest, wenn im CBC-Modus verwendet:

∗ Aktive Angriffe ermöglichen die Wiederherstellung
von Nachrichten

∗ Beispiel: Bits umdrehen und prüfen, ob
Fehlermeldungen erzeugt werden

∗ Vollständige Wiederherstellung von Klartextblöcken

Der Authentifizierungs-Header
• AH ist ein allgemeines Sicherheitsprotokoll, das IP-Paketen

Schutz bietet:

– Wiedergabeschutz
– Authentifizierung der Datenherkunft durch Erstellung und

Hinzufügung von MACs zu den Paketen

• Wie bei ESP ist die AH-Definition in zwei Teile aufgeteilt:

– Die Definition des Basisprotokolls ,,RFC4302”:
∗ Definition des Header-Formats
∗ Verarbeitung des Basisprotokolls
∗ Tunnel- und Transportmodusbetrieb

– Die Verwendung spezifischer kryptographischer
Algorithmen bei AH:

∗ Authentifizierung: HMAC-MD5-96, HMAC-SHA1-96,
HMAC-SHA2, ...

∗ Wenn sowohl ESP als auch AH von einer Stelle
angewendet werden sollen, wird immer zuerst ESP
angewendet:

– Dies führt dazu, dass AH der äußere Header ist.
– ,,Vorteil”: der IP-Header kann auch durch AH geschützt

werden
– Anmerkung: Für jede Richtung werden zwei SAs (je eine

für AH, ESP) benötigt.

• Im Tunnelmodus stellt die Nutzlast ein vollständiges IP-Paket dar
• Obwohl AH auch den äußeren IP-Header schützt, dürfen einige

seiner Felder nicht geschützt werden, da sie sich während der
Übertragung ändern können:

– Dies gilt auch für veränderliche IPv4-Optionen oder
IPv6-Erweiterungen.

– Solche Felder werden bei der Berechnung des MAC als Null
angenommen

• Alle unveränderlichen Felder, Optionen und Erweiterungen (grau)
sind geschützt

IPsec’s Verwendung von kryptographischen
Algorithmen

• Vertraulichkeit (nur ESP):

– Die Verwendung von DES mit ESP ,,RFC4303” wird nicht
mehr empfohlen

– AES-CBC, definiert in RFC 3602, ist vielleicht ,,der,,
Standardalgorithmus

– Der Initialisierungsvektor (IV) ist immer im Klartext
enthalten, um Synchronisationsprobleme zu vermeiden.

– Der gesamte IV soll zufällig sein
– Nehmen Sie KEINE weiteren IVs aus früheren

Chiffretexten!
∗ Sicherheitsprobleme
∗ Synchronisationsprobleme

• Authentifizierung der Datenherkunft (AH und ESP):

– Einige der Algorithmen zur Authentifizierung sind bereits
definiert:

∗ HMAC-MD5-96 mit Schlüssellänge 128 Bit
∗ HMAC-SHA1-96 mit Schlüssellänge 160 Bit
∗ HMAC-RIPEMD160-96 mit einer Schlüssellänge von

160 Bit
∗ HMAC-SHA2 mit Schlüssellängen von 256, 384 und

512 Bit
– Alle diese Algorithmen verwenden die in ,,RFC2104”

definierte HMAC-Konstruktion:
∗ ipad = 0x36 wiederholt B mal (B = 64 für die oben

genannten Algorithmen)
∗ opad = 0x5C, B-mal wiederholt
∗ HMAC = H(Key XOR opad, H(Key XOR ipad,

data)), wobei H die verwendete kryptografische
Hash-Funktion angibt

– Das ,,-96” in den oben genannten Algorithmen bedeutet,
dass die Ausgabe der Hash-Funktion auf die 96 ganz linken
Bits gekürzt wird

– SHA2 abgeschnitten auf die Hälfte der Schlüssellänge
– Dieser Wert erfüllt die meisten Sicherheitsanforderungen

gut

26/41

Network Security

Aufbau von Sicherheitsassoziationen
• Bevor ein Paket durch IPsec geschützt werden kann, muss eine

SA zwischen den beiden ,,kryptographischen Endpunkten”, die
den Schutz bieten, eingerichtet werden

• Der Aufbau einer SA kann realisiert werden

– Manuell, durch proprietäre Methoden der
Systemverwaltung

– Dynamisch, durch ein standardisiertes Authentifizierungs-
und Schlüsselverwaltungsprotokoll

– Die manuelle Einrichtung sollte nur in sehr eingeschränkten
Konfigurationen (z.B. zwischen zwei verschlüsselnden

Firewalls eines VPN) und während einer Übergangsphase
verwendet werden

• IPsec definiert eine standardisierte Methode für den SA-Aufbau

– Internet Security Association and Key Management
Protocol (ISAKMP)

∗ Definiert Protokollformate und Verfahren für die
Sicherheitsaushandlung

– Internet-Schlüsselaustausch (IKE)

∗ Definiert das Standard-Authentifizierungs- und
Schlüsselaustauschprotokoll von IPsec

ISAKMP - Einführung
• Die IETF hat zwei RFCs zu ISAKMP für IPsec verabschiedet:

– RFC 2408, der das ISAKMP-Basisprotokoll definiert
– RFC 2407, der die ,,domain of interpretation” (DOI) von

IPsec für ISAKMP definiert und die für IPsec spezifischen
Nachrichtenformate näher beschreibt

• Das ISAKMP-Basisprotokoll ist ein generisches Protokoll, das für
verschiedene Zwecke verwendet werden kann:

– Die für eine Anwendung von ISAKMP spezifischen
Verfahren werden in einem DOI-Dokument detailliert
beschrieben.

– Es wurden weitere DOI-Dokumente erstellt:
∗ Group DOI für sichere Gruppenkommunikation

,,RFC6407”
∗ MAP DOI für die Verwendung von ISAKMP zum

Aufbau von SAs zur Sicherung des Mobile Application
Protocol (MAP) von GSM (Internet Draft, Nov. 2000)

• ISAKMP definiert zwei grundlegende Kategorien von
Austauschvorgängen

– Phase 1 Austausch, bei dem eine Art von ,,Master SA”
ausgehandelt wird

– Phase 2 Austausch, der die ,,Master SA” verwendet, um
andere SAs zu etablieren

ISAKMP - Grundlegendes Nachrichtenformat
•
• Initiator & Responder Cookie:

– Identifizieren einen ISAKMP-Austausch bzw. eine
Sicherheitsassoziation

– Dienen auch als begrenzter Schutz gegen
Denial-of-Service-Angriffe (siehe unten)

• Nächste Nutzlast: gibt an, welcher ISAKMP-Nutzlasttyp die erste
Nutzlast der Nachricht ist

• Major & Minor Version: gibt die Version des ISAKMP-Protokolls
an

• Austausch-Typ:

– Gibt die Art des verwendeten Austauschs an
– Es gibt fünf vordefinierte generische Austauschtypen,

weitere Typen können pro DOI definiert werden

• Flags:

– Encrypt: wenn auf eins gesetzt, wird die Nutzlast nach dem
Header verschlüsselt

– Commit: wird für die Schlüsselsynchronisation verwendet

– Authenticate only: wenn auf eins gesetzt, wird nur der
Schutz der Datenursprungsauthentifizierung auf die
ISAKMP-Nutzdaten angewendet und keine Verschlüsselung
durchgeführt

• Nachrichten-ID: Dient zur Identifizierung von Nachrichten, die zu
verschiedenen Austauschen gehören

• Nachrichtenlänge: Gesamtlänge der Nachricht (Header + Payload)
• Nutzlast:

– Die Nutzlast einer ISAKMP-Nachricht kann tatsächlich
mehrere ,,verkettete” Nutzlasten enthalten

– Der Nutzlasttyp der ersten Nutzlast in der Nachricht wird
im nächsten Nutzlastfeld des ISAKMP-Headers angegeben

– Alle ISAKMP-Nutzdaten haben einen gemeinsamen
Nutzdaten-Header:

∗ Next Header: der Payload-Typ des nächsten Payloads
in der Nachricht

∗ Payload Length: Gesamtlänge der aktuellen Payload
(einschließlich dieses Headers)

ISAKMP - Begrenzter Schutz vor Denial of Service
• Die Initiator- und Responder-Cookies dienen auch als Schutz

gegen einfache Denial-of-Service-Angriffe:

– Authentifizierung und Schlüsselaustausch erfordern oft
,,teure” Berechnungen, z.B. Potenzierung (für
Diffie-Hellman Schlüsselaustausch)

– Um zu verhindern, dass ein Angreifer eine ISAKMP-Einheit
mit gefälschten Nachrichten von gefälschten Quelladressen
überschwemmen und diese teuren Operationen verursachen
kann, wird das folgende Schema verwendet:

∗ Die initiierende ISAKMP-Entität erzeugt einen
Initiator-Cookie: CKY − I =
H(SecretInitiator, AddressResponder, tInitiator)

∗ Der Responder generiert sein eigenes Cookie:
CKY − R =
H(SecretResponder, AddressInitiator, tResponder)

∗ Beide Entitäten schließen immer beide Cookies ein
und überprüfen immer ihr eigenes Cookie, bevor sie
eine teure Operation durchführen

∗ Der oben erwähnte Angriff wird daher nicht
erfolgreich sein, da der Angreifer eine Antwort von
dem angegriffenen System erhalten muss, um ein
Cookie von ihm zu erhalten

– ISAKMP spezifiziert die genaue
Cookie-Erzeugungsmethode nicht

ISAKMP - Nutzdatenarten
• RFC 2408 definiert verschiedene Nutzdaten von ISAKMP (Liste

ist nicht vollständig):

– Generische Payloads: Hash, Signatur, Nonce, Vendor ID,
Schlüsselaustausch

– Spezifische Payloads: SA, Zertifikat, Zertifikatsanforderung,
Identifikation

– Abhängige und gekapselte Nutzdaten:
∗ Proposal-Payload: beschreibt einen Vorschlag für die

SA-Verhandlung
∗ Transform-Payload: beschreibt eine Transformation

eines Proposals
– Außerdem gibt es eine generische Attribut-Nutzlast:

∗ Dies ist eigentlich kein ISAKMP-Payload, sondern ein
Payload, der innerhalb der ISAKMP-Payloads
erscheint.

∗ Alle Attribut-Payloads haben eine gemeinsame
Struktur

ISAKMP - Die Sicherheits-Assoziations-Nutzdaten
• Domain of Interpretation definiert die Anwendungsdomäne für die

auszuhandelnde SA, z.B. IPsec
• Situation ist ein DOI-spezifisches Feld, das die Situation angibt,

in der die aktuelle Verhandlung stattfindet (z. B. Notruf vs.
normaler Anruf)

• Auf den SA-Payload folgen ein oder mehrere Proposal-Payloads

ISAKMP - Die Vorschlagsnutzdaten
• Proposal # wird verwendet, um Richtlinien auszudrücken und

Vorschläge auszuhandeln:

– Wenn zwei oder mehr Vorschläge die gleiche Nummer
tragen, wird ein logisches UND realisiert.

– Unterschiedliche Werte für Proposal # realisieren logisches
OR mit absteigender Priorität

• Protocol ID gibt den Protokoll-Identifikator der aktuellen
Verhandlung an, z. B. AH oder ESP (für IPsec)

• SPI Size gibt die Länge des enthaltenen SPI-Wertes an
• Number of Transforms (Anzahl der Transformationen) gibt an,

wie viele Transformationen zu diesem Vorschlag gehören (diese
folgen unmittelbar auf die Nutzlast des Vorschlags)

ISAKMP - Die Transformations-Nutzdaten
• Eine Transform-Payload spezifiziert einen bestimmten

Sicherheitsmechanismus, auch Transform genannt, der zur
Sicherung des Kommunikationskanals verwendet werden soll.

• Jede in einem Vorschlag aufgeführte Transformation hat eine
eindeutige Transform #

• Jede Transformation wird durch eine Transform-ID eindeutig
identifiziert, z.B. 3DES, AES, MD5, SHA-1, etc.

• Die Transformations-IDs werden in einem DOI-Dokument
angegeben

• Die SA-Attribute geben die Attribute an, die für die im Feld
Transform ID angegebene Transformation definiert sind.

ISAKMP - SA-Verhandlung
• Inhalt des Next Payload-Feldes von SA-, Proposal- und

Transform-Payloads:

– Das Next-Payload-Feld einer SA-Payload gibt nicht die
unmittelbar folgende Proposal-Payload an, da diese implizit
ist.

– Das Gleiche gilt für Proposal- und Transform-Payloads

• Die Proposal-Payload gibt der initiierenden Entität die
Möglichkeit, der antwortenden Entität die Sicherheitsprotokolle
und zugehörigen Sicherheitsmechanismen zur Verwendung mit der
auszuhandelnden Sicherheitsassoziation zu präsentieren.

• Wenn die SA-Etablierung für eine kombinierte Schutzsuite
ausgehandelt wird, die aus mehreren Protokollen besteht, muss es
mehrere Proposal-Payloads geben, die jeweils die gleiche
Proposal-Nummer haben.

• Diese Vorschläge müssen als eine Einheit betrachtet werden und
dürfen nicht durch einen Vorschlag mit einer anderen
Vorschlagsnummer getrennt werden.

• Dieses erste Beispiel zeigt eine ESP- UND AH-Schutzsuite:

– Das erste Protokoll wird mit zwei von der vorschlagenden
Stelle unterstützten Transformationen dargestellt, ESP mit:

∗ Transformation 1 als 3DES
∗ Umwandlung 2 als AES
∗ Der Responder muss zwischen den beiden für ESP

vorgeschlagenen Transformationen wählen.

– Das zweite Protokoll ist AH und wird mit einer einzigen
Transformation angeboten:

∗ Umwandlung 1 als SHA

– Die resultierende Schutzsuite ist entweder
∗ 3DES und SHA, oder
∗ AES und SHA, je nachdem, welche

ESP-Transformation vom Responder gewählt wurde

– In diesem Fall folgen auf die SA-Nutzdaten die folgenden
Nutzdaten:

∗ ,,Vorschlag 1, ESP, (Transform 1, 3DES, ...),
(Transform 2, AES)” ,,Vorschlag 1, AH, (Transform 1,
SHA)”

– Bitte beachten Sie, dass dies zu zwei SAs pro Richtung
führt!

27/41

Network Security

• Dieses zweite Beispiel zeigt einen Vorschlag für zwei verschiedene
Schutzsuiten:

– Die erste Schutzsuite wird vorgestellt mit:

∗ einer Transformation (MD5) für das erste Protokoll
(AH), und

∗ eine Umwandlung (3DES) für das zweite Protokoll
(ESP)

– Die zweite Schutzsuite wird mit zwei Transformationen für
ein einziges Protokoll (ESP) vorgestellt:

∗ 3DES, oder
∗ AES

– Bitte beachten Sie, dass es nicht möglich ist, festzulegen,
dass Transformation 1 und Transformation 2 für eine
Instanz einer Protokollspezifikation verwendet werden
müssen.

– In diesem Fall folgen auf den SA-Payload die folgenden
Payloads:

∗ ,,Vorschlag 1, AH, (Transform 1, MD5, ...)”
,,Vorschlag 1, ESP, (Transform 1, 3DES, ...)”
,,Vorschlag 2, ESP, (Transform1, 3DES, ...),
(Transform 2, AES, ...)”

– Bitte beachten Sie, dass Vorschlag 1 zu zwei SAs pro
Richtung führt.

• Bei der Beantwortung einer Security-Association-Nutzlast muss
der Antwortende eine Security-Association-Nutzlast mit dem
ausgewählten Vorschlag senden, der aus mehreren
Proposal-Nutzlasten und den zugehörigen Transform-Nutzlasten
bestehen kann

• Jede der Proposal-Payloads muss eine einzelne Transform-Payload
enthalten, die dem Protokoll zugeordnet ist.

• Der Antwortende sollte das Feld Proposal # in der
Proposal-Payload und das Feld Transform # in jeder
Transform-Payload des ausgewählten Vorschlags beibehalten.

– Die Beibehaltung der Vorschlags- und
Transformationsnummern sollte die Protokollverarbeitung
des Initiators beschleunigen, da die Auswahl des
Antwortenden nicht mit jeder angebotenen Option
verglichen werden muss.

– Diese Werte ermöglichen es dem Initiator, den Vergleich
direkt und schnell durchzuführen.

• Der Initiator muss überprüfen, ob die vom Responder empfangene
SA-Nutzlast mit einem der ursprünglich gesendeten Vorschläge
übereinstimmt

ISAKMP - Session Key Establishment
• ISAKMP baut 4 verschiedene Schlüssel mit einem

Authentifizierungsaustausch auf:

– SKEYID ist eine Zeichenkette, die aus geheimem Material
abgeleitet wird, das nur den aktiven Teilnehmern des
Austauschs bekannt ist und als ,,Hauptschlüssel” dient.

– Die Berechnung von SKEYID ist abhängig von der
Authentifizierungsmethode

– SKEYID e ist das Schlüsselmaterial, das von der ISAKMP
SA zum Schutz der Vertraulichkeit ihrer Nachrichten
verwendet wird

– SKEYID a ist das Schlüsselmaterial, das von der ISAKMP
SA zur Authentifizierung ihrer Nachrichten verwendet wird

– SKEYID d ist das Verschlüsselungsmaterial, das zur
Ableitung von Schlüsseln für
Nicht-ISAKMP-Sicherheitsassoziationen verwendet wird.

IKE - Einführung
• Während ISAKMP die grundlegenden Datenformate und

Verfahren zur Aushandlung beliebiger SAs definiert, spezifiziert
der Internet Key Exchange das standardisierte Protokoll zur
Aushandlung von IPsec SAs

• IKE definiert fünf Austauschvorgänge:

– Phase-1-Austausch für die Einrichtung einer IKE SA :

∗ Main-Mode-Austausch, der durch 6 ausgetauschte
Nachrichten realisiert wird

∗ Aggressive mode exchange, der nur 3 Nachrichten
benötigt

– Phase 2 Austausch für die Einrichtung von IPsec SAs:

∗ Quick-Mode-Austausch, der mit 3 Nachrichten
realisiert wird

– Andere Austausche:

∗ Informationsaustausch zur Übermittlung von Status-
und Fehlermeldungen

∗ Neuer Gruppenaustausch zur Vereinbarung von
privaten Diffie-Hellman-Gruppen

• Hinweis: Auf den folgenden Folien steht HMAC(K, x — y — ...)
für H(K, p 1 , H(K, p 2 , x, y, ...)), wobei p 1 und p 2
Auffüllmuster bezeichnen

IKE - Berechnung von IKE-Sitzungsschlüsseln
• IKE baut vier verschiedene Schlüssel mit einem

Authentifizierungsaustausch auf:

– SKEYID ist eine Zeichenkette, die aus geheimem Material
abgeleitet wird, das nur den aktiven Teilnehmern des
Austauschs bekannt ist, und die als ,,Hauptschlüssel” dient.

∗ Die Berechnung von SKEYID ist abhängig von der
Authentifizierungsmethode

– SKEYID d ist das Keying-Material, das zur Ableitung von
Schlüsseln für Nicht-IKE-SAs verwendet wird

∗ SKEY IDd =
HMAC(SKEY ID, gxy|CKY − I|CKY − R|0),
wobei gxy das gemeinsame Diffie-Hellman-Geheimnis
bezeichnet

– SKEYID a ist das Schlüsselmaterial, das von der IKE SA
zur Authentifizierung ihrer Nachrichten verwendet wird

∗ SKEYID a =
HMAC(SKEY ID, SKEY IDd|gxy|CKY −
I|CKY − R|1)

– SKEYID e ist das Schlüsselmaterial, das von der IKE SA
zum Schutz der Vertraulichkeit ihrer Nachrichten
verwendet wird

∗ SKEYID e =
HMAC(SKEY ID, SKEY IDa|gxy|CKY −
I|CKY − R|2)

• Falls erforderlich, werden die Schlüssel nach der folgenden
Methode erweitert:

– K = (K1|K2|...) mit Ki = HMAC(SKEY ID,Ki−1) und
K0 = 0

IKE - Authentifizierungsmethoden
• Phase 1 IKE-Austausche werden mit Hilfe von zwei Hash-Werten

Hash-I und Hash-R authentifiziert, die vom Initiator und vom
Responder erstellt werden:

– Hash-I = HMAC(SKEYID, gx — gy — CKY-I — CKY-R
— SA-Angebot — ID-I)

– Hash-R = HMAC(SKEYID, gy — gx — CKY-R — CKY-I
— SA-offer — ID-R) wobei gx, gy die ausgetauschten
öffentlichen Diffie-Hellman-Werte bezeichnen ID-I, ID-R
bezeichnen die Identität des Initiators und des Responders
SA-offer bezeichnet die Nutzdaten bezüglich der
SA-Verhandlung

• IKE unterstützt vier verschiedene Methoden der
Authentifizierung:

– Pre-shared Key:

∗ SKYEID =
HMAC(KInitiator, Responder, rInitiator|rResponder)

– Zwei verschiedene Formen der Authentifizierung mit
Public-Key-Verschlüsselung:

∗ SKEY ID =
HMAC(H(rInitiator, rResponder), CKY − I|CKY −
R)

– Digitale Unterschrift:

∗ SKEY ID = HMAC((rInitiator|rResponder), gxy)
∗ Da in diesem Fall SKEYID selbst keine

Authentifizierung bietet, werden die Werte Hash-I und
Hash-R vom Initiator/Responder signiert

IKE - Main Mode Austausch mit Pre-Shared Key
• Die folgenden Beschreibungen listen die ausgetauschten ISAKMP-

und IKE-Payloads auf, wenn verschiedene ,,Flavors” der
IKE-Authentifizierung durchgeführt werden:

– Ni, Nr bezeichnen rInitiiator, rResponder (IKE-Notation)
– IDi, IDr bezeichnen die Identität des Initiators und des

Responders
– KE bezeichnet die öffentlichen Werte eines

DH-Austausches

• Bitte beachten Sie, dass Hash-I und Hash-R nicht signiert werden
müssen, da sie bereits ,,ein authentisches Geheimnis” (Pre-Shared
Key) enthalten

IKE - Hauptmodus Austausch mit Signaturen

•
– (m) gibt an, dass m optional ist
– I, ,m′′ bedeutet, dass I m signiert

• Bitte beachten Sie, dass Hash-I und Hash-R signiert werden
müssen, da sie nichts enthalten, von dem bekannt ist, dass es
authentisch ist

IKE - Main Mode Exchange mit Public Key
Encryption

•
– wobei: m+KI bedeutet, dass m mit dem öffentlichen

Schlüssel +KI verschlüsselt ist
– Bitte beachten Sie, dass Hash-I und Hash-R nicht signiert

werden müssen, da sie die ausgetauschten Zufallszahlen Ni
bzw. Nr ,,enthalten”.

∗ Jede Entität beweist also ihre Authentizität, indem
sie die empfangene Zufallszahl (Ni oder Nr) mit
ihrem privaten Schlüssel entschlüsselt

– wobei: m+KI bedeutet, dass m mit dem öffentlichen
Schlüssel +KI verschlüsselt ist

– mKi bedeutet, dass m mit dem symmetrischen Schlüssel

Ki mit Ki = H(Ni, CKY − I) und
Kr = H(Nr, CKY − R) verschlüsselt ist

– Bitte beachten Sie, dass alle bisher beschriebenen Schemata
einen Schutz der Identität vor Abhörern im Internet bieten,
da die IDs und Zertifikate nicht im Klartext gesendet
werden:

– Die IP-Adressen der ausgetauschten Pakete sind jedoch
immer lesbar...

28/41

Network Security

IKE - Aggressiver Modus Austausch mit Pre-Shared
Key

• Da die Identität des Initiators und des Responders gesendet
werden muss, bevor ein Sitzungsschlüssel erstellt werden kann,
kann der Austausch im aggressiven Modus keinen Identitätsschutz
vor Abhörern bieten

• Ähnliche Varianten des aggressiven Modus gibt es auch für die
Authentifizierung mit:

– Digitale Signatur
– Verschlüsselung mit öffentlichem Schlüssel

IKE - Quick Mode Exchange
• Hash1 =
HMAC(SKEY IDa,M − ID|SA|Ni|, , |KE′′, , |IDci|ID′′cr)

• Hash2 =
HMAC(SKEY IDa,M − ID|Ni|SA|Nr|, , |KE′′, , |IDci|ID′′cr)

• Hash3 = HMAC(SKEY IDa, 0|M − ID|Ni|Nr)
• Die optionale Einbeziehung der Identitäten IDci und IDcr

ermöglicht es ISAKMP-Entitäten, eine SA im Namen anderer
Clients einzurichten (Gateway-Szenario)

• Die optionalen Schlüsselaustausch-Payloads KE ermöglichen die
Durchführung eines neuen DH-Austauschs, wenn perfekte
Forward Secrecy gewünscht ist

• Sitzungsschlüsselmaterial
= HMAC(SKEY IDd, , , g

xy|′′protocol|SPI|Ni|Nr)

Weitere Probleme mit IPsec
• Komprimierung:

– Wenn Verschlüsselung verwendet wird, dann können die
resultierenden IP-Pakete nicht in der Verbindungsschicht
komprimiert werden, z.B. bei einer Verbindung zu einem
ISP über Modem

– Daher wurde das IP Payload Compression Protocol (PCP)
definiert

– PCP kann mit IPsec verwendet werden:
∗ In der IPsec-Policy-Definition kann PCP festgelegt

werden.
∗ Die IKE SA-Verhandlung ermöglicht die Aufnahme

von PCP in die Vorschläge

• Interoperabilitätsprobleme bei End-to-End-Sicherheit mit
Header-Verarbeitung in Zwischenknoten:

– Interoperabilität mit Firewalls:

∗ Die Ende-zu-Ende-Verschlüsselung kollidiert mit der
Notwendigkeit von Firewalls, die Protokoll-Header der
oberen Schichten in IP-Paketen zu prüfen.

– Interoperabilität mit Network Address Translation (NAT):

∗ Verschlüsselte Pakete lassen weder eine Analyse noch
eine Änderung der Adressen zu.

∗ Authentifizierte Pakete werden verworfen, wenn die
Quell- oder Zieladresse geändert wird.

Schlussfolgerung
• IPsec ist die Sicherheitsarchitektur der IETF für das

Internet-Protokoll
• Sie bietet die folgenden Sicherheitsdienste für IP-Pakete:

– Authentifizierung der Datenherkunft
– Schutz vor Wiederholung
– Vertraulichkeit

• Es kann in Endsystemen oder Zwischensystemen realisiert werden:

– Implementierung im Endsystem: Integriertes
Betriebssystem oder ,,bump in the stack”

– Gateway-Implementierung: Integrierter Router oder ,,bump
in the wire”

• Es wurden zwei grundlegende Sicherheitsprotokolle definiert:

– Authentifizierungs-Header (AH)

– Encapsulating security payload (ESP)

• SA-Verhandlung und Schlüsselverwaltung werden mit folgenden
Protokollen realisiert:

– Internet security association key management protocol
(ISAKMP)

– Internet-Schlüsselaustausch (IKE)

Neue Wege in der IPsec-Entwicklung
• Internet-Schlüsselaustausch Version 2

– Basierend auf den Erkenntnissen aus IKEv1
– Wesentliche Vereinfachungen

• Netzwerkadressübersetzung (NAT)

– Beispiel für Probleme mit NAT und IPsec
– NAT-Überwindung
– Bound-End-to-End Tunnel Mode (BEET)

• Konfiguration von großen IPsec-Infrastrukturen

Internet Key Exchange Protocol Version 2
,,RFC5996”
Zusätzliche Designziele zu IKEv1

• Konsolidierung von mehreren IKEv1-RFCs (und mehreren
Erweiterungen)

– Erleichterung für Entwickler und Prüfer
– Klärung mehrerer unspezifischer Punkte

• Vereinfachungen

– Anzahl der verschiedenen Schlüsselaustauschverfahren auf
eines reduziert

– Verschlüsselung wie in ESP
– Einfacher Anfrage/Antwort-Mechanismus

• Verringerung der Latenzzeit
• Aushandlung von Verkehrsselektoren
• Graceful Changes, damit bestehende IKEv1-Software aufgerüstet

werden kann

IKEv2 - Schlüsselaustauschverfahren

•
– K Schlüssel abgeleitet durch
PRF (PRF (Ni||Nr, gir), Ni||Nr||SPIi||SPIr)

– PRF ,,irgendeine” Pseudozufallsfunktion - in der Regel
eine asymmetrische HMAC SIG-Signatur oder MAC über
die ersten beiden Nachrichten

– SAEx ein Huckepack- ,,Quick-Mode-Austausch”

• Nur ein einziger Austauschtyp
• Vier Nachrichten werden ausgetauscht (= 2 ∗ RTT)

• Initiator löst alle erneuten Übertragungen aus

IKEv2 - Eigenschaften des
Schlüsselaustauschverfahrens

• Der erste SA-Austausch erfolgt huckepack

– Geringere Latenz, da eine RTT eingespart wird

• Nachricht 4 sollte huckepack mit Nachricht 2 ausgetauscht
werden, aber

– Nachricht 3 verifiziert, dass Initiator Nachricht 2 erhalten
hat (SPI ˜ Cookie)

∗ Dient als DoS-Schutz, wenn anschließend
rechenintensive Aufgaben durchgeführt werden

– Identität des Responders wird erst nach Verifizierung des
Initiators offengelegt

∗ Schützt vor dem Scannen nach einer Partei mit einer
bestimmten ID

– Initiator weiß nicht, wann es sicher ist, Daten zu senden

∗ (Pakete können in falscher Reihenfolge empfangen
werden)

– Würde eine kompliziertere Strategie zur erneuten
Übertragung erfordern

– Responder kann nicht über eine Policy für die Child SA
entscheiden

IKEv2 - Zusätzliche Funktionen
• Zusätzlicher DoS-Schutz

– Im Falle eines DoS-Angriffs kann der Responder den
Initiator auffordern, ein zustandsloses Cookie zu senden

– Fügt dem Austausch 2 zusätzliche Nachrichten hinzu

• Dead Peer Detection

– Regelmäßige IKE-Anfragen, um festzustellen, ob die SA
gelöscht werden kann

• Flexiblere Verhandlungstechniken

– Möglichkeit der Angabe: ,,Verwenden Sie eine dieser
Chiffren mit einem dieser Authentifizierungsalgorithmen”
(es müssen nicht mehr alle Kombinationen aufgezählt
werden)

– Verkehrsselektoren können eingegrenzt werden

∗ Initiator: ,,Ich möchte 192.168.0.0/16 für meinen
Tunnelmodus verwenden”

∗ Antwortgeber: ,,OK, aber Sie dürfen nur
192.168.78.0/24 verwenden”

∗ Kann verwendet werden, um den Responder dem
Initiator einen Adressbereich zuweisen zu lassen (in
einfachen Situationen ohne / mit Hilfe von DHCP;
siehe auch unten)

Netzwerk-Adressübersetzung (NAT)
• Heutzutage ein häufiges Problem: ISP stellt nur eine einzige

IP-Adresse zur Verfügung, es sollen aber mehrere Geräte
angeschlossen werden

• Lösung: Ein Router wird verwendet, um mehrere interne (private)
Adressen auf eine einzige externe (öffentliche) Adresse abzubilden

• Häufigster Ansatz (vereinfacht):

– Für Pakete, die von der privaten Seite kommen:

∗ Der Router schreibt die TCP/UDP-Quellports auf
einen eindeutigen Wert pro IP-Flow um

∗ Speichert den neuen Quellport in einer Tabelle mit
der Quelladresse und dem alten Quellport

∗ Ersetzt die Quell-IP-Adresse durch die externe
Adresse

– Für Pakete, die von der öffentlichen Seite kommen:

∗ Der Router sucht den IP-Fluss nach dem
TCP/UDP-Zielport ab

∗ Ersetzt die Zieladresse und den Port durch die alten
Werte

NAT - Ein Beispiel

• NAT ändert die Quelladresse eines jeden Pakets in eine öffentliche
IP-Adresse mit anderen (,,umgeschriebenen,,) Quellports

29/41

Network Security

Probleme mit NAT und IPsec - NAT-Traversal
• Probleme:

– AH kann per Definition nicht mit NAT verwendet werden
– ESP bietet kein ,,wiederbeschreibbares Feld” (wie

Portnummer)
– TCP/UDP-Portnummern werden verschlüsselt oder

authentifiziert (oder beides)

• Lösung für ESP: ESP-Pakete in normale UDP-Pakete einkapseln
• UDP-Header enthält nur Portnummern und leere Prüfsumme

– Fügt 8 Byte Overhead hinzu
– Einziger Zweck: dem NAT-Gerät etwas zum ,,Umschreiben”

geben (um die Empfänger der Pakete in der Antwort
unterscheiden zu können)

– Port 4500 reserviert für NAT-T (NAT-Traversal)

• Im Transport-Modus:

– Innere UDP/TCP-Prüfsumme hängt von der
ursprünglichen Quelladresse ab (Layering-Verletzung in der
ursprünglichen TCP/IP-Suite)

– Muss wiederhergestellt werden

• Wann ist NAT-T zu verwenden?

– NAT-Situation muss von IKE erkannt werden
– Erfolgt durch IKEv1-Erweiterung ,,RFC3947” und IKEv2
– IKE verwendet NAT-T, wenn der IKE-Quellport nicht 500

ist
– Funktioniert nicht immer, dann ist eine manuelle

Konfiguration erforderlich

• Timeout-Probleme und Keep-Alives

– ESP-Pakete werden nicht periodisch ausgetauscht
– NAT-T-Ströme können im Router eine Zeitüberschreitung

verursachen
– Eingehende Pakete können dann nicht zugestellt werden
– Regelmäßige Keep-Alive-Pakete stellen sicher, dass der

Router seinen Status beibehält
– Einfaches UDP-Paket an Port 4500 mit einem einzigen

0xFF-Oktett

Probleme mit NAT und IPsec - BEET-Modus
• Welche Adressen soll Alice verwenden, um Pakete an Bob,

Charlie und Dave zu senden?
• Weder die externen noch die internen Adressen dürfen eindeutig

sein!

– Bobs und Charlies Pakete haben beide die gleiche externe
Adresse

– Bobs und Daves Pakete haben beide dieselbe interne
Adresse

– Die Verwendung interner oder externer Adressen ist
unsicher (Warum?)

– Die Unterscheidung erfordert virtuelle Adressen...

• Virtuelle IP-Adressen zuweisen oder aushandeln

– Alice muss jedem ihrer Peers eindeutige virtuelle Adressen
zuweisen

– Dies kann manuell geschehen, oder
– durch DHCP über IKE, oder
– durch Aushandlung von Verkehrsselektoren (IKEv2)
– L2TP über IPsec ausführen

• IPsec-Tunnelmodus ist erforderlich

– Externer IP-Header trägt entweder eine öffentliche
IP-Adresse oder eine private NAT-Adresse

– Interner IP Header trägt virtuelle IP-Adresse
– Führt zu (mindestens!) 28 Bytes Overhead pro Paket in

NAT-Situationen
– — IP Header — UDP Header — ESP Header — IP Header

— geschützte Daten —

• Aber eigentlich sind nur Adressfelder im inneren IP-Header
erforderlich (alle anderen Felder können vom externen Header
abgeleitet werden)

• Beide virtuellen Adressfelder verwenden immer dieselben
Adressen (kein Multiplexing wie in üblichen
Tunnelmodusszenarien)

• Die Beschränkung auf zwei Adressen im Tunnel ermöglicht eine
statische Bindung während der IKE-Aushandlung

• Der Bound-End-to-End-Tunnel (BEET)-Modus ,,NiMe08” verhält
sich semantisch wie eine Tunnelmodus-Assoziation mit einem
Verkehrsselektor für einen einzelnen Host (/32)

• Die übertragenen ESP-Pakete sind äquivalent zu Transport
(!)-Modus-Paketen (virtuelle Adressen werden nie in Paketen
übertragen)

• Der innere Header wird durch den ESP-Entkapselungsprozess
wiederhergestellt.

• Unterscheidet zwischen der Erreichbarkeit eines Hosts (externe
IP-Adresse) und seiner Identität (virtuelle IP-Adresse)

• Hosts können nun zwischen verschiedenen Standorten hin- und
herwandern und ihre virtuelle IP-Adresse beibehalten (dies
ermöglicht zusätzlich eine bessere Unterstützung der Mobilität)

Konfiguration großer IPsec-Infrastrukturen
• Kommunikationsinfrastrukturen von Unternehmen und Behörden:
• Kann komplexe Overlay-Topologien bilden

– Verschachtelt
– Kreisläufe
– Mehrere Sicherheitsgateways pro privatem Netzwerk
– Mehrere private Netze pro Gateway
– Private Adressbereiche in privaten Netzen
– QoS und sicheres IP-Multicast können erforderlich sein

• Kann bis zu Tausende von Sicherheits-Gateways haben
• Kann sich dynamisch ändern

– Hinzufügen und Entfernen von Sicherheitsgateways
– Ausfälle von Verbindungen und Knoten
– Denial-of-Service-Angriffe
– Mobile Sicherheitsgateways (z. B. für die Kommunikation

im Katastrophenfall)

• Muss natürlich sicher sein ...

Probleme bei der manuellen Konfiguration der
IPsec-Infrastruktur

• Die IETF hat keine Methode zur automatischen Konfiguration
und zum Einsatz von IPsec in großen Szenarien definiert

• Daher werden Sicherheits-Gateways in der Regel manuell
konfiguriert

– Die Anzahl der Sicherheitsrichtlinieneinträge wächst
quadratisch mit der Anzahl der Sicherheitsgateways

– Problem der Skalierbarkeit
∗ Der Administrationsaufwand wächst ⇒ Die Kosten

steigen
∗ Administratoren machen potenziell mehr

Konfigurationsfehler, z.B. vergessen, einen Eintrag aus
einem SPD zu löschen oder einen zu großen IP-Bereich
zuzulassen, usw. ⇒ Mögliche Sicherheitsprobleme

• Problem der Agilität

– Keine dynamische Anpassung der VPN-Topologie
– Begrenzte Unterstützung mobiler Sicherheits-Gateways

Automatische IPsec-Konfiguration - einige
Anforderungen

• Funktionelle Anforderungen

– Muss manuelle Eingriffe minimieren
– Muss auch komplexe Infrastrukturen unterstützen

(verschachtelte Topologien mit privaten Adressbereichen
usw.)

– Muss nur Unicast verwenden (da Multicast usw. nicht weit
verbreitet ist)

• Nicht-funktionale Anforderungen

– Muss robust sein, d. h. stabil auf schwierige
Netzbedingungen reagieren

– Sie muss sicher sein, insbesondere darf sie nicht schwächer
sein als eine manuell konfigurierte IPsec-Infrastruktur

– Sie muss in Bezug auf die Anzahl der Sicherheits-Gateways
skalierbar sein

– Es muss sich schnell an neue Topologien anpassen können.

Verschiedene Ansätze für die automatische
IPsec-Konfiguration

• IPsec-Richtlinienverteilung über zentrale Server
• Gruppenverschlüsseltes Transport-VPN (GET)
• Tunnel-Endpunkt-Erkennung (TED)
• Dynamisches Mehrpunkt-VPN (DMVPN)
• Proaktives Multicast-basiertes IPsec-Erkennungsprotokoll
• Soziales VPN
• Sicheres OverLay für IPsec-Erkennung (SOLID)

IPsec-Richtlinienverteilung durch zentrale Server
• Einfacher, gemeinsamer Ansatz zur Konfiguration einer großen

Anzahl von Sicherheits-Gateways
• Zentraler Policy Server statisch in jedem Gateway konfiguriert
• Jedes Gateway kontaktiert den Policy Server, um SPD zu

aktualisieren
• Beispiel: Microsoft Active Directory, verschiedene Militärprodukte
• Einige offensichtliche Probleme:

– Administratoren müssen die zentrale Datenbank manuell
bearbeiten

– Verschachtelte Topologien sind schwer zu realisieren
– Skalierbarkeitsprobleme aufgrund von Engpässen
– Verfügbarkeit ist schwer zu garantieren (Single Point of

Failure)
– Dynamische Topologien erfordern, dass neue Richtlinien

proaktiv an die Sicherheitsgateways übermittelt werden
(auch wenn sie derzeit vielleicht nicht verwendet werden)

– Viele Richtlinieneinträge werden höchstwahrscheinlich nie
verwendet (kein Verkehr)

Tunnel Endpoint Discovery (TED)
• Proprietärer Ansatz von Cisco ,,Fluh01”
• Sicherheitsassoziationen werden reaktiv erstellt

– Alice sendet Paket an Bob
– Gateway A erkennt, dass keine gültige SA vorhanden ist
– Verwerfen des Pakets und Senden des IKE-Pakets an Bob
– Gateway B fängt IKE-Paket ab
– Richtet SA zu Gateway A ein
– Nachfolgende Pakete zwischen Alice und Bob können

übertragen werden

• Ziemlich leistungsfähiger, sicherer Ansatz, aber

– Routing muss im Transportnetz durchgeführt werden
– Keine privaten IP-Adressbereiche
– Keine verschachtelten Topologien

Gruppenverschlüsseltes Transport-VPN (GET)
• Cisco Produktbranding mehrerer IPsec-Komponenten ,,Bhai08”
• Sicherheits-Gateways kontaktieren zentralen IKE-Server
• IKE-Server verteilt symmetrische Schlüssel (bevorzugt über

Multicast)
• Alle Sicherheitsgateways einer Gruppe verwenden dieselbe SA

(einschließlich SPI, Schlüssel)
• Wiederholungsschutz durch Zeitfenster (1-100 Sekunden)

– Sliding-Window-Mechanismus funktioniert nicht, da
mehrere Absender denselben SPI verwenden

• Zusätzliche Probleme mit zentralen Policy-Servern:

– schwacher Wiedergabeschutz

30/41

Network Security

– Die Kompromittierung eines einzelnen Gateways
beeinträchtigt das gesamte VPN

– Rekeying durch symmetrischen Austausch ⇒ kann nicht
von kompromittierten Schlüsseln wiederhergestellt werden

– Perfektes Vorwärtsgeheimnis nicht verfügbar

• Einziger Vorteil: Ermöglicht Multicast-Netzwerkprivatisierung

Proaktives Multicast-basiertes
IPsec-Erkennungsprotokoll

• Ansatz wurde für militärische Anwendungen entwickelt ,,Tran06”
• Sicherheits-Gateways kündigen periodisch private Netzwerke an
• Erfolgt durch Transportnetzwerk-Multicast
• Nachrichten werden durch einen vorab geteilten symmetrischen

Schlüssel geschützt
• Vorteile: Unterstützt private Adressbereiche, Multicast innerhalb

des VPN
• Probleme:

– Erfordert Transportnetz-Multicast
– Verschachtelte Topologien funktionieren nicht
– Anzahl der empfangenen Nachrichten kann ziemlich groß

sein
– Ein kompromittiertes Gateway führt zu einer nicht

wiederherstellbaren Kompromittierung des VPN
– Replay-Schutz nicht berücksichtigt

Soziales VPN
• Akademischer Ansatz ,,FBJW08”
• Verwendet Facebook als ,,policy” Server zum Austausch von IKE

Zertifikaten

– Man kann mit Freunden kommunizieren

• Agilität durch Peer-to-Peer-Netzwerk

– Schaut in einer verteilten Hash-Tabelle nach der externen
IP-Adresse des Ziels

• Probleme

– Keine Gateway-Funktionalität (nur Ende-zu-Ende)
– Keine verschachtelten Topologien
– Ziemlich großer Paket-Overhead
– Schlechte Skalierbarkeit im Falle vieler potentieller

Kommunikationspartner
– Sicherheit

∗ Vertrauen Sie Facebook?
∗ Wissen Sie, ob die Person in Facebook wirklich die ist,

die sie behauptet?
∗ Überhaupt keine Verifizierung möglich

Dynamisches Mehrpunkt-VPN (DMVPN)
• Ein weiterer Ansatz von Cisco ,,Bhai08”
• VPN ist aufgeteilt in

– Statische Kern-Gateways (,,Hubs”)
– Dynamische periphere Gateways (,,Spokes”)

• Hubs können OSPF-Routing zwischen den anderen nutzen
• Spokes kontaktieren vorkonfigurierte Hubs für den Zugang zum

VPN
• Dynamische ,,Spoke-to-Spoke”-Verbindungen optimieren den

Datenfluss

Dynamisches Mehrpunkt-VPN (DMVPN) -
Diskussion

• Vorteile

– Ansatz ermöglicht dynamischere Topologien
– Kann private Adressen verwenden

• Nachteilig

– Erfordert immer noch erheblichen Konfigurationsaufwand

∗ Kernnetz muss manuell konfiguriert werden

∗ Spokes müssen mit den Adressen der Hubs
konfiguriert werden

∗ Macht z.B. einen einfachen Wechsel zu einem neuen
ISP unmöglich

– Spokes können nicht verschachtelt werden
– Spokes können sich nicht zwischen ,,Hubs” bewegen

∗ Hub verhält sich wie MobileIP Home Agent für Spoke

– Ausfall von ,,Hubs” kritisch für deren ,,Spokes”

Sicheres OverLay für IPsec-Erkennung (SOLID)

• Komplexer Ansatz, verspricht einfache Implementierung ,,RSS10”
• Sicherheitsgateways bilden ein strukturiertes Overlay-Netzwerk

– Verbindet Sicherheitsgateways so, dass das VPN effizient
nach einer Zieladresse durchsucht werden kann

• Erfordert nur sehr wenige proaktiv erstellte IPsec-Verbindungen

– Minimale Konnektivität ermöglicht eine reaktive
Erkennung von Sicherheitsgateways

– Sich bewegende Sicherheitsgateways müssen nicht alle
anderen über die aktuelle externe IP-Adresse informieren

• Drei Aufgaben zu erfüllen

– Topologie-Kontrolle

∗ Proaktiver Aufbau einer VPN-Struktur zur schnellen
Erkennung

– Erkennung von Sicherheitsgateways

∗ Jedes Mal, wenn ein Client-Computer ein Paket
sendet und keine gültige SA gefunden wird

∗ Muss das entsprechende Sicherheits-Gateway finden,
um reaktiv eine SA zu erstellen

– Weiterleitung von Datenpaketen

∗ Suche nach einem effizienten Weg zur Weiterleitung
von Paketen durch das Overlay

SOLID - Topologie-Kontrolle

• Mechanismen zur Topologiekontrolle

– Kontinuierliche Aktualisierung der VPN-Struktur zur
Anpassung an Veränderungen

• In SOLID werden proaktiv SAs erstellt, um eine künstliche
Ringstruktur zu bilden

• Sicherheitsgateways sind nach inneren Adressen geordnet
• Gateways, die nicht direkt im Transportnetz kommunizieren

können, werden durch virtuelle Pfade verbunden ⇒
Verschachtelte Strukturen werden abgeflacht, um eine einfache
Erkennung zu ermöglichen

SOLID - Erkennung

• Reaktive Erkennung, um ein Sicherheits-Gateway für eine
bestimmte Client-IP-Adresse zu finden

• Suchanfragen werden an das (bereits zugeordnete) Gateway
weitergeleitet, dessen innere IP-Adresse der gesuchten IP-Adresse
,,am ähnlichsten” ist

– Ein einfacher Mechanismus stellt sicher, dass das korrekte
entsprechende Sicherheits-Gateway gefunden wird

– Die Pakete werden entlang der Ringstruktur gesendet
– Benötigt O(n) Overlay Hops, um das Ziel zu erreichen

(wobei n die Anzahl der Netzwerke in der VPN-Topologie
ist)

• ⇒ Kürzere ,,Suchpfade” erforderlich

SOLID - Mehr Topologiekontrolle

• Erweiterte Topologiekontrolle schafft zusätzliche SAs
• IP-Adressraum des VPN wird in Bereiche unterteilt

– Exponentiell wachsende Größe der Bereiche

• Zu jedem Bereich wird mindestens eine SA proaktiv von jedem
Gateway gehalten

• Anzahl der zusätzlichen SAs wächst in O(log n)
• Aufgrund der Konstruktionstechnik Entdeckung in O(log n)

Overlay Hops ⇒ Ansatz skaliert gut mit Anzahl der Netzwerke

SOLID - Weiterleitung von Datenpaketen

• Nach der anfänglichen Erkennung müssen die Datenpakete
weitergeleitet werden

• Senden von Daten entlang des Entdeckungspfades möglich

– Länge wieder O(log n) Overlay-Hops
– Zu ineffizient, wenn viele Pakete geroutet werden müssen
– Wird nur anfangs verwendet

• Nachfolgend wird der Pfad optimiert

– Optimierung erfolgt, wenn Gateway feststellt, dass es
Pakete für zwei Gateways weiterleitet, die sich im gleichen
Netz befinden

– Führt in zyklusfreien VPNs zu optimalen Routen in Bezug
auf die Anzahl der Overlay-Sprünge

– Kleine Zyklen können lokal umgangen werden

SOLID - Eigenschaften und Ergebnisse

• Kann komplexe Infrastrukturen innerhalb von Sekunden oder
Minuten konfigurieren

• Erfordert keine manuelle Interaktion
• Erfordert keine besonderen Eigenschaften des Transportnetzes
• Robustheit

– Kein einzelner Ausfallpunkt
– Wenn das Netzwerk aufgeteilt wird, können die Teile

unabhängig voneinander arbeiten

• Keine Schwächung der von Standard-IPsec gebotenen Sicherheit
• Gute Skalierbarkeit mit der Anzahl der privaten Netze, keine

Engpässe
• Wenn Sicherheitsgateways umziehen, müssen nur zwei SAs

wiederhergestellt werden, um die Erreichbarkeit zu gewährleisten

SOLID - Simulative Bewertung

• SOLID kann in OMNeT++ evaluiert werden
• Ermöglicht Tests von komplexen Szenarien

SOLID - Sonstige Forschung

• SOLID wird in der Gruppe Telematik/Computernetzwerke
erforscht

• Entwicklung von Prototypen
• Verfügbarkeit

– Schutz des wichtigeren Kernnetzes vor DoS-Angriffen
– Schaffung eines mehrschichtigen VPN, das bestimmte

Verkehrsflüsse zwischen Sicherheits-Gateways verhindert

• Zugriffskontrolle
• Robustheit

– Proaktive Wiederherstellung bei Netzwerkausfällen

• Anwendungsschicht-Multicast

– Ermöglicht sicheres Multicast über reine Unicast-Netze

31/41

Network Security

Sicherheitsprotokolle der Transportschicht
Anwendungsbereich von Sicherheitsprotokollen
der Transportschicht

• Die Transportschicht sorgt für die Kommunikation zwischen
Anwendungsprozessen (anstelle der Kommunikation zwischen
Endsystemen) und ihre Hauptaufgaben sind:

– Isolierung höherer Protokollschichten von der Technologie,
der Struktur und den Unzulänglichkeiten der eingesetzten
Kommunikationstechnik

– Transparente Übertragung von Nutzdaten
– Globale Adressierung von Anwendungsprozessen,

unabhängig von Adressen der unteren Schichten
(Ethernet-Adressen, Telefonnummern usw.)

– Gesamtziel: Bereitstellung eines effizienten und
zuverlässigen Dienstes

• Sicherheitsprotokolle der Transportschicht zielen darauf ab, den
Dienst der Transportschicht zu verbessern, indem sie zusätzliche
Sicherheitseigenschaften gewährleisten

– Da sie in der Regel einen zuverlässigen Transportdienst
voraussetzen und darauf aufbauen, stellen sie nach der
Terminologie des OSI-Referenzmodells (Open Systems
Interconnection) eigentlich Sitzungsschichtprotokolle dar.

– Da OSI jedoch nicht mehr ,,en vogue” ist, werden sie als
Sicherheitsprotokolle der Transportschicht bezeichnet

Das Secure Socket Layer (SSL) Protokoll
• SSL wurde ursprünglich in erster Linie zum Schutz von

HTTP-Sitzungen entwickelt:

– In den frühen 1990er Jahren gab es ein ähnliches Protokoll
namens S-HTTP

– Da jedoch S-HTTP-fähige Browser nicht kostenlos waren
und SSL Version 2.0 in den Browsern von Netscape
Communications enthalten war, setzte es sich schnell durch.

– SSL v.2 enthielt einige Schwachstellen, weshalb die
Microsoft Corporation ein konkurrierendes Protokoll
namens Private Communication Technology (PCT)
entwickelte.

– Netscape verbesserte das Protokoll und SSL v.3 wurde zum
De-facto-Standardprotokoll für die Sicherung des
HTTP-Verkehrs.

– Dennoch kann SSL eingesetzt werden, um beliebige
Anwendungen zu sichern, die über TCP laufen.

– 1996 beschloss die IETF, ein allgemeines Transport Layer
Security (TLS) Protokoll zu spezifizieren, das auf SSL
basiert

SSL-Sicherheitsdienste
• Peer-Entity-Authentifizierung:

– Vor jeder Kommunikation zwischen einem Client und einem
Server wird ein Authentifizierungsprotokoll ausgeführt, um
die Peer-Entitäten zu authentifizieren.

– Nach erfolgreichem Abschluss des Authentifizierungsdialogs
wird eine SSL-Sitzung zwischen den Peer-Entities
aufgebaut.

• Vertraulichkeit der Benutzerdaten:

– Falls beim Aufbau der Sitzung vereinbart, werden die
Benutzerdaten verschlüsselt.

– Es können verschiedene Verschlüsselungsalgorithmen
ausgehandelt werden: RC4, DES, 3DES, IDEA

• Integrität der Benutzerdaten:

– Ein MAC, der auf einer kryptografischen Hash-Funktion
basiert, wird an die Benutzerdaten angehängt.

– Der MAC wird mit einem ausgehandelten Geheimnis im
Präfix-Suffix-Modus errechnet.

– Für die MAC-Berechnung kann entweder MD5 oder SHA
ausgehandelt werden.

SSL-Sitzungs- und Verbindungsstatus
• Sitzungsstatus:

– Sitzungskennzeichen: eine vom Server gewählte Bytefolge
– Peer-Zertifikat: X.509 v.3 Zertifikat der Gegenstelle

(optional)
– Komprimierungsmethode: Algorithmus zur Komprimierung

der Daten vor der Verschlüsselung
– Cipher spec: spezifiziert kryptographische Algorithmen und

Parameter
– Hauptgeheimnis: ein ausgehandeltes gemeinsames

Geheimnis mit einer Länge von 48 Byte
– Ist wiederaufnehmbar: ein Kennzeichen, das angibt, ob die

Sitzung neue Verbindungen unterstützt

• Verbindungsstatus:

– Server und Client random: von Server und Client gewählte
Bytefolgen

– Server write MAC secret: wird in MAC-Berechnungen des
Servers verwendet

– Client write MAC secret: wird bei MAC-Berechnungen
durch den Client verwendet

– Server-Schreibschlüssel: wird für die Verschlüsselung durch
den Server und die Entschlüsselung durch den Client
verwendet

– Client write key: wird für die Verschlüsselung durch den
Client und die Entschlüsselung durch den Server verwendet

Architektur des SSL-Protokolls
• SSL ist als eine mehrschichtige und modulare

Protokollarchitektur aufgebaut:

– Handshake: Authentifizierung und Aushandlung von
Parametern

– Change Cipherspec: Signalisierung von Übergängen in der
Verschlüsselungsstrategie

– Alert: Signalisierung von Fehlerzuständen
– Application Data: Schnittstelle für den transparenten

Zugriff auf das Record-Protokoll
– Aufzeichnung:

∗ Fragmentierung der Nutzdaten in Klartextsätze der
Länge < 214

∗ Komprimierung (optional) von Klartextsätzen
∗ Verschlüsselung und Integritätsschutz (beides

optional)

SSL-Record-Protokoll
• Inhaltstyp:

– Ändern Cipherspec. (20)
– Warnung (21)
– Handshake (22)
– Anwendungsdaten (23)

• Version: die Protokollversion von SSL (major = 3, minor = 0)
• Länge: die Länge der Daten in Bytes, darf nicht größer sein als

214 + 210

Verarbeitung des SSL-Datensatzprotokolls
• Absendende Seite:

– Die Datensatzschicht fragmentiert zunächst die Nutzdaten
in Datensätze mit einer maximalen Länge von 214

Oktetten, wobei mehrere Nachrichten desselben Inhaltstyps
zu einem Datensatz zusammengefasst werden können

– Nach der Fragmentierung werden die Daten des
Datensatzes komprimiert, der Standardalgorithmus hierfür
ist null (˜ keine Komprimierung), und er darf die Länge des

Datensatzes nicht um mehr als 210 Oktette erhöhen
– Ein Nachrichtenauthentifizierungscode wird an die

Datensatzdaten angehängt:

∗ MAC = H(MACwritesecret+ pad2 +
H(MACwritesecret+pad1+seqnum+length+data))

∗ Man beachte, dass seqnum nicht übertragen wird, da
es implizit bekannt ist und das zugrundeliegende TCP
einen gesicherten Dienst bietet

– Die Daten des Datensatzes und der MAC werden mit dem
in der aktuellen Chiffriervorschrift definierten
Verschlüsselungsalgorithmus verschlüsselt (dies kann ein
vorheriges Auffüllen erfordern)

• Empfängerseite:

– Der Datensatz wird entschlüsselt, auf Integrität geprüft,
dekomprimiert, de-fragmentiert und an die Anwendung
oder das SSL-Protokoll der höheren Schicht übergeben

SSL Handshake Protokoll: Einführung
• Das SSL-Handshake-Protokoll wird verwendet, um die

Peer-Authentifizierung und die kryptographischen Parameter für
eine SSL-Sitzung festzulegen.

• Eine SSL-Sitzung kann so ausgehandelt werden, dass sie wieder
aufgenommen werden kann:

– Die Wiederaufnahme und Duplizierung von SSL-Sitzungen
ermöglicht die Wiederverwendung des etablierten
Sicherheitskontextes.

– Dies ist für die Absicherung des HTTP-Verkehrs sehr
wichtig, da in der Regel für jedes Element einer Webseite
eine eigene TCP-Verbindung aufgebaut wird.

∗ Seit HTTP 1.1 werden persistente TCP-Verbindungen
verwendet.

∗ Dennoch ist die Wiederaufnahme von SSL-Sitzungen
sehr sinnvoll, da persistente TCP-Verbindungen nach
dem Herunterladen aller Elemente, die zu einer Seite
gehören, und einer gewissen Zeit der Inaktivität des
Benutzers geschlossen werden können.

– Bei der Wiederaufnahme / Duplizierung einer bestehenden
Sitzung wird ein abgekürzter Handshake durchgeführt

SSL Handshake Protokoll: Vollständiger
Handshake
,,...” kennzeichnet optionale Nachrichten

SSL Handshake Protokoll: Abgekürzter Handshake
• Die Nachricht ,,Finished,, enthält eine MAC, die entweder auf

MD5 oder SHA basiert und das Master-Secret enthält, das zuvor
zwischen Client und Server festgelegt wurde.

• Wenn der Server die Sitzung nicht fortsetzen kann / beschließt,
sie nicht fortzusetzen, antwortet er mit den Nachrichten des
vollständigen Handshake

SSL-Handshake-Protokoll: Kryptografische
Aspekte

• SSL unterstützt drei Methoden zur Erstellung von
Sitzungsschlüsseln:

– RSA: ein Pre-Master-Geheimnis wird vom Client zufällig
generiert und mit dem öffentlichen Schlüssel des Servers
verschlüsselt an den Server gesendet

– Diffie-Hellman: Es wird ein
Standard-Diffie-Hellman-Austausch durchgeführt, und das
ermittelte gemeinsame Geheimnis wird als
Pre-Master-Secret verwendet.

– Fortezza: eine unveröffentlichte, von der NSA entwickelte
Sicherheitstechnologie, die eine Schlüsselhinterlegung
unterstützt und in diesem Kurs nicht behandelt wird

• Da SSL in erster Linie für die Sicherung des HTTP-Verkehrs
entwickelt wurde, ist das ,,Standardanwendungsszenario” ein
Client, der auf einen authentischen Webserver zugreifen möchte:

– In diesem Fall sendet der Webserver sein Zertifikat mit dem
öffentlichen Schlüssel nach der ServerHello-Nachricht

– Das Server-Zertifikat kann die öffentlichen DH-Werte des
Servers enthalten oder der Server kann sie in der optionalen
ServerKeyExchange-Nachricht senden

32/41

Network Security

– Der Client verwendet das Zertifikat des Servers / die
empfangenen DH-Werte / seine Fortezza-Karte, um einen
RSA- / DH- / Fortezza-basierten Schlüsselaustausch
durchzuführen.

• Das Pre-Master-Secret und die Zufallszahlen, die der Client und
der Server in ihren Hallo-Nachrichten angeben, werden verwendet,
um das Master-Secret der Länge 48 Byte zu generieren.

• Berechnung des Master-Geheimnisses:

– Master-Geheimnis = MD5(vor-Master-Geheimnis +
SHA(’A’ + vor-Master-Geheimnis + ClientHello.random +
ServerHello.random)) + MD5(Vor-Hauptgeheimnis +
SHA(’BB’ + Vor-Hauptgeheimnis + ClientHello.random +
ServerHello.random)) + MD5(pre-master-secret +
SHA(’CCC’ + pre-master-secret + ClientHello.random +
ServerHello.random))

• Die Verwendung von MD5 und SHA zur Generierung des
Master-Geheimnisses wird als sicher angesehen, selbst wenn eine
der kryptografischen Hash-Funktionen ,,defekt” ist.

• Um die Sitzungsschlüssel aus dem Master-Secret zu berechnen,
wird in einem ersten Schritt eine ausreichende Menge an
Schlüsselmaterial aus dem Master-Secret und den Zufallszahlen
von Client und Server erzeugt:

– key block = MD5(master-secret + SHA(’A’ + master-secret
+ ClientHello.random + ServerHello.random)) +
MD5(master-secret + SHA(’BB’ + master-secret +
ClientHello.random + ServerHello.random)) + ,,...”

• Anschließend wird das Material des Sitzungsschlüssels fortlaufend
aus dem key block entnommen:

– client write MAC secret = key block,,1,
CipherSpec.hash size”

– server write MAC secret = key block,,i 1 , i 1 +
CipherSpec.hash size - 1”

– client write key = key block,,i 2 , i 2 +
CipherSpec.key material - 1”

– server write key = key block,,i 3 , i 3 +
CipherSpec.key material - 1”

– client write IV = key block,,i 4 , i 4 + CipherSpec.IV size -
1”

– server write IV = key block,,i 5 , i 5 + CipherSpec.IV size
- 1”

• Authentifizierung von und mit dem Pre-Master-Secret:

– SSL unterstützt Schlüsselerstellung ohne Authentifizierung
(anonym), in diesem Fall können
Man-in-the-Middle-Angriffe nicht abgewehrt werden

– Bei Verwendung des RSA-basierten Schlüsselaustauschs:
∗ Der Client verschlüsselt das Pre-Master-Secret mit

dem öffentlichen Schlüssel des Servers, der durch eine
Zertifikatskette überprüft werden kann.

∗ Der Client weiß, dass nur der Server das
Pre-Master-Secret entschlüsseln kann. Wenn der
Server also die fertige Nachricht mit dem
Master-Secret sendet, kann der Client die
Server-Authentizität ableiten.

∗ Der Server kann aus dem empfangenen
Pre-Master-Secret keine Client-Authentizität ableiten.

∗ Wenn Client-Authentizität erforderlich ist, sendet der
Client zusätzlich sein Zertifikat und eine
CertificateVerify-Nachricht, die eine Signatur über
einen Hash (MD5 oder SHA) des Master-Geheimnisses
und aller vor der CertificateVerify-Nachricht
ausgetauschten Handshake-Nachrichten enthält

– Beim DH-Key-Austausch wird die Authentizität aus den
DH-Werten abgeleitet, die im Zertifikat des Servers (und
des Clients) enthalten und signiert sind

SSL Handshake Protokoll: Eine Sicherheitslücke
• 1998 entdeckte D. Bleichenbacher eine Schwachstelle im

Verschlüsselungsstandard PKCS #1 (v.1.5), der im
SSL-Handshake-Verfahren verwendet wird

• Wenn der Client das Pre-Master-Secret mit dem öffentlichen
Schlüssel des Servers verschlüsselt, verwendet er PKCS #1, um es
vor der Verschlüsselung zu formatieren:

– EM = 0x02 — PS — 0x00 — M
∗ wobei PS eine Auffüllzeichenfolge von mindestens 8

pseudozufällig erzeugten Nicht-Null-Oktetts und M
die zu verschlüsselnde Nachricht (=
Pre-Master-Secret) bezeichnet

∗ (PS wird verwendet, um eine Zufallskomponente
hinzuzufügen und M auf die Modulusgröße des
verwendeten Schlüssels aufzufüllen)

– Dann wird EM verschlüsselt: C = E(+KServer, EM)
– Nachdem der Server C entschlüsselt hat, prüft er, ob das

erste Oktett gleich 0x ist und ob es ein 0x00-Oktett gibt;
wenn diese Prüfung fehlschlägt, antwortet er mit einer
Fehlermeldung

– Diese Fehlermeldung kann von einem Angreifer genutzt
werden, um einen ,,Orakel-Angriff” zu starten.

• Ein Orakel-Angriff gegen das SSL-Handshake-Protokoll
,,BKS98a”:

– Betrachten wir einen Angreifer (Eve), der einen
SSL-Handshake-Dialog belauscht hat und das
Pre-Master-Secret (und damit alle anderen abgeleiteten
Geheimnisse), das zwischen Alice (Client) und Bob (Server)
ausgetauscht wurde, wiederherstellen möchte

– Eve hat die verschlüsselte Nachricht C, die das
Pre-Master-Secret enthält, erfolgreich abgehört und möchte
nun den Klartext wiederherstellen

– Eve generiert eine Reihe zusammenhängender Chiffretexte
C1, C2, ...:

∗ Ci = C × Rei mod n, wobei (e, n) der öffentliche
Schlüssel von Bob ist

∗ Die Ri werden adaptiv ausgewählt, abhängig von
älteren ,,guten” Ri, die von Bob verarbeitet wurden,
ohne Fehlermeldungen zu erzeugen (was anzeigt, dass
sie zu einer gültigen PKCS-1-Nachricht entschlüsselt
wurden)

∗ Die Ci werden an Bob übermittelt, und es werden
entsprechend neue Ci erzeugt

∗ Aus dem ,,guten” Ri leitet Eve bestimmte Bits der

entsprechenden Nachricht Mi = Cdi = M × Ri mod n
ab, basierend auf der PKCS #1
Verschlüsselungsmethode

– Aus den abgeleiteten Bits von M × Ri mod n für
hinreichend viele Ri kann Eve die Größe des Intervalls
reduzieren, das die unbekannte Nachricht M enthalten muss

– Im Wesentlichen halbiert jeder ,,gute” Chiffretext das
betreffende Intervall, so dass Eve mit genügend ,,guten”
Chiffretexten in der Lage ist, M

– Mit PKCS #1 Version 1.5 (wie ursprünglich in SSL V.3.0

verwendet) wird ungefähr einer von 216 bis 218 zufällig
ausgewählten Chiffretexten ,,gut” sein.

– Typischerweise beträgt die Gesamtzahl der erforderlichen
Chiffretexte bei einem 1024-Bit-Modul etwa 220, und dies
ist auch die Anzahl der Abfragen an Bob

– Nach der Durchführung von etwa 1 Million gefälschter
SSL-Handshake-Dialoge (die alle entweder von Bob oder
Eve unterbrochen werden) ist Eve also in der Lage, das
Pre-Master-Secret und alle abgeleiteten Schlüssel einer
zuvor eingerichteten SSL-Sitzung zwischen Alice und Bob
wiederherzustellen. Subtile Protokollinteraktionen (hier:
SSL und PKCS #1) können zum Versagen eines
Sicherheitsprotokolls führen, selbst wenn der grundlegende
kryptographische Algorithmus (hier: RSA) selbst nicht
gebrochen ist!

• Gegenmassnahmen:

– Regelmäßiger Wechsel der öffentlichen Schlüsselpaare
(⇒-Overhead)

– Verringerung der Wahrscheinlichkeit, ,,gute” Chiffriertexte
zu erhalten, indem das Format der entschlüsselten
Chiffriertexte gründlich überprüft und dem Client ein
identisches Verhalten (Fehlermeldung, Zeitverhalten usw.)
gezeigt wird

– Der Kunde muss den Klartext kennen, bevor er antwortet,
ob die Nachricht erfolgreich entschlüsselt werden konnte.

– Hinzufügen einer Struktur zum Klartext, z. B. durch
Hinzufügen eines Hashwerts zum Klartext:

∗ Achtung: Es ist eine gewisse Vorsicht geboten, um
Anfälligkeiten für eine andere Klasse von Angriffen zu
vermeiden ,,Cop96a”.

– Änderung des Verschlüsselungsprotokolls für öffentliche
Schlüssel, d.h. Überarbeitung von PKCS #1:

∗ PKCS #1 Version 2.1 bereitet den Klartext vor der
Verschlüsselung mit einer Methode vor, die als
optimales asymmetrisches Verschlüsselungs-Padding
(OAEP) bezeichnet wird, um die PKCS #1
Entschlüsselungsprozedur ,,plaintext aware” zu
machen, was bedeutet, dass es nicht möglich ist, einen
gültigen Chiffretext zu konstruieren, ohne den
entsprechenden Klartext zu kennen

SSL-Chiffre-Suiten
• Kein Schutz (Standard-Suite):

– CipherSuite SSL NULL WITH NULL NULL = 0x00,0x00

• Der Server stellt einen für die Verschlüsselung geeigneten
RSA-Schlüssel bereit:

– SSL RSA WITH NULL MD5 = 0x00,0x01
– SSL RSA WITH NULL SHA = 0x00,0x02
– SSL RSA EXPORT WITH RC4 40 MD5 = 0x00,0x03
– SSL RSA WITH RC4 128 MD5 = 0x00,0x04
– SSL RSA WITH RC4 128 SHA = 0x00,0x05
– SSL RSA EXPORT WITH RC2 CBC 40 MD5 =

0x00,0x06
– SSL RSA WITH IDEA CBC SHA = 0x00,0x07
– SSL RSA EXPORT WITH DES40 CBC SHA = 0x00,0x08
– SSL RSA WITH DES CBC SHA = 0x00,0x09
– SSL RSA WITH 3DES EDE CBC SHA = 0x00,0x0A

• Cipher-Suites mit authentifiziertem DH-Schlüssel-Austausch

– SSL DH DSS EXPORT WITH DES40 CBC SHA =
0x00,0x0B

– SSL DH DSS WITH DES CBC SHA = 0x00,0x0C
– SSL DH DSS WITH 3DES EDE CBC SHA = 0x00,0x0D
– SSL DH RSA EXPORT WITH DES40 CBC SHA =

0x00,0x0E
– SSL DH RSA WITH DES CBC SHA = 0x00,0x0F
– SSL DH RSA WITH 3DES EDE CBC SHA = 0x00,0x10
– SSL DHE DSS EXPORT WITH DES40 CBC SHA =

0x00,0x11
– SSL DHE DSS WITH DES CBC SHA = 0x00,0x12
– SSL DHE DSS WITH 3DES EDE CBC SHA = 0x00,0x13
– SSL DHE RSA EXPORT WITH DES40 CBC SHA =

0x00,0x14
– SSL DHE RSA WITH DES CBC SHA = 0x00,0x15
– SSL DHE RSA WITH 3DES EDE CBC SHA = 0x00,0x16

(DH steht für Suites, bei denen die öffentlichen DH-Werte in einem von
einer CA signierten Zertifikat enthalten sind, DHE für Suites, bei denen
sie mit einem öffentlichen Schlüssel signiert sind, der von einer CA
zertifiziert ist)

• Von der Verwendung der folgenden Chiffriersuiten ohne jegliche
Authentifizierung der Entität wird dringend abgeraten, da sie
anfällig für Man-in-the-Middle-Angriffe sind:

– SSL DH anon EXPORT WITH RC4 40 MD5 = 0x00,0x17
– SSL DH anon WITH RC4 128 MD5 = 0x00,0x18
– SSL DH anon EXPORT WITH DES40 CBC SHA =

0x00,0x19
– SSL DH anon WITH DES CBC SHA = 0x00,0x1A

33/41

Network Security

– SSL DH anon WITH 3DES EDE CBC SHA = 0x00,0x1B

• Die letzte Cipher Suite ist für den Fortezza-Token:

– SSL FORTEZZA DMS WITH NULL SHA = 0x00,0x1C
– SSL FORTEZZA DMS WITH FORTEZZA CBC SHA =

0x00,0x1D

(Diese Cipher-Suites müssen natürlich nicht auswendig gelernt werden
und werden hier nur aufgeführt, um die Flexibilität des SSL-Protokolls
zu verdeutlichen)

Das Transport Layer Security-Protokoll
• 1996 gründete die IETF eine Arbeitsgruppe zur Definition eines

Transport Layer Security (TLS) Protokolls:

– Offiziell wurde angekündigt, die Protokolle SSL, SSH und
PCT als Input zu nehmen.

– Der im Dezember 1996 veröffentlichte Entwurf der TLS
V.1.0-Spezifikation war jedoch im Wesentlichen identisch
mit der SSL V.3.0-Spezifikation

• Eigentlich war es von Anfang an die Absicht der Arbeitsgruppe,
TLS auf SSL V.3.0 mit den folgenden Änderungen aufzubauen:

– Die HMAC-Konstruktion zur Berechnung
kryptographischer Hash-Werte sollte anstelle von Hashing
im Präfix- und Suffix-Modus übernommen werden.

– Die auf Fortezza basierenden Chiffrier-Suiten von SSL
sollten entfernt werden, da sie eine unveröffentlichte
Technologie enthalten

– Ein auf dem DSS (Digital Signature Standard) basierender
Dialog zur Authentifizierung und zum Schlüsselaustausch
sollte aufgenommen werden.

– Das TLS-Record-Protokoll und das Handshake-Protokoll
sollten getrennt und in separaten Dokumenten klarer
spezifiziert werden, was bisher nicht geschehen ist.

• Um die Exportfähigkeit von TLS-konformen Produkten zu
erreichen, wurde in einigen Chiffriersuiten die Verwendung von
Schlüsseln mit einer auf 40 Bit reduzierten Entropie
vorgeschrieben.

– Von der Verwendung dieser Cipher-Suites wird dringend
abgeraten, da sie praktisch keinen Schutz der
Vertraulichkeit von Daten bieten.

• Ab TLS 1.2 (RFC 5246):

– Schlüsselaustausch-Algorithmen:

∗ DH oder ECDH Austausch ohne oder mit DSS / RSA
/ ECDSA Signaturen

∗ DH-Austausch mit zertifizierten öffentlichen
DH-Parametern

∗ RSA-basierter Schlüsselaustausch
∗ keine

– Verschlüsselungsalgorithmen: AES / 3DES in CBC / CCM
/GCM, RC4, null

– Hash-Algorithmen: MD5, SHA-1, SHA-256, SHA-384,
SHA-512, null

– Premaster Secret: Keine MD5/SHA-1 Kombination,
sondern nur SHA-256!

• Was die Protokollfunktionen betrifft, ist TLS im Wesentlichen
dasselbe wie SSL

• Sicherheit:

– In SSL 3.0 und TLS 1.0 ist der Initialisierungsvektor eines
im CBC-Modus verschlüsselten Datensatzes der letzte
Block des vorherigen Datensatzes

– Wenn ein Angreifer den Inhalt des vorherigen Datensatzes
kontrolliert, kann er einen adaptiven Klartextangriff
durchführen, um den Inhalt des nächsten Datensatzes
herauszufinden.

– Durchführbar für Webverkehr, d. h. Erzeugen von Verkehr
mit JavaScript und Beobachten von außen, führt zum
sogenannten BEAST-Angriff (Browser Exploit Against
SSL/TLS) ,,RD10”.

– Auch für VPN-Verkehr machbar

– Abgeschwächt durch TLS 1.1, wo explizite IVs verwendet
werden

– 2009 wurde eine sogenannte
TLS-Neuverhandlungsschwachstelle identifiziert

∗ Angreifer können sie nutzen, um einer legitimen
Sitzung durch einen Man-in-the-Middle-Angriff Daten
voranzustellen (Details in ,,Zo11”)

∗ Die Auswirkungen hängen stark von dem verwendeten
Anwendungsprotokoll ab

– Bei HTTPS führt dies zu mehreren
Ausnutzungsmöglichkeiten, z. B,

∗ Angreifer injeziert: GET
/ebanking/transfer?what=LotsOfMoney&to=eve HTTP/1.1
<crlf> X-Ignore: <no crlf>

∗ Alice sendet: GET /ebanking/start.html HTTP/1.1
∗ Die Anfrage wird in eine valide HTTP Anfrage

umgewandelt: GET
/ebanking/transfer?what=LotsOfMoney&to=eve HTTP/1.1
<crlf> X-Ignore: GET /ebanking/start.html HTTP/1.1

– Abgeschwächt durch Identifizierung neu ausgehandelter
Sitzungen mit einer anderen ID ,,RRDO10”

Das Datagram Transport Layer Security Protokoll
• TLS bietet sichere Kommunikation über ein zuverlässiges

Transportprotokoll
• DTLS ist so angepasst, dass es über unzuverlässige

Transportprotokolle wie z.B. UDP funktioniert
• Wird zum Schutz verwendet:

– Sprach- und Videodaten in Echtzeit, insbesondere
Voice-over-IP

– Getunnelte TCP-Daten (da TCP über TCP eine schlechte
Idee für die Leistung ist)

• DTLS basiert derzeit auf TLS 1.2, enthält jedoch einige
Änderungen:

– Bietet
∗ Nachrichtenwiederholungen, um verlorenen

Handshake-Paketen entgegenzuwirken
∗ Eigener Fragmentierungsmechanismus, um große

Handshake-Pakete zu ermöglichen
– Hinzufügen von Sequenznummern, um neu geordnete

Datenpakete zu ermöglichen (und Verbot von
Stromchiffren, z. B. RC4)

– Fügt einen Mechanismus hinzu, um zu erkennen, dass ein
Client die ,,Verbindung” mit denselben Ports neu gestartet
hat (z. B. nach einem Anwendungsabsturz)

– Fügt einen Wiedergabeschutz durch ein gleitendes Fenster
hinzu (wie bei IPsec)

– Fügt eine Cookie-basierte DoS-Abwehr hinzu (wie bei
IKEv2)

Das Secure Shell-Protokoll
• Secure Shell (SSH) Version 1 wurde ursprünglich von Tatu

Ylönen an der Universität Helsinki in Finnland entwickelt.
• Da der Autor auch eine kostenlose Implementierung mit

Quellcode zur Verfügung stellte, fand das Protokoll weite
Verbreitung im Internet

• Später wurde die Entwicklung von SSH durch den Autor
kommerzialisiert.

• Nichtsdestotrotz sind immer noch kostenlose Versionen verfügbar,
wobei die am weitesten verbreitete Version OpenSSH ist

• 1997 wurde eine Spezifikation der Version 2.0 von SSH bei der
IETF eingereicht und seitdem in einer Reihe von
Internet-Entwürfen verfeinert

• SSH wurde ursprünglich entwickelt, um einen sicheren Ersatz für
die Unix r-Tools (rlogin, rsh, rcp und rdist) zu bieten, und stellt
somit ein Protokoll der Anwendungs- oder Sitzungsschicht dar.

• Da SSH jedoch auch ein allgemeines Sicherheitsprotokoll der
Transportschicht enthält und Tunneling-Fähigkeiten bietet, wird
es in diesem Kapitel als Sicherheitsprotokoll der Transportschicht
behandelt

SSH Version 2
• SSH Version 2 ist in mehreren separaten Dokumenten spezifiziert,

z.B.:

– SSH Protocol Assigned Numbers ,,LL06”
– SSH-Protokollarchitektur ,,YL06a”
– SSH-Authentifizierungsprotokoll ,,YL06b”
– SSH-Transportschichtprotokoll ,,YL06c”
– SSH-Verbindungsprotokoll ,,YL06d”

• SSH-Architektur:

– SSH verfolgt einen Client-Server-Ansatz
– Jeder SSH-Server hat mindestens einen Host-Schlüssel
– SSH Version 2 bietet zwei verschiedene Vertrauensmodelle:

∗ Jeder Client hat eine lokale Datenbank, die jeden
Hostnamen mit dem entsprechenden öffentlichen
Hostschlüssel verknüpft

∗ Die Zuordnung von Hostname zu öffentlichem
Schlüssel wird von einer Zertifizierungsstelle
zertifiziert, und jeder Client kennt den öffentlichen
Schlüssel der Zertifizierungsstelle

– Das Protokoll ermöglicht die vollständige Aushandlung von
Algorithmen und Formaten für Verschlüsselung, Integrität,
Schlüsselaustausch, Komprimierung und öffentliche
Schlüssel

SSH-Transportprotokoll
• SSH verwendet ein zuverlässiges Transportprotokoll

(normalerweise TCP).
• Es bietet die folgenden Dienste:

– Verschlüsselung von Benutzerdaten
– Authentifizierung der Datenherkunft (Integrität)
– Server-Authentifizierung (nur Host-Authentifizierung)
– Komprimierung der Benutzerdaten vor der Verschlüsselung

• Unterstützte Algorithmen:

– Verschlüsselung:

∗ AES, 3DES, Blowfish, Twofish, Serpent, IDEA und
CAST in CBC

∗ AES in GCM ,,IS09”
∗ Arcfour (,,vermutlich” kompatibel mit dem

,,unveröffentlichten” RC4)
∗ keine (nicht empfohlen)

– Integrität:

∗ HMAC mit MD5, SHA-1, SHA-256 oder SHA-512
∗ keine (nicht empfohlen)

– Schlüsselaustausch:
∗ Diffie-Hellman mit SHA-1 und zwei vordefinierten

Gruppen
∗ ECDH mit mehreren vordefinierten NIST-Gruppen

,,SG09” (obligatorisch drei Kurven über Zp)

∗ Öffentlicher Schlüssel: RSA, DSS, ECC (in mehreren
Varianten ,,SG09”)

– Komprimierung: keine, zlib (siehe RFCs 1950, 1951)

SSH-Transportprotokoll Paketformat
• Das Paketformat ist nicht 32-Bit-wortorientiert
• Felder des Pakets:

– Paketlänge: die Länge des Pakets selbst, ohne dieses
Längenfeld und den MAC

– Padding length: Länge des Padding-Feldes, muss zwischen
vier und 255 liegen

– Payload: die eigentliche Nutzlast des Pakets, wenn
Komprimierung ausgehandelt wurde, wird dieses Feld
komprimiert

– Padding: dieses Feld besteht aus zufällig ausgewählten
Oktetten, um die Nutzlast auf ein ganzzahliges Vielfaches
von 8 oder der Blockgröße des Verschlüsselungsalgorithmus
aufzufüllen, je nachdem, welcher Wert größer ist

34/41

Network Security

– MAC: Wurde die Nachrichtenauthentifizierung
ausgehandelt, enthält dieses Feld den MAC des gesamten
Pakets ohne das MAC-Feld selbst; soll das Paket
verschlüsselt werden, wird der MAC vor der
Verschlüsselung wie folgt berechnet

∗ MAC = HMAC(shared secret, seq number ——
unencrypted packet), wobei seq number eine
32-Bit-Sequenznummer für jedes Paket bezeichnet

• Verschlüsselung: wenn Verschlüsselung ausgehandelt wird, wird
das gesamte Paket ohne MAC nach der MAC-Berechnung
verschlüsselt

SSH-Aushandlung, Schlüsselaustausch und
Server-Authentifizierung

• Algorithmus-Aushandlung:

– Jede Entität sendet ein Paket (bezeichnet als kexinit) mit
einer Spezifikation der von ihr unterstützten Methoden in
der Reihenfolge ihrer Präferenz

– Beide Entitäten iterieren über die Liste des Clients und
wählen den ersten Algorithmus, der auch vom Server
unterstützt wird

– Diese Methode wird verwendet, um Folgendes
auszuhandeln: Server-Host-Schlüssel-Algorithmus (˜
Server-Authentifizierung) sowie Verschlüsselungs-, MAC-
und Kompressionsalgorithmus

– Zusätzlich kann jede Entität ein Schlüsselaustauschpaket
entsprechend einer Vermutung über den bevorzugten
Schlüsselaustauschalgorithmus der anderen Entität
anhängen

– Ist eine Vermutung richtig, wird das entsprechende
Schlüsselaustauschpaket als erstes Schlüsselaustauschpaket
der anderen Entität akzeptiert

– Falsche Vermutungen werden ignoriert und neue
Schlüsselaustauschpakete werden nach Aushandlung des
Algorithmus gesendet

• Für den Schlüsselaustausch definiert ,,YL06c” nur eine Methode:

– Diffie-Hellman mit SHA-1 und zwei vordefinierten Gruppen
(1024 und 2048 Bit)

– Z.B.
p = 21024 − 2960 − 1 + (264 × b2894× π + 129093c); g = 2

• Wenn der Schlüsselaustausch mit der vordefinierten DH-Gruppe
durchgeführt wird:

– Der Client wählt eine Zufallszahl x, berechnet
e = gx mod p und sendet e an den Server

– Der Server wählt eine Zufallszahl y, errechnet f = gy mod p
– Nach dem Empfang von e berechnet der Server ferner
K = ey mod p und einen Hash-Wert h =
Hash(versionC , versionS , kexinitC , kexinitS ,+KS , e, f,K),
wobei version und kexinit die Versionsinformationen des
Clients und des Servers sowie die anfänglichen
Algorithmus-Aushandlungsmeldungen bezeichnen

– Der Server signiert h mit seinem privaten Host-Schlüssel -
KS und sendet dem Client eine Nachricht mit (+KS , f, s).

– Beim Empfang prüft der Client den Host-Schlüssel +KS ,
berechnet K = fx mod p sowie den Hash-Wert h und prüft
dann die Signatur s über h

• Nach diesen Prüfungen kann der Client sicher sein, dass er
tatsächlich ein geheimes K mit dem Host ausgehandelt hat, der
−KS kennt.

• Der Server-Host kann jedoch keine Rückschlüsse auf die
Authentizität des Clients ziehen; zu diesem Zweck wird das
SSH-Authentifizierungsprotokoll verwendet

SSH-Sitzungsschlüssel-Ableitung
• Die Methode des Schlüsselaustauschs ermöglicht es, ein

gemeinsames Geheimnis K und den Hash-Wert h zu ermitteln, die
zur Ableitung der SSH-Sitzungsschlüssel verwendet werden:

– Der Hashwert h des anfänglichen Schlüsselaustauschs wird
auch als session id verwendet

– IVClient2Server = Hash(K, h, ,,A”, session id) //
Initialisierungsvektor

– IVServer2Client = Hash(K, h, ,,B”, session id) //
Initialisierungsvektor

– EKClient2Server = Hash(K, h, ,,C”, session id) //
Verschlüsselungsschlüssel

– EKServer2Client = Hash(K, h, ,,D”, session id) //
Chiffrierschlüssel

– IKClient2Server = Hash(K, h, ,,E”, session id) //
Integritätsschlüssel

– IKServer2Client = Hash(K, h, ,,F”, session id) //
Integritätsschlüssel

• Die Schlüsseldaten werden am Anfang der Hash-Ausgabe
entnommen

• Wenn mehr Schlüsselbits benötigt werden als von der
Hash-Funktion erzeugt werden:

– K1 = Hash(K, h, x, session id) // x = ,,A”, ,,B”, usw.
– K2 = Hash(K, h, K1)
– K2 = Hash(K, h, K1, K2)
– XK = K1 —— K2 —— ...

SSH-Authentifizierungsprotokoll
• Das SSH-Authentifizierungsprotokoll dient zur Überprüfung der

Identität des Clients und ist für die Ausführung über das
SSH-Transportprotokoll vorgesehen

• Das Protokoll unterstützt standardmäßig die folgenden
Authentifizierungsmethoden:

– Öffentlicher Schlüssel: Der Benutzer erzeugt und sendet
eine Signatur mit einem öffentlichen Schlüssel pro Benutzer
an den Server

– Client→ Server :
E(−KBenutzer, (sessionid, 50, NameBenutzer, Service, , , publickey

′′, True, PublicKeyAlgorithmName,+KBenutzer))

– Kennwort: Übertragung eines Kennworts pro Benutzer in
der verschlüsselten SSH-Sitzung (das Kennwort wird dem
Server im Klartext präsentiert, aber mit Verschlüsselung
des SSH-Transportprotokolls übertragen)

– Host-basiert: analog zum öffentlichen Schlüssel, aber mit
einem öffentlichen Schlüssel pro Host

– Keine: wird verwendet, um den Server nach unterstützten
Methoden zu fragen und wenn keine Authentifizierung
erforderlich ist (der Server antwortet direkt mit einer
Erfolgsmeldung)

• Wenn die Authentifizierungsnachricht des Clients erfolgreich
geprüft wurde, antwortet der Server mit einer
ssh msg userauth success-Nachricht

SSH-Verbindungsprotokoll
• Das SSH-Verbindungsprotokoll läuft auf dem

SSH-Transportprotokoll und bietet folgende Dienste:

– Interaktive Anmeldesitzungen
– Fernausführung von Befehlen
– Weitergeleitete TCP/IP-Verbindungen
– Weitergeleitete X11-Verbindungen

• Für jeden der oben genannten Dienste werden ein oder mehrere
,,Kanäle” eingerichtet, und alle Kanäle werden in eine einzige
verschlüsselte und integritätsgeschützte
SSH-Transportprotokollverbindung gemultiplext:

– Beide Seiten können die Eröffnung eines Kanals
beantragen, und die Kanäle werden durch Nummern beim
Sender und beim Empfänger gekennzeichnet.

– Kanäle sind typisiert, z. B. ,,session”, ,,x11”,
,,forwarded-tcpip”, ,,direct-tcpip” ...

– Kanäle werden durch einen Fenstermechanismus
kontrolliert, und es dürfen keine Daten über einen Kanal
gesendet werden, bevor ,,window space” verfügbar ist

• Öffnen eines Kanals:

– Beide Seiten können die Nachricht ssh msg channel open
senden, die mit dem Nachrichtencode 90 und den folgenden
Parametern signalisiert wird:

∗ Kanaltyp: ist vom Datentyp String, z.B. ,,session”,
,,x11”, etc.

∗ Absenderkanal: ist ein lokaler Bezeichner vom Typ
uint32 und wird vom Anforderer dieses Kanals
gewählt

∗ initial window size: ist vom Typ uint32 und gibt an,
wie viele Bytes an den Initiator gesendet werden
dürfen, bevor das Fenster vergrößert werden muss

∗ maximale Paketgröße: ist vom Typ uint32 und legt die
maximale Paketgröße fest, die der Initiator für diesen
Kanal zu akzeptieren bereit ist

∗ weitere Parameter, die vom Typ des Kanals
abhängen, können folgen

– Wenn der Empfänger dieser Nachricht die Kanalanfrage
nicht annehmen will, antwortet er mit der Nachricht
ssh msg channel open failure (Code 92):

∗ Empfängerkanal: die vom Absender in der
Öffnungsanfrage angegebene ID

∗ reason code: ist vom Typ uint32 und gibt den Grund
für die Ablehnung an

∗ additional textual information: ist vom Typ string
∗ language tag: ist vom Typ string und entspricht dem

RFC 1766
– Wenn der Empfänger dieser Nachricht die Kanalanfrage

annehmen will, antwortet er mit der Nachricht
ssh msg channel open confirmation (Code 91) und den
folgenden Parametern

∗ Empfänger-Kanal: die vom Absender in der
Öffnungsanforderung angegebene ID

∗ Absenderkanal: die dem Kanal vom Antwortenden
gegebene Kennung

∗ initial window size: ist vom Typ uint32 und gibt an,
wie viele Bytes an den Responder gesendet werden
können, bevor das Fenster vergrößert werden muss

∗ maximum packet size: ist vom Typ uint32 und legt die
maximale Paketgröße fest, die der Responder für
diesen Kanal zu akzeptieren bereit ist

∗ weitere Parameter, die vom Kanaltyp abhängen,
können folgen

• Sobald ein Kanal geöffnet ist, sind die folgenden Aktionen
möglich:

– Datenübertragung (allerdings sollte die empfangende Seite
wissen, ,,was mit den Daten zu tun ist”, was eine weitere
vorherige Aushandlung erfordern kann)

– Kanaltypspezifische Anfragen
– Schließung des Kanals

• Für die Datenübertragung sind die folgenden Nachrichten
definiert:

– ssh msg channel data: mit den beiden Parametern
Empfängerkanal, Daten

– ssh msg channel extended data: erlaubt die zusätzliche
Angabe eines Datentypcodes und ist nützlich, um Fehler zu
signalisieren, z.B. bei interaktiven Shells

– ssh msg channel window adjust: erlaubt es, das
Flusskontrollfenster des Empfängerkanals um die
angegebene Anzahl von Bytes zu erweitern

• Schließen von Kanälen:

– Wenn eine Peer-Entität keine Daten mehr an einen Kanal
senden will, sollte sie dies der anderen Seite mit der
Nachricht ssh msg channel eof signalisieren

– Wenn eine der beiden Seiten einen Kanal beenden möchte,
sendet sie die Nachricht ssh msg channel close mit dem
Parameter recipient channel

35/41

Network Security

– Beim Empfang der Nachricht ssh msg channel close muss
eine Peer-Entität mit einer ähnlichen Nachricht antworten,
es sei denn, sie hat bereits die Schließung dieses Kanals
beantragt.

– Sowohl nach dem Empfang als auch nach dem Senden der
Nachricht ssh msg channel close für einen bestimmten
Kanal kann die ID dieses Kanals wiederverwendet werden.

• Kanaltypspezifische Anfragen erlauben es, bestimmte
Eigenschaften eines Kanals anzufordern, z. B. dass die
empfangende Seite weiß, wie sie die über diesen Kanal gesendeten
Daten verarbeiten soll, und werden mit signalisiert:

– ssh msg channel request: mit den Parametern recipient
channel, request type (string), want reply (bool) und
weiteren anfragespezifischen Parametern

– ssh msg channel success: mit dem Parameter recipient
channel

– ssh msg channel failure: mit dem Parameter recipient
channel

• Beispiel 1 - Anfordern einer interaktiven Sitzung und Starten
einer Shell darin:

– Zunächst wird ein Kanal vom Typ ,,session” geöffnet
– Ein Pseudo-Terminal wird angefordert, indem eine

ssh msg channel request-Nachricht gesendet wird, wobei
der Anforderungstyp auf ,,pty-req” gesetzt wird

– Falls erforderlich, können Umgebungsvariablen gesetzt
werden, indem ssh msg channel request-Nachrichten mit
dem Anforderungstyp ,,env” gesendet werden.

– Dann wird der Start eines Shell-Prozesses über eine
ssh msg channel request-Nachricht mit dem Request-Typ
,,shell” gefordert (dies führt normalerweise zum Start der
Standard-Shell für den Benutzer, wie sie in /etc/passwd
definiert ist)

– Anfordern einer interaktiven Sitzung und Starten einer
Shell darin:
— SSH Client — — SSH Server — —
————————————————————————– —
—- — —————————————————- — —
ssh msg channel open (,,session”, 20, 2048, 512) — —¿ —
— — ¡— — ssh msg channel open confirmation(20, 31,
1024, 256) — — ssh msg channel request (31, ,,pty-req”,
false, ...) — —¿ — — ssh msg channel request (31, ,,env”,
false, ,,home”, ,,/home/username”) — —¿ — —
ssh msg channel request (31, ,,shell”, true, ...) — —¿ — —
— ¡— — ssh msg channel success(20) —
,,Nutzdatenaustausch findet ab jetzt statt...”

SSH-Verbindungsprotokoll II
• Beispiel 2 - Anforderung der X11-Weiterleitung:

– Zuerst wird ein Kanal des Typs ,,session” geöffnet
– Die X11-Weiterleitung wird durch Senden einer

ssh msg channel request-Nachricht mit dem
Anforderungstyp ,,x11-req” angefordert

– Wenn später eine Anwendung auf dem Server gestartet
wird, die auf das Terminal des Client-Rechners zugreifen
muss (der X11-Server, der auf dem Client-Rechner läuft),
wird ein neuer Kanal über ssh msg channel open geöffnet,
wobei der Kanaltyp auf ,,x11” und die IP-Adresse und
Portnummer des Absenders als zusätzliche Parameter
gesetzt werden

• Beispiel 3 - Einrichtung einer TCP/IP-Portweiterleitung:

– Eine Partei muss die Portweiterleitung von ihrem eigenen
Ende in die andere Richtung nicht explizit anfordern. Wenn
sie jedoch Verbindungen zu einem Port auf der anderen
Seite an ihre eigene Seite weiterleiten lassen möchte, muss
sie dies explizit über eine ssh msg global request-Nachricht
mit den Parametern ,,tcpip-forward”, want-reply, zu
bindende Adresse (,,0.0.0.0” für jede Quelladresse) und zu
bindende Portnummer anfordern (diese Anforderung wird
normalerweise vom Client gesendet)

– Wenn eine Verbindung zu einem Port kommt, für den eine
Weiterleitung angefordert wurde, wird ein neuer Kanal
über ssh msg channel open mit dem Typ ,,forwarded-tcpip”
und den Adressen des Ports, der verbunden wurde, sowie
des ursprünglichen Quellports als Parameter geöffnet (diese
Nachricht wird normalerweise vom Server gesendet)

– Wenn eine Verbindung zu einem (Client-)Port kommt, der
lokal als weitergeleitet eingestellt ist, wird ein neuer Kanal
angefordert, wobei der Typ auf ,,direct-tcpip” gesetzt wird
und die folgenden Adressinformationen in zusätzlichen
Parametern angegeben werden:

∗ host to connect, port to connect: Adresse, mit der der
Empfänger diesen Kanal verbinden soll

∗ Absender-IP-Adresse, Absender-Port: Quelladresse
der Verbindung

Schlussfolgerung
• Sowohl SSL, TLS als auch SSH eignen sich für die Sicherung der

Internet-Kommunikation in der (oberen) Transportschicht:

– Alle drei Sicherheitsprotokolle arbeiten mit einem
zuverlässigen Transportdienst, z. B. TCP, und benötigen
diesen.

– Es gibt eine datagrammorientierte Variante von TLS,
genannt DTLS

– Obwohl SSH in / oberhalb der Transportschicht arbeitet,
ist die Server-Authentifizierung hostbasiert und nicht
anwendungsbasiert.

– Sicherheitsprotokolle der Transportschicht bieten echten
End-to-End-Schutz für Benutzerdaten, die zwischen
Anwendungsprozessen ausgetauscht werden.

– Außerdem können sie mit der Paketfilterung der heutigen
Firewalls zusammenarbeiten.

– Die Protokoll-Header-Felder von Protokollen der unteren
Schicht können jedoch nicht auf diese Weise geschützt
werden, so dass sie keine Gegenmaßnahmen für
Bedrohungen der Netzinfrastruktur selbst bieten.

Sicherheitsaspekte der mobilen
Kommunikation

• Die mobile Kommunikation ist mit den gleichen Bedrohungen
konfrontiert wie ihr stationäres Pendant:

– Maskerade, Abhören, Verletzung von Berechtigungen,
Verlust oder Veränderung von übertragenen Informationen,
Ablehnung von Kommunikationsakten, Fälschung von
Informationen, Sabotage

– Es müssen also ähnliche Maßnahmen wie in Festnetzen
ergriffen werden.

• Es gibt jedoch einige spezifische Probleme, die sich aus der
Mobilität von Benutzern und/oder Geräten ergeben:

– Einige bereits bestehende Bedrohungen werden noch
gefährlicher:

∗ Die drahtlose Kommunikation ist für
Abhörmaßnahmen leichter zugänglich.

∗ Das Fehlen einer physischen Verbindung macht den
Zugang zu Diensten einfacher

– Einige neue Schwierigkeiten bei der Realisierung von
Sicherheitsdiensten:

∗ Die Authentifizierung muss neu eingerichtet werden,
wenn das mobile Gerät umzieht.

∗ Die Schlüsselverwaltung wird schwieriger, da die
Identitäten der Peers nicht im Voraus festgelegt
werden können.

– Eine völlig neue Bedrohung:

∗ Der Standort eines Geräts/Nutzers wird zu einer
wichtigeren Information, die abzuhören und damit zu
schützen sich lohnt

Standortdatenschutz in Mobilfunknetzen
• In den heutigen Mobilfunknetzen gibt es keinen angemessenen

Schutz des Standortes:

– GSM / UMTS / LTE:

∗ Aktive Angreifer können IMSIs auf der
Luftschnittstelle sammeln

∗ Die Betreiber des besuchten Netzes können den
Standort der Nutzer teilweise verfolgen.

∗ Die Betreiber des Heimatnetzes können den Standort
des Nutzers vollständig verfolgen.

∗ Zumindest kommunizierende Endsysteme können den
Standort eines mobilen Geräts jedoch nicht in
Erfahrung bringen

• Drahtloses LAN:

– Kein Datenschutz für den Standort, da die (weltweit
eindeutige) MAC-Adresse in jedem MAC-Frame immer im
Klartext enthalten ist

• Das grundlegende Problem des Datenschutzes:

– Ein mobiles Gerät sollte erreichbar sein
– Keine (einzelne) Entität im Netz sollte in der Lage sein,

den Standort eines mobilen Geräts zu verfolgen

• Einige grundlegende Ansätze zur Lösung dieses Problems
,,Müller99a”:

– Broadcast von Nachrichten:
∗ Jede Nachricht wird an jeden möglichen Empfänger

gesendet
∗ Wenn Vertraulichkeit erforderlich ist, wird die

Nachricht asymmetrisch verschlüsselt
∗ Dieser Ansatz ist nicht gut skalierbar für große

Netzwerke / hohe Last

– Temporäre Pseudonyme:

∗ Mobile Geräte verwenden Pseudonyme, die regelmäßig
gewechselt werden

∗ Um das mobile Gerät zu erreichen, ist jedoch eine
Abbildungsinstanz erforderlich, die die Geschichte der
Pseudonyme des Mobiltelefons verfolgen kann.

– Gemischte Netzwerke:
∗ Nachrichten werden über verschiedene Entitäten

(Mixes) geleitet und jede Entität kann nur einen Teil
der Nachrichtenroute erfahren (siehe unten)

• Adressierungsschemata für standortbezogenen Datenschutz mit
Broadcast:

– Explizite Adressen: Jede Entität, die eine explizite Adresse
,,sieht,,, kann die adressierte Entität bestimmen

• Implizite Adressen:

– Eine implizite Adresse identifiziert kein bestimmtes Gerät
oder einen bestimmten Ort, sondern benennt lediglich eine
Einheit, ohne dass dem Namen eine weitere Bedeutung
beigemessen wird.

– Sichtbare implizite Adressen: Entitäten, die mehrere
Vorkommen einer Adresse sehen, können auf Gleichheit
prüfen

• Unsichtbare implizite Adressen:

– Nur die adressierte Einheit kann die Gleichheit der Adresse
überprüfen.

– Dies erfordert Operationen mit öffentlichen Schlüsseln:
ImplAddrA = rB , rA+KA

wobei rA von der adressierten

Entität gewählt wird und rB ein Zufallswert ist, der von
einer Entität B erzeugt wird, die unsichtbar auf die Entität
A verweisen will

• Vorübergehende Pseudonyme:

– Der Standort eines Gerätes A wird nicht mehr mit seiner
Kennung IDA, sondern mit einem wechselnden Pseudonym
PA(t) gespeichert.

36/41

Network Security

∗ Beispiel: VLRs in GSM kennen und speichern
möglicherweise nur die TMSI (die eine Art temporäres
Pseudonym ist)

– Die Zuordnung einer IDA zum aktuellen Pseudonym PA(t)
wird in einem vertrauenswürdigen Gerät gespeichert

∗ Beispiel: GSM HLRs könnten als vertrauenswürdige
Geräte realisiert werden

– Wenn ein eingehender Anruf an den aktuellen Standort von
Gerät A weitergeleitet werden muss:

∗ Der Netzbetreiber von Gerät A fragt das
vertrauenswürdige Gerät nach dem aktuellen
Pseudonym PA(t)

∗ Das Netz leitet den Anruf dann an den aktuellen
Standort von A weiter, indem es das temporäre
Pseudonym in einer Standortdatenbank nachschlägt.

∗ Es ist wichtig, dass die Einrichtungen, die einen Anruf
weiterleiten, nichts über die ursprüngliche Adresse der
Rufaufbau-Nachricht erfahren können (→ implizite
Adressen)

∗ Die Verwendung von Mischungen (siehe unten) kann
einen zusätzlichen Schutz gegen Angriffe von
kolludierenden Netzeinheiten bieten

• Kommunikations-Mixe:

– Das Konzept wurde 1981 von D. Chaum für nicht
zurückverfolgbare E-Mail-Kommunikation erfunden

– Ein Mix verbirgt die Kommunikationsbeziehungen zwischen
Absendern und Empfängern:

∗ Er puffert eingehende Nachrichten, die asymmetrisch
verschlüsselt sind, so dass nur der Mix sie
entschlüsseln kann.

∗ Er verändert das ,,Aussehen,, von Nachrichten, indem
er sie entschlüsselt

∗ Er ändert die Reihenfolge der Nachrichten und leitet
sie in Stapeln weiter.

∗ Wenn jedoch der Mix kompromittiert wird, kann ein
Angreifer ,,alles,, erfahren.

– Die Sicherheit kann durch kaskadierende Mixe erhöht
werden.

– Beispiel: A sendet eine Nachricht m an B über zwei Mixe
M1 und M2

∗ A→M1 : r1, r2, r3,m+KB
+KM2

+KM1

∗ M1→M2 : r2, r3,m+KB
+KM2

∗ M2→ B : r3,m+KB
∗ Es ist wichtig, dass die Mischungen ,,genug,,

Nachrichten verarbeiten
– Dieses Konzept lässt sich auf die mobile Kommunikation

übertragen ,,Müller99a”

Sicherheit von drahtlosen lokalen Netzen
IEEE 802.11

• IEEE 802.11 ,,IEEE12” standardisiert die Medienzugriffskontrolle
(MAC) und die physikalischen Eigenschaften eines drahtlosen
lokalen Netzwerks (LAN).

• Der Standard umfasst mehrere physikalische Schichteinheiten:

– Derzeit zwischen 1-300 Mbit/s
– 2,4-GHz-Band und 5-GHz-Band
– Viele verschiedene Modulationsverfahren

• Die Übertragung im lizenzfreien 2,4-GHz-Band impliziert:

– Medium-Sharing mit unfreiwilligen 802.11-Geräten
– Überlappung von logisch getrennten Wireless LANs
– Überlappung mit Nicht-802.11-Geräten

• Die Medienzugriffskontrolle (MAC) unterstützt sowohl den
Betrieb unter Kontrolle eines Access Points als auch zwischen
unabhängigen Stationen.

• In diesem Kurs werden wir uns hauptsächlich auf die
(Un-)Sicherheitsaspekte des Standards konzentrieren!

802.11 - Architektur eines Infrastrukturnetzes

• Station (STA): Endgerät mit Zugriffsmechanismen auf das
drahtlose Medium und Funkkontakt zum Access Point

• Basic Service Set (BSS): Gruppe von Stationen, die dieselbe
Funkfrequenz verwenden

• Zugangspunkt: Station, die in das drahtlose LAN und das
Verteilungssystem integriert ist

• Portal: Brücke zu anderen (kabelgebundenen) Netzwerken
• Verteilungssystem: Verbindungsnetz zur Bildung eines logischen

Netzes (Extended Service Set, ESS), das auf mehreren BSS basiert

802.11 - Architektur eines Ad-Hoc-Netzes

• Station (STA): Endgerät mit Zugriffsmechanismen auf das
drahtlose Medium

• Basic Service Set (BSS): Gruppe von Stationen, die dieselbe
Funkfrequenz verwenden

• Ad-Hoc-Netze ermöglichen die direkte Kommunikation zwischen
Endsystemen innerhalb einer begrenzten Reichweite

• Da es keine Infrastruktur gibt, ist keine Kommunikation zwischen
verschiedenen BSSs möglich

Sicherheitsdienste von IEEE 802.11

• Die Sicherheitsdienste von IEEE 802.11 wurden ursprünglich wie
folgt realisiert:

– Authentifizierungsdienst für Entitäten
– Wired Equivalent Privacy (WEP) Mechanismus

• WEP soll die folgenden Sicherheitsdienste bieten

– Vertraulichkeit
– Authentifizierung der Datenherkunft / Datenintegrität
– Zugangskontrolle in Verbindung mit Schichtenmanagement

• WEP verwendet die folgenden Algorithmen:

– Die RC4-Stromchiffre (siehe Kapitel 3)
– Die CRC-Prüfsumme (Cyclic Redundancy Code) zur

Fehlererkennung

Der zyklische Redundanzcode
• Der zyklische Redundanzcode (CRC) ist ein Fehlererkennungscode
• Mathematische Grundlage:

– Bitstrings werden als Darstellungen von Polynomen mit
den Koeffizienten 0 und 1 behandelt ⇒ Ein Bitstring, der
eine Nachricht M darstellt, wird als M(x) interpretiert

– Polynomarithmetik wird modulo 2 durchgeführt ⇒
Addition und Subtraktion sind identisch mit XOR

• CRC-Berechnung für eine Nachricht M(x):

– A und B einigen sich auf ein Polynom G(x); üblicherweise
ist G(x) standardisiert

– Sei n der Grad von G(x), d.h. die Länge von G(x) sei n+ 1

– Wenn dann
M(x)×2n

G(x)
= Q(x) +

R(x)
G(x)

gilt
M(x)×2n+R(x)

G(x)

wobei R(x) der Rest von M(x) geteilt durch G(x) ist

– Normalerweise wird R(x) vor der Übertragung an M(x)
angehängt, und Q(x) ist nicht von Interesse, da es nur

geprüft wird, wenn
M(x)×2n+R(x)

G(x)
mit Rest 0 dividiert

• Betrachten wir nun zwei Nachrichten M1 und M2 mit CRCs R1
und R2:

– Da
M1(x)×2n+R1(x)

G(x)
und

M2(x)×2n+R2(x)

G(x)
mit dem Rest 0

teilen, teilt sich auch
M1(x)×2n+R1(x)+M2(x)×2n+R2(x)

G(x)
=

(M1(x)+M2(x))×2n+(R1(x)+R2(x))

G(x)
teilt mit Rest 0

– ⇒ CRC ist linear, d.h.
CRC(M1 +M2) = CRC(M1) + CRC(M2)

• Diese Eigenschaft macht CRC schwach für kryptographische
Zwecke!

IEEE 802.11 Entity-Authentifizierung
• Ursprünglich gibt es die IEEE 802.11-Authentifizierung in zwei

,,Geschmacksrichtungen”:

– Offene System-Authentifizierung: ,,Im Wesentlichen handelt
es sich um einen Null-Authentifizierungsalgorithmus.”
(IEEE 802.11)

– Shared-Key-Authentifizierung:

∗ Die ,,Shared-Key-Authentifizierung unterstützt die
Authentifizierung von STAs entweder als Mitglied
derer, die einen gemeinsamen geheimen Schlüssel
kennen, oder als Mitglied derer, die ihn nicht kennen.”
(IEEE 802.11, Abschnitt 8.1.2)

∗ Es wird davon ausgegangen, dass der erforderliche
geheime, gemeinsam genutzte Schlüssel den
teilnehmenden STAs über einen sicheren, von IEEE
802.11 unabhängigen Kanal übermittelt wurde.

IEEE 802.11’s Shared Key Authentication Dialog:

• Die Authentifizierung sollte zwischen Stationen und
Zugangspunkten erfolgen und könnte auch zwischen beliebigen
Stationen durchgeführt werden.

• Bei der Authentifizierung fungiert eine Station als Requestor (A)
und die andere als Responder (B)

• Der Authentifizierungsdialog:

1. A→ B : (Authentifizierung, 1, IDA)
2. B → A : (Authentifizierung, 2, rB)
3. A→ B : Authentifizierung, 3, rBKA,B
4. B → A : (Authentifizierung, 4, erfolgreich)

• Die gegenseitige Authentifizierung erfordert zwei unabhängige
Protokolldurchläufe, einen in jeder Richtung

• Aber: ein Angreifer kann sich nach dem Abhören eines
Protokolldurchlaufs ausgeben, da er einen gültigen Schlüsselstrom
aus den Nachrichten 2 und 3 erhalten kann!

IEEE 802.11’s Wired Equivalence Privacy
• IEEE 802.11’s WEP verwendet RC4 als

Pseudo-Zufallsbit-Generator (PRNG):

– Für jede zu schützende Nachricht M wird ein
24-Bit-Initialisierungsvektor (IV) mit dem gemeinsamen
Schlüssel KBSS verkettet, um den Seed des PRNG zu
bilden.

– Der Integritätsprüfwert (ICV) von M wird mit CRC
berechnet und an die Nachricht angehängt (,,——”)

– Die resultierende Nachricht (M ||ICV) wird mit dem von
RC4(IV ||KBSS) erzeugten Schlüsselstrom XOR-verknüpft
(,,⊕”)

• Da die IV mit jeder Nachricht im Klartext gesendet wird, kann
jeder Empfänger, der KBSS kennt, den entsprechenden
Schlüsselstrom zur Entschlüsselung einer Nachricht erzeugen.

– Dadurch wird die wichtige Eigenschaft der
Selbstsynchronisation von WEP gewährleistet

– Der Entschlüsselungsprozess ist im Grunde die Umkehrung
der Verschlüsselung:

Die Sicherheitsansprüche von IEEE 802.11
• WEP wurde entwickelt, um die folgenden Sicherheitseigenschaften

zu gewährleisten:

– Vertraulichkeit:
∗ Nur Stationen, die über KBSS verfügen, können mit

WEP geschützte Nachrichten lesen

– Authentifizierung der Datenherkunft / Datenintegrität:

∗ Böswillige Veränderungen von WEP-geschützten
Nachrichten können erkannt werden

– Zugriffskontrolle in Verbindung mit Schichtenmanagement:

37/41

Network Security

∗ Wenn in der Schichtenverwaltung so eingestellt,
werden nur WEP-geschützte Nachrichten von
Empfängern akzeptiert

∗ Somit können Stationen, die KBSS nicht kennen,
nicht an solche Empfänger senden

• Leider trifft keine der obigen Behauptungen zu...

Schwachstelle #1: Die Schlüssel
• IEEE 802.11 sieht keine Schlüsselverwaltung vor:

– Manuelle Verwaltung ist fehleranfällig und unsicher
– Die gemeinsame Verwendung eines Schlüssels für alle

Stationen eines BSS führt zu zusätzlichen
Sicherheitsproblemen

– Als Folge der manuellen Schlüsselverwaltung werden die
Schlüssel selten geändert.

– Eine weitere Folge ist, dass die ,,Sicherheit” oft sogar
ausgeschaltet ist!

• Schlüssellänge:

– Die im ursprünglichen Standard festgelegte Schlüssellänge
von 40 Bit bietet nur geringe Sicherheit

– Der Grund dafür war die Exportierbarkeit
– Wireless LAN-Karten erlauben oft auch Schlüssel der

Länge 104 Bit, aber das macht die Situation nicht besser,
wie wir später sehen werden

Schwachstelle #2: WEP-Vertraulichkeit ist unsicher
• Selbst mit gut verteilten und langen Schlüsseln ist WEP unsicher
• Der Grund dafür ist die Wiederverwendung des Schlüsselstroms:

– Erinnern Sie sich, dass die Verschlüsselung mit jeder
Nachricht neu synchronisiert wird, indem eine IV der Länge
24 Bit an KBSS angehängt und der PRNG neu initialisiert
wird

– Betrachten wir zwei Klartexte M 1 und M 2, die mit
demselben IV 1 verschlüsselt wurden:

∗ C1 = P1 ⊕ RC4(IV1, KBSS)
∗ C2 = P2 ⊕ RC4(IV1, KBSS) dann:
∗ C1 ⊕ C2 = (P1 ⊕ RC4(IV1, KBSS))⊕ (P2 ⊕
RC4(IV1, KBSS)) = P1 ⊕ P2

– Wenn also ein Angreifer z.B. P1 und C1 kennt, kann er P2
aus C2 wiederherstellen, ohne den Schlüssel KBSS zu
kennen.

∗ Kryptographen nennen dies einen Angriff mit
bekanntem Klartext

• Wie oft kommt die Wiederverwendung des Schlüsselstroms vor?

– In der Praxis recht häufig, da viele Implementierungen die
IV schlecht wählen

– Selbst bei optimaler Wahl, da die IV-Länge 24 Bit beträgt,
wird eine stark ausgelastete Basisstation eines
11-Mbit/s-WLAN den verfügbaren Speicherplatz in einem
halben Tag erschöpfen

Schwachstelle #3: WEP-Datenintegrität ist unsicher
• Erinnern Sie sich, dass CRC eine lineare Funktion ist und RC4

ebenfalls linear ist
• Nehmen wir an, A sendet eine verschlüsselte Nachricht an B, die

von einem Angreifer E abgefangen wird:

– A→ B : (IV, C)mitC = RC4(IV,KBSS)⊕ (M,CRC(M))

• Der Angreifer E kann einen neuen Chiffretext C′ konstruieren,
der zu einer Nachricht M ′ mit einer gültigen Prüfsumme
CRC(M ′) entschlüsselt wird:

– E wählt eine beliebige Nachricht δ mit der gleichen Länge
– C′ = C ⊕ (δ, CRC(δ)) =
RC4(IV,KBSS)⊕ (M,CRC(M))⊕ (δ, CRC(δ))

– = RC4(IV,KBSS)⊕ (M ⊕ δ, CRC(M)⊕ CRC(δ))

– = RC4(IV,KBSS)⊕ (M ⊕ δ, CRC(M ⊕ δ))
– = RC4(IV,KBSS)⊕ (M ′, CRC(M ′))
– Man beachte, dass E M ′ nicht kennt, da es M nicht kennt.
– Dennoch führt ein ,,1” an Position n in δ zu einem

umgedrehten Bit an Position n in M ′, so dass E
kontrollierte Änderungen an M vornehmen kann

– ⇒ Datenherkunftsauthentifizierung / Datenintegrität von
WEP ist unsicher!

Schwachstelle #4: WEP-Zugangskontrolle ist unsicher
• Erinnern Sie sich, dass die Integritätsfunktion ohne einen

Schlüssel berechnet wird
• Betrachten wir einen Angreifer, der ein Klartext-Chiffretext-Paar

in Erfahrung bringt:

– Da der Angreifer M und
C = RC4(IV,KBSS)⊕ (M,CRC(M)) kennt, kann er den
zur Erzeugung von C verwendeten Schlüsselstrom
berechnen

– Wenn E später eine Nachricht M ′ senden will, kann er
C′ = RC4(IV,KBSS)⊕ (M ′, CRC(M ′)) berechnen und
die Nachricht (IV, C′) senden.

– Da die Wiederverwendung alter IV-Werte möglich ist, ohne
beim Empfänger einen Alarm auszulösen, handelt es sich
um eine gültige Nachricht

– Eine ,,Anwendung” für diesen Angriff ist die unbefugte
Nutzung von Netzwerkressourcen:

∗ Der Angreifer sendet IP-Pakete, die für das Internet
bestimmt sind, an den Zugangspunkt, der sie
entsprechend weiterleitet und dem Angreifer freien
Zugang zum Internet gewährt

• ⇒ WEP Access Control kann mit bekanntem Klartext umgangen
werden

Schwachstelle Nr. 5: Schwachstelle in der
RC4-Schlüsselberechnung

• Anfang August 2001 wurde ein weiterer Angriff auf WEP
entdeckt:

– Der gemeinsame Schlüssel kann in weniger als 15 Minuten
wiederhergestellt werden, vorausgesetzt, dass etwa 4 bis 6
Millionen Pakete wiederhergestellt wurden.

– Bei dem Angriff handelt es sich um einen Angriff mit
verwandten Schlüsseln, bei dem die Verwendung von RC4
durch WEP ausgenutzt wird:

∗ RC4 ist anfällig für die Ableitung von Bits eines
Schlüssels, wenn:

· viele Nachrichten mit einem Schlüsselstrom
verschlüsselt werden, der aus einem variablen
Initialisierungsvektor und einem festen Schlüssel
erzeugt wird, und

· die Initialisierungsvektoren und der Klartext der
ersten beiden Oktette für die verschlüsselten
Nachrichten bekannt sind

∗ Die IV für den Schlüsselstrom wird mit jedem Paket
im Klartext übertragen.

∗ Die ersten beiden Oktette eines verschlüsselten
Datenpakets können erraten werden

– Der Angriff ist in ,,SMF01a” und ,,SIR01a” beschrieben
und wurde später so verfeinert, dass er noch schneller
funktioniert ,,TWP07”.

– R. Rivest kommentiert dies ,,Riv01a”: ,,Diejenigen, die die
RC4-basierten WEP- oder WEP2-Protokolle verwenden,
um die Vertraulichkeit ihrer 802.11-Kommunikation zu
gewährleisten, sollten diese Protokolle als gebrochen
betrachten ,,...””

Schlussfolgerungen zu den Unzulänglichkeiten von
IEEE 802.11

• Das ursprüngliche IEEE 802.11 bietet keine ausreichende
Sicherheit:

– Fehlende Schlüsselverwaltung macht die Nutzung der
Sicherheitsmechanismen mühsam und führt dazu, dass die
Schlüssel selten gewechselt werden oder sogar die Sicherheit
ausgeschaltet ist

– Sowohl die Entity-Authentifizierung als auch die
Verschlüsselung beruhen auf einem Schlüssel, der von allen
Stationen eines Basisdienstes gemeinsam genutzt wird

– Unsicheres Protokoll zur Entitätsauthentifizierung
– Wiederverwendung des Schlüsselstroms ermöglicht Angriffe

mit bekanntem Klartext
– Lineare Integritätsfunktion ermöglicht die Fälschung von

ICVs
– Unverschlüsselte Integritätsfunktion ermöglicht die

Umgehung der Zugangskontrolle durch Erstellung gültiger
Nachrichten aus einem bekannten Klartext-Chiffretext-Paar

– Schwachstelle in der RC4-Schlüsselplanung ermöglicht die
Kryptoanalyse von Schlüsseln

• Selbst mit IEEE 802.1X und individuellen Schlüsseln bleibt das
Protokoll schwach

• Einige vorgeschlagene Gegenmaßnahmen:

– Platzieren Sie Ihr IEEE 802.11 Netzwerk außerhalb Ihrer
Internet Firewall

– Vertrauen Sie keinem Host, der über IEEE 802.11
verbunden ist.

– Verwenden Sie zusätzlich andere Sicherheitsprotokolle, z. B.
PPTP, L2TP, IPSec, SSH, ...

Interlude: Sicherheit in öffentlichen
WLAN-Hotspots
Welche Sicherheit können Sie in einem öffentlichen WLAN-Hotspot
erwarten?

• Bei den meisten Hotspots: Leider fast keine!
• Wenn Sie außer der Eingabe eines Benutzernamens und eines

Passworts auf einer Webseite keine weiteren Sicherheitsparameter
konfigurieren müssen, können Sie Folgendes erwarten:

– Der Hotspot-Betreiber prüft Ihre Authentizität bei der
Anmeldung (oft mit SSL geschützt, um das Abhören Ihres
Passworts zu verhindern)

– Nur authentifizierte Clients erhalten den Dienst, da die
Paketfilterung den Zugriff auf die Anmeldeseite nur bei
erfolgreicher Authentifizierung zulässt.

– Nach Überprüfung der Anmeldeauthentifizierung: keine
weiteren Sicherheitsmaßnahmen

– Kein Schutz für Ihre Benutzerdaten:
∗ Alles kann abgefangen und manipuliert werden
∗ Sie können zwar eigene Maßnahmen ergreifen, z.B.

VPN oder SSL, aber die Konfiguration ist oft mühsam
oder wird vom Kommunikationspartner gar nicht
unterstützt und die Leistung wird durch zusätzlichen
(pro-Paket-) Overhead beeinträchtigt

– Plus: Ihre Sitzung kann durch die Verwendung Ihrer MAC-
und IP-Adressen gestohlen werden!

• Konsequenz: bessere WLAN-Sicherheit ist dringend erforderlich

Fixing WLAN Security: IEEE 802.11i, WPA und
WPA

• Umfang: Definition der Interaktion zwischen 802.1X und 802.11
Standards

• TGi definiert zwei Klassen von Sicherheitsalgorithmen für 802.11:

– Pre-RSN Sicherheitsnetzwerk (→ WEP)
– Robustes Sicherheitsnetzwerk (RSN)

• Die RSN-Sicherheit besteht aus zwei grundlegenden Teilsystemen:

– Mechanismen zum Schutz der Daten:
∗ TKIP - schnelles Re-Keying, um WEP für ein

Minimum an Datenschutz zu verbessern
(Marketingname WPA)

∗ AES-Verschlüsselung - robuster Datenschutz für lange
Zeit (Marketingname WPA2)

38/41

Network Security

• Verwaltung von Sicherheitsvereinbarungen:

– Unternehmensmodus - basierend auf 802.1X
– Persönlicher Modus - basierend auf Pre-Shared Keys

(das meiste Material über 802.11i ist aus ,,WM02a” entnommen)

WPA-Schlüsselverwaltung
• Im Gegensatz zum ursprünglichen 802.11: paarweise Schlüssel

zwischen STA und BS, zusätzliche Gruppenschlüssel für Multi-
und Broadcast-Pakete sowie Station-to-Station-Link
(STSL)-Schlüssel

• Das erste Geheimnis: der 256 Bit Pairwise Master Key (PMK)

– Unternehmensmodus: Verwendet 802.1X-Authentifizierung
und installiert einen neuen Schlüssel, der BS und Client
bekannt ist, z. B. durch EAP-TTLS

– Persönlicher Modus: Verwendet einen Pre-Shared Key
(PSK), der dem BS und vielen STAs bekannt ist.

∗ Explizit durch 64 zufällige Hex-Zeichen oder implizit
durch ein Passwort gegeben

∗ Wenn Passwort: PMK = PBKDF2(Passwort, SSID,
4096, 256)

∗ Wobei PBKDF2 die passwortbasierte
Schlüsselableitungsfunktion 2 aus ,,RFC2898” mit
einer Salz-SSID und einer Ausgangslänge von 256 Bit
ist

∗ impliziert 2 * 4096 Berechnungen von HMAC-SHA1,
um Brute-Force zu verlangsamen

• PMK ist ein Vertrauensanker für die Authentifizierung per
EAPOL (EAP over LAN) Handshake, wird aber nie direkt
verwendet...

• Für aktuelle kryptographische Protokolle wird ein kurzzeitiger
512 Bit Pairwise Transient Key (PTK) wie folgt generiert

– PTK =
PRF (PMK, ,,Paarweise Schlüsselerweiterung”,min(AddrBS , AddrSTA)||max(AddrBS , AddrSTA)||min(rBS , rSTA)||max(rBS , rSTA))

– Dabei ist PRF (K,A,B) die verkettete Ausgabe von
HMAC − SHA1(K,A||′0′||B||i) über einen laufenden
Index i

• Der PTK wird aufgeteilt in:

– EAPOL-Schlüssel-Bestätigungsschlüssel (KCK, erste 128
Bits),

∗ Wird zum Schutz der Integrität von
EAPOL-Nachrichten verwendet

∗ Durch HMAC-MD5 (veraltet), HMAC-SHA1-128,
AES-128-CMAC

– EAPOL Key Encryption Key (KEK, zweite 128 Bits),

∗ Wird zur Verschlüsselung neuer Schlüssel in
EAPOL-Nachrichten verwendet

∗ Mit RC4 (veraltet), AES im Key Wrap Mode
,,RFC3394”

– Ein Temporal Key (TK) zum Schutz des Datenverkehrs (ab
Bit 256)!

• Initialer Dialog mit BS:

– EAPOL (EAP over LAN) 4-Wege-Handshake wird
verwendet, um

∗ Überprüfung der gegenseitigen Kenntnis des PMK
∗ Initiiert durch BS, um Schlüssel zu installieren

(gruppenweise und paarweise)

– Vereinfachter Handshake funktioniert wie folgt:

1. BS → STA : (1, rBS , PMKID, install new PTK)
2. STABS : (2, rSTA,MACKCK)
3. BSSTA : (3, rBS ,MACKCK , TKKEK)
4. STABS : (4, rSTA,MACKCK)

– Wobei PMKID den PMK identifiziert: obere 128 Bit von
HMAC − SHA−
256(PMK, , , PMKName, , ||AddrBS ||AddrSTA)

Eine Zwischenlösung: Temporal Key Integrity
Protokoll

• Ziele des Entwurfs:

– Schnelle Lösung für das bestehende WEP-Problem,
betreibt WEP als Unterkomponente

– Kann in Software implementiert werden, nutzt vorhandene
WEP-Hardware wieder

– Anforderungen an vorhandene AP-Hardware:

∗ 33 oder 25 MHz ARM7 oder i486, die bereits vor
TKIP mit 90% CPU-Auslastung laufen

∗ Nur als Software/Firmware-Upgrade gedacht
∗ Keine unangemessene Beeinträchtigung der Leistung

• Wichtigste Konzepte:

– Nachrichtenintegritätscode (MIC)
– Gegenmaßnahmen im Falle von MIC-Fehlern
– Sequenzzähler
– Dynamische Schlüsselverwaltung (Re-Keying)
– Schlüsselmischung

• TKIP erfüllt die Kriterien für einen guten Standard: alle sind
damit unzufrieden...

Message Integrity Code Funktion Michael

• Schützt vor Fälschungen:

– Muss billig sein: CPU-Budget 5 Anweisungen / Byte

– Leider schwach: ein 229 Nachrichtenangriff existiert
– Wird über MSDUs berechnet, während WEP über MPDUs

läuft
– Verwendet zwei 64-Bit-Schlüssel, einen in jeder

Verbindungsrichtung
– Erfordert Gegenmaßnahmen:

∗ Rekey on active attack (nur wenige Fehlalarme, da
CRC zuerst geprüft wird)

∗ Ratenbegrenzung auf eine Neuverschlüsselung pro
Minute

Wiederholungsschutz und RC4-Schlüsselplanung

• Replay-Schutz:

– Zurücksetzen der Paket-Sequenz # auf 0 bei Wiederholung
– Erhöhen der Sequenz # um 1 bei jedem Paket
– Verwerfen aller Pakete, die außerhalb der Sequenz

empfangen werden

• Umgehen Sie die Schwächen der WEP-Verschlüsselung:

– Erstellen Sie einen besseren paketweisen
Verschlüsselungsschlüssel, indem Sie Angriffe mit
schwachen Schlüsseln verhindern und WEP IV und
paketweisen Schlüssel dekorrelieren

– muss auf vorhandener Hardware effizient sein

TKIP-Verarbeitung beim Sender
TKIP-Verarbeitung auf der Empfängerseite

Die langfristige Lösung: AES-basierter
WLAN-Schutz

• Zählermodus mit CBC-MAC (CCMP):

– Obligatorisch zu implementieren: die langfristige Lösung
– Ein völlig neues Protokoll mit wenigen Zugeständnissen an

WEP
– Bietet: Datenvertraulichkeit, Authentifizierung der

Datenherkunft, Schutz vor Wiederholungen
– Basiert auf AES in Counter Mode Encryption mit

CBC-MAC (CCM)

∗ Verwendung von CBC-MAC zur Berechnung einer
MIC für den Klartext-Header, die Länge des
Klartext-Headers und die Nutzdaten

∗ Verwenden Sie den CTR-Modus, um die Payload mit
den Zählerwerten 1, 2, 3, ... zu verschlüsseln.

∗ Verwenden Sie den CTR-Modus, um die MIC mit dem
Zählerwert 0 zu verschlüsseln.

– AES-Overhead erfordert neue AP-Hardware
– Der AES-Overhead erfordert möglicherweise neue

STA-Hardware für Handheld-Geräte, aber theoretisch nicht
für PCs (dies erhöht jedoch die CPU-Last und den
Energieverbrauch), praktisch aufgrund fehlender Treiber
für beide

Vergleich WEP, TKIP und CCMP
TKIP ist derzeit veraltet, AES wird empfohlen.

Sicherheit von GSM- und UMTS-Netzen
GSM-Übersicht

• Die GSM-Normen:

– Akronym:

∗ früher: Groupe Spéciale Mobile (gegründet 1982)
∗ jetzt: Globales System für mobile Kommunikation

– Gesamteuropäische Norm (ETSI)
– Gleichzeitige Einführung wesentlicher Dienste in drei

Phasen (1991, 1994, 1996) durch die europäischen
Telekommunikationsverwaltungen (Deutschland: D1 und
D2) → nahtloses Roaming innerhalb Europas möglich

– Heute nutzen viele Anbieter in der ganzen Welt GSM
(mehr als 130 Länder in Asien, Afrika, Europa, Australien,
Amerika)

• Merkmale:

– Echte mobile, drahtlose Kommunikation mit Unterstützung
für Sprache und Daten

– Weltweite Konnektivität und internationale Mobilität mit
eindeutigen Adressen

– Sicherheitsfunktionen:
∗ Vertraulichkeit auf der Luftschnittstelle
∗ Zugangskontrolle und Benutzerauthentifizierung

• GSM bietet die folgenden Sicherheitsfunktionen ,,ETSI93a,
ETSI94a”:

– Vertraulichkeit der Identität des Teilnehmers:
∗ Schutz vor einem Eindringling, der versucht zu

identifizieren, welcher Teilnehmer eine bestimmte
Ressource auf dem Funkpfad benutzt (z.B.
Verkehrskanal oder Signalisierungsressourcen), indem
er den Signalisierungsaustausch auf dem Funkpfad
abhört

∗ Vertraulichkeit für Signalisierungs- und Benutzerdaten
∗ Schutz gegen die Rückverfolgung des Standorts eines

Teilnehmers
– Authentifizierung der Identität des Teilnehmers: Schutz des

Netzes vor unbefugter Nutzung
– Vertraulichkeit des Signalisierungsinformations-Elements:

Geheimhaltung von Signalisierungsdaten auf der
Funkstrecke

– Vertraulichkeit der Benutzerdaten: Geheimhaltung von
Nutzdaten auf der Funkstrecke

– Es werden jedoch nur Lauschangriffe auf die
Funkverbindung zwischen dem Mobiltelefon und den
Basisstationen berücksichtigt!

Einige GSM-Abkürzungen — — — — —— —
——————————————- — — AuC — Authentication center —
— BSC — Basisstations-Controller — — BTS —
Basis-Transceiver-Station — — IMSI — Internationale mobile
Teilnehmerkennung — — HLR — Heimatstandortregister — — LAI —
Standortbereichskennung — — MS — Mobile Station (z. B. ein
Mobiltelefon) — — MSC — Mobile Vermittlungsstelle — — MSISDN —
Mobile subscriber international ISDN number — — TMSI — Temporäre
mobile Teilnehmerkennung — — VLR — Register für Besucherstandorte
—

• Ki: Authentifizierungsschlüssel des einzelnen Teilnehmers
• SRES: Signierte Antwort

39/41

Network Security

Der grundlegende (anfängliche) Authentifizierungsdialog:

1. MS → V LR : (IMSIMS)
2. V LR→ AuC : (IMSIMS)
3. AuC → V LR : (IMSIMS , KBSC,MS , RAUC , SRESAUC)
4. V LR→MS : (RAUC:1)
5. MS → V LR : (SRESAUC:1)
6. V LR→MS : (LAI1, TMSIMS:1)

• Bemerkungen:

– SRESAUC = A3(KAUC,MS , RAUC); A3 ist ein
Algorithmus

– KBSC,MS = A8(KAUC,MS , RAUC); A8 ist ein Algorithmus
– RAUC , SRESAUC sind Arrays mit mehreren Werten

• Dialog zur Wiederauthentifizierung mit demselben VLR:

1. MS → V LR : (LAI1, TMSIMS:n)
2. V LR→MS : (RAUC:i)
3. MS → V LR : (SRESAUC:i)
4. V LR→MS : (LAI1, TMSIMS:n+1)

• Bemerkungen:

– Die Standortbereichskennung LAI1 ermöglicht die
Erkennung eines MS ,,coming in” aus einem anderen
Bereich

– Nach erfolgreicher Authentifizierung wird eine neue
temporäre mobile Teilnehmeridentität TMSIMS:n+1

zugewiesen

• Re-Authentifizierungsdialog mit Übergabe an das neue V LR2:

1. MS → V LR2 : (LAI1, TMSIMS:n)
2. V LR2 → V LR1 : (LAI1, TMSIMS:n)
3. V LR1 → V LR2 :

(TMSIMS:n, IMSIMS , KBSC,MS , RAUC , SRESAUC)
4. V LR2 →MS : (RAUC:i)
5. MS → V LR2 : (SRESAUC:i)
6. V LR2 →MS : (LAI2, TMSIMS:n+1)

• Bemerkungen:

– Nur unbenutzte RAUC , ... werden an V LR2 übertragen
– Dieses Schema kann nicht verwendet werden, und es ist ein

Anfangsdialog erforderlich:

∗ Wenn TMSIMS:n bei V LR1 nicht verfügbar ist, oder
∗ wenn V LR2 nicht in der Lage ist, V LR1 zu

kontaktieren
– Wenn V LR1 und V LR2 zu verschiedenen Netzbetreibern

gehören, kann der Handover nicht durchgeführt werden und
die Verbindung wird unterbrochen

• Nur das Mobiltelefon authentifiziert sich gegenüber dem Netz
• Die Authentifizierung basiert auf einem

Challenge-Response-Verfahren:

– Das AuC im Heimatnetz erzeugt Challenge-Response-Paare
– Der MSC/VLR im besuchten Netz prüft diese
– Challenge-Response-Vektoren werden ungeschützt im

Signalisierungsnetz übertragen

• Die permanente Identifikation des Mobiltelefons (IMSI) wird nur
dann über die Funkverbindung gesendet, wenn dies unvermeidlich
ist:

– Dies ermöglicht einen teilweisen Schutz des Standorts.
– Da die IMSI manchmal im Klartext gesendet wird, ist es

dennoch möglich, den Standort einiger Einheiten zu
erfahren

– Ein Angreifer könnte sich als Basisstation ausgeben und die
Handys ausdrücklich auffordern, ihre IMSI zu senden!

• Grundsätzlich besteht Vertrauen zwischen allen Betreibern!

General Packet Radio Service (GPRS)
• GPRS (General Packet Radio Service, allgemeiner

Paketfunkdienst):

– Datenübertragung in GSM-Netzen auf der Basis von
Paketvermittlung

– Nutzung freier Slots der Funkkanäle nur bei sendebereiten
Datenpaketen (z.B. 115 kbit/s bei temporärer Nutzung von
8 Slots)

• GPRS-Netzelemente:

– GGSN (Gateway GPRS Support Node):
Interworking-Einheit zwischen GPRS und PDN (Packet
Data Network)

– SGSN (Serving GPRS Support Node): Unterstützt die MS
(Standort, Abrechnung, Sicherheit, entspricht im Grunde
dem MSC)

– GR (GPRS Register): Verwaltet Benutzeradressen
(entspricht HLR)

(allgemeine GPRS-Beschreibung entnommen aus ,,Sch03a”)

• SNDCP: Subnetwork Dependent Convergence Protocol
• GTP: GPRS Tunnelling Protocol

GPRS-Sicherheit

• Sicherheitsziele:

– Schutz vor unbefugter Nutzung des GPRS-Dienstes
(Authentifizierung)

– Gewährleistung der Vertraulichkeit der Benutzeridentität
(temporäre Identifizierung und Verschlüsselung)

– Gewährleistung der Vertraulichkeit von Benutzerdaten
(Verschlüsselung)

• Realisierung von Sicherheitsdiensten:

– Die Authentifizierung ist grundsätzlich identisch mit der
GSM-Authentifizierung:

∗ SGSN ist die Peer-Entität
∗ Zwei separate temporäre Identitäten werden für

GSM/GPRS verwendet
∗ Nach erfolgreicher Authentifizierung wird die

Verschlüsselung eingeschaltet

– Die Vertraulichkeit der Benutzeridentität ist ähnlich wie
bei GSM:

∗ Die meiste Zeit wird nur die Paket-TMSI (P-TMSI)
über die Luft gesendet.

∗ Optional können P-TMSI ,,Signaturen” zwischen MS
und SGSN verwendet werden, um die
Re-Authentifizierung zu beschleunigen

– Die Vertraulichkeit der Benutzerdaten wird zwischen MS
und SGSN realisiert:

∗ Unterschied zu GSM, wo nur zwischen MS und BTS
verschlüsselt wird

∗ Die Verschlüsselung wird in der LLC-Protokollschicht
realisiert

• GPRS unterstützt ein ,,optimiertes Handover” einschließlich
Re-Authentifizierung (dies könnte jedoch eine Schwäche der
P-TMSI ,,Signatur” verhindern)

UMTS Sicherheits Architektur
1. Netzzugangssicherheit: Schutz vor Angriffen auf die

Funkschnittstelle
2. Sicherheit der Netzdomäne: Schutz vor Angriffen auf das

drahtgebundene Netz
3. Sicherheit der Benutzerdomäne: sicherer Zugang zu den

Mobilstationen
4. Sicherheit der Anwendungsdomäne: sicherer

Nachrichtenaustausch für Anwendungen
5. Sichtbarkeit und Konfigurierbarkeit der Sicherheit: Information

des Benutzers über den sicheren Betrieb

Aktueller Stand der UMTS-Sicherheitsarchitektur
• Sicherheit beim Netzzugang: Derzeit der am weitesten entwickelte

Teil der UMTS-Sicherheit (siehe unten)
• Netzbereichssicherheit: Dieser Teil ist größtenteils noch

ausbaufähig (in Spezifikationen bis Release 5)
• Sicherheit der Benutzerdomäne:

– Verlangt grundsätzlich, dass sich der Benutzer gegenüber
seinem User Services Identity Module (USIM)
authentifiziert, z.B. durch Eingabe einer PIN

– Optional kann ein Terminal die Authentifizierung des
USIM verlangen.

• Anwendungsbereichssicherheit:

– Definiert ein Sicherheitsprotokoll, das zwischen den auf
dem Endgerät/USIM laufenden Anwendungen und einem
System im Netz verwendet wird (3GPP TS 23.048)

– Liegt etwas außerhalb des Bereichs der Mobilfunksicherheit

• Sichtbarkeit und Konfigurierbarkeit der Sicherheit: Definiert
Anforderungen, damit der Benutzer die Kontrolle über die
Sicherheitsmerkmale hat

• Im Folgenden konzentrieren wir uns auf die Netzzugangssicherheit

UMTS-Netzzugangssicherheitsdienste
• Vertraulichkeit der Benutzeridentität

– Vertraulichkeit der Benutzeridentität: die Eigenschaft, dass
die permanente Benutzeridentität (IMSI) eines Benutzers,
dem ein Dienst bereitgestellt wird, auf der
Funkzugangsverbindung nicht abgehört werden kann

– Vertraulichkeit des Benutzerstandorts: die Eigenschaft, dass
die Anwesenheit oder die Ankunft eines Benutzers in einem
bestimmten Gebiet nicht durch Abhören der
Funkzugangsverbindung ermittelt werden kann

– Unverfolgbarkeit des Benutzers: die Eigenschaft, dass ein
Eindringling durch Abhören der Funkzugangsverbindung
nicht ableiten kann, ob verschiedene Dienste an denselben
Benutzer geliefert werden

• Authentifizierung der Entität

– Benutzerauthentifizierung: die Eigenschaft, dass das
dienende Netz die Identität des Benutzers bestätigt

– Netzauthentifizierung: die Eigenschaft, dass der Benutzer
bestätigt, dass er mit einem dienenden Netz verbunden ist,
das von dem HE des Benutzers autorisiert ist, ihm Dienste
zu liefern; dies schließt die Garantie ein, dass diese
Autorisierung aktuell ist.

• Vertraulichkeit

– Vereinbarung über den Chiffrieralgorithmus: die
Eigenschaft, dass der MS und der SN den Algorithmus, den
sie später verwenden sollen, sicher aushandeln können

– Chiffrierschlüssel-Vereinbarung: die Eigenschaft, dass der
MS und der SN sich auf einen Chiffrierschlüssel einigen,
den sie später verwenden können

– Vertraulichkeit der Nutzdaten: die Eigenschaft, dass
Nutzdaten an der Funkzugangsschnittstelle nicht abgehört
werden können

– Vertraulichkeit der Signalisierungsdaten: die Eigenschaft,
dass Signalisierungsdaten auf der Funkzugangsschnittstelle
nicht abgehört werden können

• Integrität der Daten

– Vereinbarung eines Integritätsalgorithmus
– Integritätsschlüssel-Vereinbarung
– Datenintegrität und Ursprungsauthentifizierung von

Signalisierungsdaten: die Eigenschaft, dass die
empfangende Einheit (MS oder SN) in der Lage ist, zu
überprüfen, dass Signalisierungsdaten seit dem Versand
durch die sendende Einheit (SN oder MS) nicht auf
unautorisierte Weise verändert wurden und dass der
Datenursprung der empfangenen Signalisierungsdaten
tatsächlich der behauptete ist

40/41

Network Security

Einige UMTS-Authentifizierungsabkürzungen

Überblick über den
UMTS-Authentifizierungsmechanismus

•

•

– Der HE/AuC beginnt mit der Erzeugung einer neuen
Sequenznummer SQN und einer unvorhersehbaren
Herausforderung RAND

∗ Für jeden Benutzer führt die HE/AuC einen Zähler
SQNHE

– Ein Authentifizierungs- und Schlüsselverwaltungsfeld AMF
ist im Authentifizierungs-Token jedes
Authentifizierungsvektors enthalten.

– Anschließend werden die folgenden Werte berechnet:

∗ ein Nachrichtenauthentifizierungscode
MAC = f1K(SQN ||RAND||AMF), wobei f1 eine
Nachrichtenauthentifizierungsfunktion ist

∗ eine erwartete Antwort XRES = f2K(RAND), wobei
f2 eine (möglicherweise verkürzte)
Nachrichtenauthentifizierungsfunktion ist

∗ ein Chiffrierschlüssel CK = f3K(RAND), wobei f3
eine Schlüsselerzeugungsfunktion ist

∗ ein Integritätsschlüssel IK = f4K(RAND), wobei f4
eine Schlüsselerzeugungsfunktion ist

∗ ein Anonymitätsschlüssel AK = f5K(RAND), wobei
f5 eine Schlüsselerzeugungsfunktion ist

– Schließlich wird das Authentifizierungstoken
AUTN = SQN ⊕ AK||AMF ||MAC konstruiert

– Nach Erhalt von RAND und AUTN berechnet das USIM:
– berechnet es den Anonymitätsschlüssel AK = f5K(RAND)
– ruft die Sequenznummer SQN = (SQN ⊕ AK)⊕ AK ab
– errechnet XMAC = f1K(SQN ||RAND||AMF) und
– vergleicht dies mit MAC, das in AUTN enthalten ist
– Wenn sie unterschiedlich sind, sendet der Benutzer die

Ablehnung der Benutzerauthentifizierung mit Angabe der
Ursache an den VLR/SGSN zurück, und der Benutzer
bricht das Verfahren ab.

– Wenn die MAC korrekt ist, prüft das USIM, ob die
empfangene Sequenznummer SQN im richtigen Bereich
liegt:

∗ Liegt die Sequenznummer nicht im korrekten Bereich,
sendet das USIM einen Synchronisationsfehler an den
VLR/SGSN zurück, einschließlich eines
entsprechenden Parameters, und bricht das Verfahren
ab.

– Wenn die Sequenznummer im korrekten Bereich liegt,
berechnet das USIM:

∗ die Authentifizierungsantwort RES = f2K(RAND)
∗ den Chiffrierschlüssel CK = f3K(RAND) und den

Integritätsschlüssel IK = f4K(RAND)

Schlussfolgerungen zur Sicherheit in UMTS Release’99
• Die Sicherheit von UMTS Release ’99 ist der Sicherheit von GSM

sehr ähnlich:

– Der Heimat-AUC generiert Challenge-Response-Vektoren
– Die Challenge-Response-Vektoren werden ungeschützt über

das Signalisierungsnetz an ein besuchtes Netz übertragen,
das die Authentizität eines Handys überprüfen muss.

– Anders als bei GSM authentifiziert sich das Netz auch
gegenüber dem Mobiltelefon

– Die IMSI, die einen Benutzer eindeutig identifiziert:

∗ wird immer noch dem besuchten Netz offenbart
∗ kann immer noch von einem Angreifer, der sich als

Basisstation ausgibt, abgefragt werden, da es in
diesem Fall keine Netzauthentifizierung gibt!

– Das Sicherheitsmodell setzt weiterhin Vertrauen zwischen
allen Netzbetreibern voraus

– Vertraulichkeit ist nur auf der Funkstrecke gegeben

• Zusammenfassend lässt sich sagen, dass UMTS Release’99
genauso sicher sein soll wie ein unsicheres Festnetz

Sicherheit in LTE-Netzen
• Eine Weiterentwicklung von UMTS, so dass viele der

Sicherheitskonzepte gleich geblieben sind

– Das Protokoll zur Authentifizierung und
Schlüsselvereinbarung (AKA) ist im Wesentlichen dasselbe
wie bei UMTS.

– Allerdings wird ein Master Key KASME abgeleitet, der
dann zur Ableitung von Integritäts- und
Verschlüsselungsschlüsseln verwendet wird

• Bemerkenswerte Unterschiede:

– GSM-SIMs dürfen nicht mehr auf das Netz zugreifen
– KASUMI wird nicht mehr verwendet, stattdessen werden

SNOW, AES oder ZUC (ein chinesischer Stream Cipher,
der für LTE entwickelt wurde) eingesetzt

– Das zugehörige Festnetz (Evolved Packet Core genannt) ist
vollständig paketvermittelt und normalerweise durch IPsec
und IKEv2 geschützt.

– Heim-eNBs

• Allerdings oft neue Namen für sehr ähnliche Dinge, z.B.,

– Anstelle der TMSI wird eine Globally Unique Temporary
Identity (GUTI) verwendet, die aus Folgendem besteht:

∗ Einer PLMN-ID, MMEI und einer M-TMSI
∗ Damit werden das Public Land Mobile Network

(PLMN), die Mobility Management Entity (MME),
vergleichbar mit der MSC in GSM/UMTS, und das
mobile Gerät (M-TMSI) identifiziert

41/41

	Einleitung
	Sicherheitsziele
	Bedrohungen
	Analyse der Netzwerksicherheit
	Angriffe auf Nachrichtenebene
	Schutzmaßnahmen der Informationssicherheit
	Kommunikationssicherheit
	Sicherheitsdienste - Überblick
	Sicherheitsunterstützende Mechanismen
	Kryptologie
	Kryptoanalyse
	Brute-Force-Angriff
	Wie groß ist groß?
	Wichtige Eigenschaften von Verschlüsselungsalgorithmen

	Klassifizierung von Verschlüsselungsalgorithmen

	Symmetrische Kryptographie
	Symmetrische Verschlüsselung
	Symmetrische Block-Verschlüsselungsarten
	Electronic Code Book Mode: ECB
	Cipher Block Chaining Mode: CBC
	Ciphertext Feedback Mode: CFB
	Output-Feedback-Modus: OFB

	Datenverschlüsselungsstandard (DES)
	DES - Einzelne Iteration
	DES - Entschlüsselung
	DES - Sicherheit
	Erweiterung der Schlüssellänge von DES

	fortgeschrittener Verschlüsselungsstandard AES
	AES - Sicherheit

	Stromchiffre-Algorithmus RC4
	KASUMI
	KASUMI - Sicherheit

	Asymmetrische Kryptographie
	Einige mathematische Hintergründe
	Der RSA Public Key Algorithmus
	Einige weitere mathematische Hintergründe
	Diffie-Hellman-Schlüsselaustausch
	ElGamal Algorithmus
	Elliptische Kurven Kryptographie
	Gruppenelemente
	Punktaddition
	Grundlagen des ECC - Algebraische Addition
	Multiplikation
	Kurven über Zp
	Berechnen Sie die y-Werte in Zp
	Addition und Multiplikation in Zp
	Foundations of ECC - Größe der erzeugten Gruppen
	ECDH
	EC-Version des ElGamal-Algorithmus
	Sicherheit
	Weitere Anmerkungen

	Schlussfolgerung

	Modifikationsprüfwerte
	Motivation
	Kryptographische Hash-Funktionen
	Nachrichten-Authentifizierungs-Codes (MAC)
	Ein einfacher Angriff gegen einen unsicheren MAC
	Anwendungen für kryptographische Hash-Funktionen und MACs
	Angriffe basierend auf dem Geburtstagsphänomen
	Übersicht über die gebräuchlichen MDCs
	Gemeinsame Struktur von kryptografischen Hash-Funktionen
	Der Message Digest 5
	Der sichere Hash-Algorithmus SHA-1
	Der sichere Hash-Algorithmus SHA-3
	Cipher Block Chaining Message Authentication Codes
	Konstruktion eines MAC aus einem MDC
	Authentifizierte Verschlüsselung mit zugehörigen Daten (AEAD) Modi
	Galois/Zähler-Modus (GCM) ,,MV04''
	Kleiner Exkurs: Rechenoperationen in GF(2n)

	SpongeWrap

	Zufallszahlengenerierung
	Aufgaben der Schlüsselverwaltung
	Zufalls- und Pseudo-Zufallszahlengenerierung
	Zufallszahlengenerierung
	Statistische Tests für Zufallszahlen
	Sichere Pseudo-Zufallszahlengenerierung
	CSPRNG-Sicherheit ist eine große Sache!

	Kryptographische Protokolle
	Anwendungen von kryptographischen Protokollen
	Schlüsselaustausch
	Authentifizierung der Datenherkunft
	Authentifizierung von Entitäten
	Notation kryptographischer Protokolle
	Das Needham-Schroeder-Protokoll
	Das Otway-Rees-Protokoll
	Kerberos
	Kerberos für mehrere Domänen
	Kerberos Version 5

	Fortgeschrittene Methoden zur Passwortauthentifizierung
	PAKE-Schemata: EKE
	Sicherheitsdiskussion
	DH-EKE
	Sicherheitsdiskussion 2
	SRP
	SRP - Dialog
	SRP - Diskussion

	X.509 - Einführung
	X.509 - Zertifikate mit öffentlichem Schlüssel
	X.509 - Zertifikatsketten & Zertifikatshierarchie
	X.509 - Zertifikatssperrung
	X.509 - Authentifizierungsprotokolle

	Formale Validierung von kryptographischen Protokollen

	Sichere Gruppenkommunikation
	Zugriffskontrolle
	Was ist Zugangskontrolle?
	Sicherheitspolitik
	Klassische Computersubjekte, Objekte und Zugriffsarten
	Sicherheitskennzeichen
	Spezifikation der Sicherheitspolitik
	Arten von Zugriffskontrollmechanismen
	Zugriffsmatrizen
	Gemeinsame Zugriffskontrollschemata

	Integration von Sicherheitsdiensten in Kommunikationsarchitekturen
	Motivation: Was ist wo zu tun?
	Ein pragmatisches Modell für sicheres und vernetztes Rechnen
	Beziehungen zwischen Schichten und Anforderungsniveaus
	Allgemeine Überlegungen zur architektonischen Platzierung
	Überlegungen zu bestimmten Ebenen
	Interaktionen zwischen menschlichen Nutzern
	Integration in untere Protokollschichten vs. Anwendungen
	Integration in Endsysteme vs. Zwischensysteme
	Beispiel: Authentifizierungsbeziehungen in Inter-Netzwerken
	Schlussfolgerung

	Sicherheitsprotokolle der Datenübertragungsschicht
	Anwendungsbereich von Sicherheitsprotokollen der Verbindungsschicht
	IEEE 802.1
	Die IEEE 802.1 Standardfamilie: Hintergrund und Ziele
	IEEE 802.1Q
	IEEE 802.1X
	IEEE 802.1AE

	Punkt-zu-Punkt-Protokoll
	Punkt-zu-Punkt-Tunneling-Protokoll (PPTP)
	PPTP: Freiwilliges vs. obligatorisches Tunneling
	PPTP / PPP Proprietäre Erweiterungen und einige ,,Geschichte''
	Vergleich von PPTP und L2TP

	Virtuelle private Netzwerke

	Die IPsec-Architektur für das Internet-Protokoll
	Überblick
	Die TCP/IP-Protokollsuite
	Das IPv4-Paketformat
	Sicherheitsprobleme des Internet-Protokolls
	Sicherheitsziele von IPsec
	Überblick über die IPsec-Standardisierung
	Überblick über die IPsec-Architektur
	IPsec-Wiedergabeschutz (Replay protection)
	IPsec-Implementierungsalternativen: Host-Implementierung
	IPsec-Implementierungsalternativen: Router-Implementierung
	Wann sollte welcher IPsec-Modus verwendet werden?
	Verschachtelung von Sicherheitsassoziationen
	Grundschema der IPsec-Verarbeitung: Ausgehende Pakete
	Grundschema der IPsec-Verarbeitung: Eingehende Pakete
	Auswahl der IPsec-Sicherheitspolitik
	IPsec Security Policy Definition
	Die Encapsulating Security Payload
	Der Authentifizierungs-Header
	IPsec's Verwendung von kryptographischen Algorithmen
	Aufbau von Sicherheitsassoziationen
	ISAKMP - Einführung
	ISAKMP - Grundlegendes Nachrichtenformat
	ISAKMP - Begrenzter Schutz vor Denial of Service
	ISAKMP - Nutzdatenarten
	ISAKMP - Die Sicherheits-Assoziations-Nutzdaten
	ISAKMP - Die Vorschlagsnutzdaten
	ISAKMP - Die Transformations-Nutzdaten
	ISAKMP - SA-Verhandlung
	ISAKMP - Session Key Establishment

	IKE - Einführung
	IKE - Berechnung von IKE-Sitzungsschlüsseln
	IKE - Authentifizierungsmethoden
	IKE - Main Mode Austausch mit Pre-Shared Key
	IKE - Hauptmodus Austausch mit Signaturen
	IKE - Main Mode Exchange mit Public Key Encryption
	IKE - Aggressiver Modus Austausch mit Pre-Shared Key
	IKE - Quick Mode Exchange

	Weitere Probleme mit IPsec
	Schlussfolgerung
	Neue Wege in der IPsec-Entwicklung
	Internet Key Exchange Protocol Version 2 ,,RFC5996''
	IKEv2 - Schlüsselaustauschverfahren
	IKEv2 - Eigenschaften des Schlüsselaustauschverfahrens
	IKEv2 - Zusätzliche Funktionen

	Netzwerk-Adressübersetzung (NAT)
	NAT - Ein Beispiel
	Probleme mit NAT und IPsec - NAT-Traversal
	Probleme mit NAT und IPsec - BEET-Modus

	Konfiguration großer IPsec-Infrastrukturen
	Probleme bei der manuellen Konfiguration der IPsec-Infrastruktur
	Automatische IPsec-Konfiguration - einige Anforderungen
	Verschiedene Ansätze für die automatische IPsec-Konfiguration
	IPsec-Richtlinienverteilung durch zentrale Server
	Tunnel Endpoint Discovery (TED)
	Gruppenverschlüsseltes Transport-VPN (GET)
	Proaktives Multicast-basiertes IPsec-Erkennungsprotokoll
	Soziales VPN
	Dynamisches Mehrpunkt-VPN (DMVPN)
	Sicheres OverLay für IPsec-Erkennung (SOLID)

	Sicherheitsprotokolle der Transportschicht
	Anwendungsbereich von Sicherheitsprotokollen der Transportschicht
	Das Secure Socket Layer (SSL) Protokoll
	SSL-Sicherheitsdienste
	SSL-Sitzungs- und Verbindungsstatus
	Architektur des SSL-Protokolls
	SSL-Record-Protokoll
	Verarbeitung des SSL-Datensatzprotokolls
	SSL Handshake Protokoll: Einführung
	SSL Handshake Protokoll: Vollständiger Handshake
	SSL Handshake Protokoll: Abgekürzter Handshake
	SSL-Handshake-Protokoll: Kryptografische Aspekte
	SSL Handshake Protokoll: Eine Sicherheitslücke
	SSL-Chiffre-Suiten
	Das Transport Layer Security-Protokoll
	Das Datagram Transport Layer Security Protokoll
	Das Secure Shell-Protokoll
	SSH Version 2
	SSH-Transportprotokoll
	SSH-Transportprotokoll Paketformat
	SSH-Aushandlung, Schlüsselaustausch und Server-Authentifizierung
	SSH-Sitzungsschlüssel-Ableitung
	SSH-Authentifizierungsprotokoll
	SSH-Verbindungsprotokoll
	SSH-Verbindungsprotokoll II
	Schlussfolgerung

	Sicherheitsaspekte der mobilen Kommunikation
	Standortdatenschutz in Mobilfunknetzen

	Sicherheit von drahtlosen lokalen Netzen
	IEEE 802.11
	Der zyklische Redundanzcode
	IEEE 802.11 Entity-Authentifizierung
	IEEE 802.11's Wired Equivalence Privacy
	Die Sicherheitsansprüche von IEEE 802.11
	Schwachstelle #1: Die Schlüssel
	Schwachstelle #2: WEP-Vertraulichkeit ist unsicher
	Schwachstelle #3: WEP-Datenintegrität ist unsicher
	Schwachstelle #4: WEP-Zugangskontrolle ist unsicher
	Schwachstelle Nr. 5: Schwachstelle in der RC4-Schlüsselberechnung

	Schlussfolgerungen zu den Unzulänglichkeiten von IEEE 802.11
	Interlude: Sicherheit in öffentlichen WLAN-Hotspots
	Fixing WLAN Security: IEEE 802.11i, WPA und WPA
	WPA-Schlüsselverwaltung
	Eine Zwischenlösung: Temporal Key Integrity Protokoll
	Die langfristige Lösung: AES-basierter WLAN-Schutz
	Vergleich WEP, TKIP und CCMP

	Sicherheit von GSM- und UMTS-Netzen
	GSM-Übersicht
	General Packet Radio Service (GPRS)
	UMTS Sicherheits Architektur
	Aktueller Stand der UMTS-Sicherheitsarchitektur
	UMTS-Netzzugangssicherheitsdienste
	Überblick über den UMTS-Authentifizierungsmechanismus
	Schlussfolgerungen zur Sicherheit in UMTS Release'99

	Sicherheit in LTE-Netzen

